DIXDC1对结直肠癌发展的影响机制以及与其相关microRNA的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DIXDC1是新近克隆的人类Wnt通路的新基因,即ccdl基因(Coiled-coil-DIX1)人类的异构体,ccdl基因在斑马鱼神经管发育过程中被证实是一个Wnt通路的正调控因子。25%左右的人微卫星不稳定性(microsatellite instability)MSI-H的结直肠癌中检测到Wnt通路重要组分Axin2基因突变。上述突变集中于外显子7上的4个单核苷酸连续序列,导致移码和Axin2蛋白C-末端(包括DIX结构域)的缺失,提示Axin2蛋白的C-末端可能参与抑制结直肠癌的发生和发展,然而机制不甚清楚。DIXDC1蛋白就是以Axin2的C-末端为诱饵,通过酵母双杂交实验,筛选出的与Axin2 C-末端存在相互作用的一个蛋白。
     目前DIXDC1基因全长已经成功地被克隆并制备了相应的抗体,但关于DIXDC1生物化学及细胞生物学的研究报道较少。有研究显示DIXDC1属于actin和tubulin结合蛋白家族的新成员,提示其可能参与对细胞形态和运动的调节。
     DIXDC1作为Wnt通路的新成员分子,其具体功能怎样,如何通过Wnt通路对于结直肠癌的发生、发展进行调节;其本身是否受到Wnt通路的调节,其调节方式如何;nicroRNA是否也参与调控DIXDC1的表达,与其相关的miRNA与结直肠癌的发生发展关系如何,目前未见国内外报道。本课题从研究DIXDC1的功能为切入点,将首次阐明其在结直肠癌发生发展过程中的生物学作用及机制;并进一步探讨Wnt通路对DIXDC1蛋白表达水平的影响及机制;利用miRNA芯片及生物信息数据库筛选出与DIXDC1存在相互作用的miRNA,进一步验证相关miRNA对DIXDC1表达的调控并探讨相关miRNA对结直肠癌发生发展的影响。为结直肠癌发生发展机制研究提供新的实验依据,为临床结直肠癌的诊断和治疗提供一定的理论基础。目的阐明DIXDC1对大肠癌细胞生物学特性的影响并进一步深入研究其机制。
     方法脂质体介导的稳定转染方法建立DIXDC1过表达的DLD1细胞;MTT法和裸鼠成瘤实验检测细胞增殖能力;免疫组织化学方法检测DIXDC1在结直肠癌组织中的表达情况及其与增殖指数(Ki-67)的相关性;流式细胞仪检测细胞周期分布和凋亡情况;Western blot检测细胞周期相关蛋白表达水平和PI3K、MAPK信号通路激活状态;双荧光素酶报告系统检测DIXDC1对TCF/LEF转录活性的影响;免疫共沉淀技术验证DIXDC1与Phospho-AKT之间的相互作用;采用PI3K信号通路抑制剂LY294002处理,观察其对DIXDC1过表达细胞生长情况、细胞周期及周期相关蛋白表达的影响;转染DIXDC1 siRNA干扰DIXDC1表达后,观察其对DIXDC1过表达细胞生长情况、细胞周期及周期相关蛋白表达和PI3K信号通路的影响。
     结果DIXDC1的过表达于体外水平促进大肠癌细胞的增殖,于体内水平促进裸鼠移植瘤形成及生长。与正常肠粘膜相比,结直肠癌组织中DIXDC1蛋白表达水平升高,并且与增殖指数Ki-67的表达具有密切的相关性。DIXDC1通过上调cyclin D1、下调p21蛋白表达进而促进细胞周期G0/G1到S期的转化,且激活PI3K信号通路。同时DIXDC1可以上调β-catenin蛋白表达,并且具有增强TCF/LEF转录活性的作用。通过PI3K信号通路抑制剂作用或者干扰DIXDC1蛋白的表达后,β-catenin和cyclin Dl蛋白表达下调而p21蛋白表达升高,同时阻滞了细胞周期G0/G1到S期的转化。
     结论DIXDC1具有促进大肠癌细胞增殖和肿瘤形成的作用,其过表达后可以通过上调cyclin D1和下调p21蛋白表达进而促进细胞周期G0/G1到S期的转化,DIXDC1促大肠癌细胞增殖效应可能与PI3K信号通路的激活相关。
     目的阐明Wnt通路对DIXDC1蛋白表达的调控及其相关机制。
     方法免疫组织化学方法检测DIXDC1与P-catenin在结直肠癌中共表达及共定位情况;Real-time RT-PCR检测正常肠粘膜、结直肠癌组织及Wnt-3a刺激前后大肠癌细胞中DIXDC1 mRNA表达水平的改变;Western blot检测Wnt-3a刺激后大肠癌细胞中DIXDC1蛋白表达水平的改变;CHX chase assay检测DIXDC1蛋白的半衰期,并观察Wnt-3a对DIXDC1蛋白稳定性的影响;采用MG132处理细胞后应用Western blot检测DIXDC1蛋白表达的改变;免疫沉淀技术检测DIXDC1与泛素蛋白的结合情况,并观察Wnt-3a对DIXDC1蛋白泛素化水平的影响;免疫共沉淀技术检测Wnt-3a对DIXDC1蛋白磷酸化水平的影响。
     结果结直肠癌组织中DIXDC1与β-catenin存在共表达及共定位情况。与正常组织相比,结直肠癌组织中DIXDC1蛋白表达水平升高但mRNA表达水平却下降。体外实验中Wnt-3a可以诱导DIXDC1蛋白表达水平的升高,但mRNA表达水平却未见升高。Wnt-3a增加DIXDC1蛋白的稳定性,蛋白酶体抑制剂MG132处理细胞后,DIXDC1蛋白表达水平升高。Wnt-3a抑制了DIXDC1与泛素蛋白的结合从而增加了DIXDC1蛋白稳定性,同时抑制了DIXDC1蛋白磷酸化水平。
     结论DIXDC1蛋白是通过蛋白酶体途径降解的,经典Wnt通路的激活可以通过抑制其泛素化而增加DIXDC1蛋白的稳定性;Wnt通路可能通过抑制DIXDC1蛋白的磷酸化水平而影响其泛素化降解。
     目的筛选并验证与DIXDC1存在相互作用的niRNA,并阐明其对结直肠癌发生发展的影响。
     方法首先通过一系列重复实验对Agilent公司nicroRNA芯片的稳定性和可靠性进行评估;芯片筛选正常肠粘膜、炎性息肉、肠腺瘤和结直肠癌中差异表达的miRNA;选取芯片检测结果中差异表达的17个miRNA,对14对样本RNA进行Real-tmie RT-PCR检测;运用Significance Analysis of Microarray (SAM)芯片数据分析技术对结直肠癌发生发展各阶段中差异表达的miRNA进行分析;通过TargetScan4.2数据库预测,筛选与DIXDC1存在较为保守的相互作用,且芯片结果中变化较为显著的miRNA;通过双荧光素酶报告系统检测miRNA与DIXDC1 3'UTR区域的结合情况;miRNA寡核苷酸转染实验和Western-blot实验检验miRNA对DIXDC1蛋白表达水平的影响。通过Corrected t test:Bonferroni correction统计分析进一步探讨与DIXDC1相关miRNA对结直肠癌发生发展的影响。
     结果Agilent公司的microRNA芯片(chip)含有8个独立的阵列(array),阵列内重复检测探针的平均变异系数仅为6.3%,同一芯片内阵列之间的相关性到达0.999,不同芯片之间的相关性也到达0.999,Real-time RT-PCR检测的17个miRNA的差异变化与芯片检测结果的相关性到达0.90。经过SAM分析显示,在正常肠粘膜-炎性息肉与肠腺瘤-结直肠癌中表达存在明显差异的有63个miRNA,其中40个表达升高,23个表达下降;在肠腺瘤与结直肠癌中表达存在明显差异的有38个miRNA,其中11个表达升高,27个表达下降。选择下调表达最明显的miR-195和miR-497进行深入研究,发现miR-195和miR-497均能作用于DIXDC1 3'UTR,进而抑制DIXDC1 mRNA的转录,且均可以抑制DIXDC1蛋白的表达。通过Corrected t test:Bonferroni correction统计分析发现一部分miRNA只在从正常肠粘膜-炎性息肉到肠腺瘤病变过程中存在差异表达;另外一部分miRNA却只在从肠腺瘤到结直肠癌(Dukes'A/B)的病变过程中存在差异表达;而还有一部分miRNA在肠癌发生发展的整个过程中均存在差异表达,即从正常肠粘膜-炎性息肉到肠腺瘤到结直肠癌(Dukes'A/B),miR-195和miR-497在肠癌发生发展的整个过程中均存在差异表达,参与了结直肠癌的发生发展的整个过程。
     结论在结直肠癌发生发展过程中存在一系列差异表达的microRNA。miR-195和miR-497在肠腺瘤和结直肠癌组织中的表达均显著下调,且与DIXDC1存在相互作用,参与DIXDC1蛋白表达的调节,我们认为DIXDC1、niR-195和miR-497均参与了肠癌的发生发展过程,miR-195和miR-497通过与DIXDC1之间的相互作用间接影响了结直肠癌的发生发展过程。
DIXDC1 is the human homolog of Ccdl (Coiled-coil-DIX1), a third type of DIX (Dishevelled-Axin) domain-possessing protein and a positive regulator in the Wnt signaling pathway during zebrafish neural patterning. DIX domains of Dvl and Axin, two major Wnt downstream mediators, are involved in homomeric or heteromeric protein interactions and are essential for the signal transduction. Frameshift mutations of Axin2 gene resulting in complete deletion of C-terminal DIX domain of the Axin2 protein were detected in more than 25% of colorectal cancers (CRC) with micro-satellite instability (MSI). Human DIXDC1 was recently isolated as an Axin2 C-terminus binding protein. DIXDC1 was postulated to be associated with CRC tumorigenesis.
     Full-length DIXDC1 was cloned and rabbit polyclonal antibody was generated. However, there has been very little research on human DIXDC1 gene since it was firstly identified as an actin-binding protein in 2006. The biological role of DIXDC1 remained largely unknown.
     As a positive regulator in the Wnt pathway, what's the biological role of DIXDC1 in the formation and progression of human colorectal cancer? Is DIXDC1 also regulated by Wnt signaling pathway? Is microRNA also involved in regulation of DIXDC1 expression? What's the relationship between its related miRNA and colorectal cancer tumorigensis? All of these remain unknown. In our study, we explored the biological roles of DIXDC1 and its related microRNA in the progression of human colorectal cancer tumorigensis. DIXDC1 might be used as a potential target for colon cancer prevention and therapy. Our study also shed some new light on the mechanism of Wnt pathway gene activation in human colon carcinogenesis.
     Purpose To explore the biological role of DIXDC1 in the progression of human colon carcinogenesis and its mechanisms.
     Methods Lipofectin-mediated gene transfection method was used to establish DIXDC1 overexpression DLD1 cells. Cells proliferation viability was tested by MTT assay in vitro and Tumorigenicity assay in nude mice in vivo. Immunohistochemical staining was used to detect the expression of DIXDC1 in human colorectal cancer tissues and its correlation with high proliferation index. Flow cytometry was used to assay the cell cycle and apoptosis. Western blot was used to detect the cell cycle-related protein and the activity of PI3K and MAPK signaling pathway. Luciferase assay was performed to observe the effect of DIXDC1 on the TCF binding site reporter gene activity. The interaction between DIXDC1 and Phospho-AKT was demonstrated by immunoprecipitation assay. PI3K pathway inhibitor LY294002 was used to detect whether blocking this pathwasy can affect the cell proliferation, cell cycle and cell cycle-related protein expression in DIXDC1 overexpression cells. DIXDC1 siRNA was transfected to knock down DIXDC1 preotein expression, and its effect on cell proliferation, cell cycle, cell cycle-related protein expression and the activity of PI3K signaling pathway was also detected.
     Results In the current study, ectopic over-expression of DIXDC1 resulted in increased cell proliferation in vitro and accelerated tumorigenesis on nude mice in vivo. Up-regulation of DIXDC1 protein was detected in human colorectal adenocarcinoma tissues and was found to be correlated well with high cell proliferation index. We also showed that DIXDC1 promoted G0/G1 to S phase transition concomitantly with up-regulation of cyclinDl and down-regulation of p21 protein. DIXDC1 over-expression cells showed activation of PI3K/AKT pathway.β-catenin was also found to be upregulated in DIXDC1 overexpression cells. The TCF binding site reporter gene activity was higher in DIXDC 1 transfection cells compared with the control group. DIXDC1 might up-regulateβ-catenin and the Wnt pathway target gene cyclin D1. Both siRNA knockdown of DIXDCl and blocking PI3K pathway using specific inhibitor caused G1-S phase arrest, as well as down-regulation of CyclinD1 and up-regulation of p21 in DIXDC1 over-expression colon cancer cells.
     Conclusion Our study demonstrates that over-expression of DIXDC1 might target p21 and CyclinDl to promote colon cancer cell proliferation and tumorigenesis at least partially through activation of PI3K/Akt pathway.
     Purpose To clarify whether DIXDC1 protein expression is regulated by Wnt signaling pathway and elucidate the mechanisms involved in this process.
     Methods Immunohistoshemical staining was used to examine whether DIXDC1 andβ-catenin protein co-localized in human colorectal cancer tissue. DIXDC1 mRNA expression in the human colon tumoral and matched normal tissues was evaluated by Realtmie RT-PCR. In vitro experiment was performed to detect if Wnt-3a affected DIXDC1 mRNA and protein expression using Realtmie RT-PCR and Western blot. The decay rate of DIXDC1 protein in the presence or absence of Wnt-3a was measured by CHX chase assay. Western blot was used to detect the effect of MG132 on DIXDC1 protein expression. To determine whether DIXDC1 protein was targeted for ubiquitination, co-immunoprecipitation was performed to detect the association of DIXDC1 and ubiquitin with and without Wnt-3a treatment. Anti-phosphoserine, anti-phosphothreonine and anti-phosphotyrosine antibodies were used to detect the phosphorylation of endogenous DIXDC 1 after immunoprecipitation by anti-DIXDC1 antibody.
     Results Positive DIXDC1 staining was detected in colon cancer cells and was co-localized well withβ-catenin staining. However, DIXDC1 mRNA expression was decreased in human colon cancer cells comparing to the matched normal colon epithelial cells. We also found that DIXDC1 protein was induced upon Wnt-3a stimulation, whereas DIXDC1 mRNA level was not significantly increased after Wnt-3a treatment. Our further investigation showed that DIXDC1 protein was degraded through the proteasome pathway, and activation of canonical Wnt signaling decreased the ubiquitin-dependent degradation of both ectopic and endogenous DIXDC 1 protein. In order to explore the possible mechanism of ubiquitination of DIXDC 1, we found that the phosphorylation of DIXDC1 was inhibited by Wnt-3a.
     Conclution Canonical Wnt/β-catenin pathway activation might up-regulate DIXDC1 through post-translational mechanism by inhibiting the ubiquitin-mediated degradation of DIXDC1 protein. It is possible that Wnt-3a affected the phosphorylation of DIXDC1, resulting in the accumulation of DIXDC1.
     Purpose To detect the differential expression of DIXDC1 interaction miRNAs in the progression of colon carcinogenesis and evaluate their effects on the expression of DIXDC1 and colon tumorigenesis.
     Methods Human miRNA microarrays from Agilent Technologies were used in our study. Replicate experiments were performed to determine the variability of array hybridization. The microarray was used to analyze the miRNA expression pattern of normal colon mucosa, inflammatory polyps, colorectal adenoma and carcinoma. Real-time RT-PCR was performed to validate the data from array using 17 miRNAs probes. miRNAs that were differentially expressed between groups were identified using significance analysis of microarray (SAM). miRNAs that predicted to target DIXDC1 and conserved across various species were selected according to TargetScan 4.2. Luciferase assay was perfomed to detect the interaction between miRNAs and the 3'UTR of DIXDC1. miRNAs were transfected into colon cancer cells, the effect of miRNAs on the DIXDC1 protein expression was evaluated by Western blot. Corrected t test:Bonferroni correction was used to estimate differential expression of miRNAs contained the miRNAs related to DIXDC1 during the disease state progression.
     Results Each miRNA chip from Agilent Technologies contains 8 identical arrays, the average intra-array variation across 112 arrays was 6.3%; Inter-array correlation was 0.999, while inter-chip correlation with reference RNA was also 0.999. The quantitative correlation of fold change between Agilent miRNA microarrays and Real-time RT-PCR was 0.90. The SAM application identified 63 miRNAs that were significantly differentially expressed (40 over-expressed,23 under-expressed) in adenoma-carcinoma compared with normal-polyps tissue, while there were 38 miRNAs significantly differentially expressed (11 over-expressed,27 under-expressed) in adenoma compared with carcinoma. miR-195 and miR-497 were chosen for further investigation, because they were the most two significantly under-expressed. We found that miR-195 and miR-497 can interact with the 3'UTR of DIXDC1 and inhibit DIXDC1 protein expression. Differential expression of miRNAs among different stages of colorectal cancer was deteted. Dynamically, these miRNAs gave us a vision of the transformation and progression of colorectal cancer. Some of them differentially expressed from normal to adenoma transition, some of them differentially expressed from adenoma to carcinoma transition, while others differentially expressed from normal to adenoma to carcinoma transition. miR-195 and miR-497 were progressively downregulated from normal to adenoma to carcinoma, which indicated that miR-195 and miR-497 related to DIXDC1 might have some impacts on the transformation and progression of colorectal cancer.
     Conclution Series of miRNAs were significantly differentially expressed in the progression of colon carcinogenesis. miR-195 and miR-497 were progressively downregulated from normal to adenoma to carcinoma, while also interacted with the 3'UTR of DIXDC1 and inhibit DIXDC1 protein expression. miR-195 and miR-497 may have some impacts on the progression of colon carcinogenesis through interaction with DIXDC1.
引文
1. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127:469-80.
    2. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434:843-50.
    3. Akiyama T, Kawasaki Y. Wnt signalling and the actin cytoskeleton. Oncogene 2006;25:7538-44.
    4. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000;103:311-20.
    5. Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, Halling KC, Cunningham JM, Boardman LA, Qian C, Christensen E, Schmidt SS, Roche PC, Smith DI, Thibodeau SN. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 2000;26:146-7.
    6. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004;74:1043-50.
    7. Wang X, Zheng L, Zeng Z, Zhou G, Chien J, Qian C, Vasmatzis G, Shridhar V, Chen L, Liu W. DIXDC1 isoform,1-DIXDC1, is a novel filamentous actin-binding protein. Biochem Biophys Res Commun 2006;347:22-30.
    8. Jing XT, Wu HT, Wu Y, Ma X, Liu SH, Wu YR, Ding XF, Peng XZ, Qiang BQ, Yuan JG, Fan WH, Fan M. DIXDC1 promotes retinoic acid-induced neuronal differentiation and inhibits gliogenesis in P19 cells. Cell Mol Neurobiol 2009;29:55-67.
    9. Wu Y, Jing X, Ma X, Wu Y, Ding X, Fan W, Fan M. DIXDC1 co-localizes and interacts with gamma-tubulin in HEK293 cells. Cell Biol Int 2009;33:697-701.
    10. Shiomi K, Uchida H, Keino-Masu K, Masu M. Ccd1, a novel protein with a DIX domain, is a positive regulator in the Wnt signaling during zebrafish neural patterning. Curr Biol 2003; 13:73-7.
    11. Hershko A, Ciechanover A, Varshavsky A. Basic Medical Research Award. The ubiquitin system. Nat Med 2000;6:1073-81.
    12. Hicke L. Gettin' down with ubiquitin:turning off cell-surface receptors, transporters and channels. Trends Cell Biol 1999;9:107-12.
    13. Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 1998;396:590-4.
    14. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 1997; 16:3797-804.
    15. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 1999;9:207-10.
    16. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858-62.
    17. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294:862-4.
    18. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433:769-73.
    19. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 2005;123:1133-46.
    20. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
    21. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8.
    22. Massfelder T, Lang H, Schordan E, Lindner V, Rothhut S, Welsch S, Simon-Assmann P, Barthelmebs M, Jacqmin D, Helwig JJ. Parathyroid hormone-related protein is an essential growth factor for human clear cell renal carcinoma and a target for the von Hippel-Lindau tumor suppressor gene. Cancer Res 2004;64:180-8.
    23. Plonowski A, Schally AV, Nagy A, Kiaris H, Hebert F, Halmos G Inhibition of metastatic renal cell carcinomas expressing somatostatin receptors by a targeted cytotoxic analogue of somatostatin AN-238. Cancer Res 2000;60:2996-3001.
    24. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 1999;96:5522-7.
    25. Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, Matsui T, Rosenzweig A, Taylor WG, Rubin JS, Perrella MA, Lee ME. Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 2001;276:17479-83.
    26. Midgley R, Kerr D. Colorectal cancer. Lancet 1999;353:391-9.
    27. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001;1:55-67.
    28. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science 1998;281:1509-12.
    29. Kolligs FT, Nieman MT, Winer I, Hu G, Van Mater D, Feng Y, Smith IM, Wu R, Zhai Y, Cho KR, Fearon ER. ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. Cancer Cell 2002;1:145-55.
    30. Rizki A, Lundblad V. Defects in mismatch repair promote telomerase-independent proliferation. Nature 2001;411:713-6.
    31. Motokura T, Arnold A. Cyclin D and oncogenesis. Curr Opin Genet Dev 1993;3:5-10.
    32. Pines J. Cyclins:wheels within wheels. Cell Growth Differ 1991;2:305-10.
    33. Niculescu AB,3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21(Cip1/Wafl) at both the Gl/S and the G2/M cell cycle transitions:pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18:629-43.
    34. Cai K, Dynlacht BD. Activity and nature of p21(WAF1) complexes during the cell cycle. Proc Natl Acad Sci U S A 1998;95:12254-9.
    35. Ogryzko VV, Wong P, Howard BH. WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Mol Cell Biol 1997;17:4877-82.
    36. Egilmez R, Elagoz S, Kanik EA. Cdk1/P34Cdc2 and P21waf expression in colorectal adenomas and carcinomas. J Exp Clin Cancer Res 2001;20:549-52.
    37. Stein JP, Ginsberg DA, Grossfeld GD, Chatterjee SJ, Esrig D, Dickinson MG, Groshen S, Taylor CR, Jones PA, Skinner DG, Cote RJ. Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 1998;90:1072-9.
    38. Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 1995;267:1024-7.
    39. Datta SR, Brunet A, Greenberg ME. Cellular survival:a play in three Akts. Genes Dev 1999; 13:2905-27.
    40. Liang J, Pan Y, Zhang D, Guo C, Shi Y, Wang J, Chen Y, Wang X, Liu J, Guo X, Chen Z, Qiao T, Fan D. Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. Faseb J 2007;21:2247-56.
    41. Kim SE, Lee WJ, Choi KY. The PI3 kinase-Akt pathway mediates Wnt3a-induced proliferation. Cell Signal 2007; 19:511-8.
    42. Chen RH, Ding WV, McCormick F. Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J Biol Chem 2000;275:17894-9.
    43. Torres MA, Eldar-Finkelman H, Krebs EG, Moon RT. Regulation of ribosomal S6 protein kinase-p90(rsk), glycogen synthase kinase 3, and beta-catenin in early Xenopus development. Mol Cell Biol 1999; 19:1427-37.
    44. Ghiselli G, Coffee N, Munnery CE, Koratkar R, Siracusa LD. The cohesin SMC3 is a target the for beta-catenin/TCF4 transactivation pathway. J Biol Chem 2003;278:20259-67.
    45. Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 2004;23:8520-6.
    46. Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF. Axin and GSK3-control Smad3 protein stability and modulate TGF-signaling. Genes Dev 2008;22:106-20.
    47. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 2002;416:648-53.
    48. Hoff H, Zhang H, Sell C. Protein degradation via the proteosome. Methods Mol Biol 2004;285:79-92.
    49. Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci 2006;119:1453-63.
    50. van Noort M, Clevers H. TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev Biol 2002;244:1-8.
    51. Domazet B, Maclennan GT, Lopez-Beltran A, Montironi R, Cheng L. Laser capture microdissection in the genomic and proteomic era:targeting the genetic basis of cancer. Int J Clin Exp Pathol 2008; 1:475-88.
    52. Heath PR, Tomkins J, Ince PG, Shaw PJ. Quantitative assessment of AMPA receptor mRNA in human spinal motor neurons isolated by laser capture microdissection. Neuroreport 2002;13:1753-7.
    53. Lindeman N, Waltregny D, Signoretti S, Loda M. Gene transcript quantitation by real-time RT-PCR in cells selected by immunohistochemistry-laser capture microdissection. Diagn Mol Pathol 2002; 11:187-92.
    54. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002;108:837-47.
    55. Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45:a molecular switch for the Wnt pathway. Genes Dev 2002; 16:1066-76.
    56. Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. Embo J 1999;18:2401-10.
    57. Morson BC. Evolution of cancer of the colon and rectum. Cancer 1974;34:suppl:845-9.
    58. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001;98:5116-21.
    59. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
    60. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60.
    61. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004;303:95-8.
    62. Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP, Ferguson-Smith AC, Cavaille J. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 2003;34:261-2.
    63. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005;436:214-20.
    64. Kawasaki H, Taira K. Retraction:Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature 2003;426:100.
    65. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-33.
    66. Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 2007;67:976-83.
    67. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005;102:13944-9.
    68. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 2006; 103:7024-9.
    69. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005;122:6-7.
    70. Mello CC, Czech MP. Micromanaging insulin secretion. Nat Med 2004; 10:1297-8.
    71. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008;40:43-50.
    72. Croce CM. Oncogenes and cancer. N Engl J Med 2008;358:502-11.
    73. Hammond SM. MicroRNAs as tumor suppressors. Nat Genet 2007;39:582-3.
    74. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007;72:397-402.
    75. Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 2008;68:5795-802.
    76. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama 2008;299:425-36.
    77. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130:2113-29.
    78. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007;282:14328-36.
    79. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008;27:2128-36.
    80. Wolber PK, Collins PJ, Lucas AB, De Witte A, Shannon KW. The Agilent in situ-synthesized microarray platform. Methods Enzymol 2006;410:28-57.
    81. Clancy JL, Nousch M, Humphreys DT, Westman BJ, Beilharz TH, Preiss T. Methods to analyze microRNA-mediated control of mRNA translation. Methods Enzymol 2007;431:83-111.
    82. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell 2005; 120:635-47.
    83. Lee DY, Deng Z, Wang CH, Yang BB. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A 2007; 104:20350-5.
    84. Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 2008; 105:13906-11.
    85. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005;435:839-43.
    1. Clevers H:Wnt/β-catenin signaling in development and disease. Cell 2006; 127:469-480.
    2. Janssen KP, Alberici P, Fsihi H, Gaspar C, Breukel C, Franken P, Rosty C, Abal M, El Marjou F, et al:APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 2006;131:1096-1109.
    3. Polakis P:Wnt signaling and cancer. Genes Dev 2000; 14:1837-1851.
    4. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW:Identification of c-MYC as a target of the APC pathway. Science 1998;281:1509-1512.
    5. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A:The cyclin Dl gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999;96:5522-5527.
    6. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM:The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 1999; 18:2883-2891.
    7. Kolligs FT, Nieman MT, Winer I, Hu G, Van Mater D, Feng Y, Smith IM, Wu R, Zhai Y, Cho KR, Fearon ER:ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. Cancer Cell 2002; 1:145-155.
    8. Miller JR, Hocking AM, Brown JD, Moon RT:Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 1999; 18:7860-7872.
    9. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics,2006. CA Cancer J Clin 2006;56:106-130.
    10. Bienz M, Clevers H:Linking colorectal cancer to Wnt signaling. Cell 2000; 103:311-320.
    11. Hadjihannas MV, Bruckner M, Jerchow B, Birchmeier W, Dietmaier W, Behrens J:Aberrant Wnt/p-catenin signaling can induce chromosomal instability in colon cancer. Proc Natl Acad Sci USA 2006; 103:10747-10752.
    12. Wodarz A, Nusse R:Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998;14:59-88.
    13. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C: Wnt induces LRP 6 signalosomes and promotes dishevelled-dependent LRP 6 phosphorylation. Science 2007;316:1619-1622.
    14. Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K, Wang J, Doble C, et al:Initiation of Wnt signaling:control of Wnt coreceptor LRP6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 2008;135:367-375.
    15. Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N:Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 1998; 12:2610-2622.
    16. Lee JS, Ishimoto A, Yanagawa S:Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J Biol Chem 1999;274:21464-1470.
    17. Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, Fryer LG, Hutchinson L, Fry MJ, Dale TC:Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J 1999; 18:2823-2835.
    18. Boutros M, Mihaly J, Bouwmeester T, Mlodzik M:Signaling specificity by Frizzled receptors in Drosophila. Science 2000;288:1825-1828.
    19. Kishida M, Koyama S, Kishida S, Matsubara K, Nakashima S, Higano K, Takada R, Takada S, Kikuchi A:Axin prevents Wnt-3a-induced accumulation of beta-catenin. Oncogene 1999; 18:979-985.
    20. Moriguchi T, Kawachi K, Kamakura S, Masuyama N, Yamanaka H, Matsumoto K, Kikuchi A, Nishida E:Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J Biol Chem 1999;274:30957-30962.
    21. McEwen DG, Peifer M:Wnt signaling:The naked truth? Curr Biol 2001;11:R524-R526.
    22. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X: Control of betacatenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108:837-847.
    23. Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I:Axin-mediated CKI phosphorylation of beta-catenin at Ser 45:A molecular switch for the Wnt pathway. Genes Dev 2002; 16:1066-1076.
    24. Hart M, Concordet JP, Lassot I, Albert I, dellos Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P:The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 1999;9:207-210.
    25. Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K:An Fbox protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 1999;18:2401-2410.
    26. Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW:The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 1999; 13:270-283.
    27. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R:Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997;16:3797-3804.
    28. Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A: Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 1999;274:10681-10684.
    29. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P:Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 1996;272:1023-1026.
    30. Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y:AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virusmediated transfer of AXIN1. Nat Genet 2000; 24:245-250.
    31. Kinzler KW, Vogelstein B:Lessons from hereditary colorectal cancer. Cell 1996;87:159-170.
    32. Su LK, Vogelstein B, Kinzler KW:Association of the APC tumor suppressor protein with catenins. Science 1993;262:1734-1737.
    33. Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P:Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res 1997;57:4624-4630.
    34. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A:Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 1998;17:1371-1384.
    35. Henderson BR and Fagotto F:The ins and outs of APC and β-catenin nuclear transport. EMBO Rep 2002;3:834-839.
    36. Rosin-Arbesfeld R, Cliffe A, Brabletz T and Bienz M:Nuclear export of the APC tumour suppressor controls β-catenin function in transcription. EMBO J 2003;22:1101-1113.
    37. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W:Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 1998;280:596-599.
    38. Kawahara K, Morishita T, Nakamura T, Hamada F, Toyoshima K, Akiyama T: Down-regulation of beta-catenin by the colorectal tumor suppressor APC requires association with Axin and beta-catenin. J Biol Chem 2000;275:8369-8374.
    39. Hamada F and Bienz M:The APC tumor suppressor binds to C-terminal binding protein to divert nuclear β-catenin from TCF. Dev Cell 2004;7:677-685.
    40. Sierra J, Yoshida T, Joazeiro, CA.and Jones KA:The APC tumor suppressor counteracts P-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 2006;20:586-600.
    41. Kitaeva MN, Grogan L, Williams JP, Dimond E, Nakahara K, Hausner P, DeNobile JW, Soballe PW, Kirsch IR:Mutations in beta-catenin are uncommon in colorectal cancer occurring in occasional replication errorpositive tumors. Cancer Res 1997;57:4478-4481.
    42. Mirabelli-Primdahl L, Gryfe R, Kim H, Millar A, Luceri C, Dale D, Holowaty E, Bapat B, Gallinger S, Redston M:Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res 1999;59:3346-3351.
    43. Polakis P, Hart M, Rubinfeld B:Defects in the regulation of beta-catenin in colorectal cancer. Adv Exp Med Biol 1999;470:23-32.
    44. Samowitz WS, Powers MD, Spirio LN, Nollet F, van Roy F, Slattery ML: Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res 1999;59:1442-1444.
    45. Akiyama T and Kawasaki Y:Wnt signalling and the actin cytoskeleton. Oncogene 2006; 25:7538-7544.
    46. Andreu P, Colnot S, Godard C, Gad S, Chafey P, Niwa-Kawakita M, LaurentPuig P, Kahn A, Robine S, Perret C.et al:Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 2005;132:1443-1451.
    47. Alberici P, de Pater E, Cardoso J, Bevelander M, Molenaar L, Jonkers J and Fodde R:neuploidy arises at early stages of Apc-driven intestinal tumorigenesis and pinpoints conserved chromosomal loci of allelic imbalance between mouse and human. Am J Pathol 2007; 170:377-387.
    48. Aoki K, Aoki M, Sugai M, Harada N, Miyoshi H, Tsukamoto T, Mizoshita T, Tatematsu M, Seno H, Chiba T et al:Chromosomal instability by β-catenin/TCF transcription in APC or β-catenin mutant cells. Oncogene 2007;26:3511-3520.
    49. Ben-Ze'ev A, Geiger B:Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 1998; 10:629-639.
    50. Shibata T, Gotoh M, Ochiai A, Hirohashi S:Association of plakoglobin with APC, a tumor suppressor gene product, and its regulation by tyrosine phosphorylation. Biochem Biophys Res Commun 1994;203:519-522.
    51. Kodama S, Ikeda S, Asahara T, Kishida M, Kikuchi A:Axin directly interacts with plakoglobin and regulates its stability. J Biol Chem 1999;274:27682-27688.
    52. Kolligs FT, Kolligs B, Hajra KM, Hu G, Tani M, Cho KR, Fearon ER: Gamma-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of beta-catenin. Genes Dev 2000; 14:1319-1331.
    53. Morin PJ:Beta-catenin signaling and cancer. Bioessays 1999;21:1021-1030.
    54. Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R:Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 1999;59:4213-4215.
    55. Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R:The human T-cell transcription factor-4 gene:Structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 2000;60:3872-3879.
    56. Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A:Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 1998;395:604-608.
    57. Smith DR, Myint T, Goh HS:Over-expression of the c-myc proto-oncogene in colorectal carcinoma. Br J Cancer 1993;68:407-413.
    58. Erisman MD, Rothberg PG, Diehl RE, Morse CC, Spandorfer JM, Astrin SM: Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol 1985;5:1969-1976.
    59. Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM:Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 1997;94:1402-1407.
    60. Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ:WISP-1 is a Wnt-1-and beta-catenin-responsive oncogene. Genes Dev 2000;14:585-595.
    61. Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H:Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcfl. Science 1999;285:1923-1926.
    62. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F: Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002;22:1172-1183.
    63. Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J:Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 2002;22:1184-1193.
    64. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H:Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997;275:1784-1787.
    65. Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM: Intestinal polyposis in mice with a dominant stable mutation of the b-catenin gene. EMBO J 1999;18;5931-5942.
    66. Furuuchi K, Tada M, Yamada H, Kataoka A, Furuuchi N, Hamada J, Takahashi M, Todo S, Moriuchi T:Somatic mutations of the APC gene in primary breast cancers. Am J Pathol 2000; 156:1997-2005.
    67. Grady WM, Markowitz SD:Genetic and epigenetic alterations in colon cancer. Annu. Rev. Genomics Hum Genet 2002;3:101-128.
    68. Sodir NM, Chen X, Park R, Nickel AE, Conti PS, Moats R, Bading JR, Shibata D, Laird PW:Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+mice. Cancer Res 2006;66:8430-8438.
    69. Munoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A, Sozmen EG, Madison BB, Pozzi A, Moon RT, et al. Transforming growth factor beta receptor type Ⅱ inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Cancer Res 2006;66:9837-9844.
    70. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006;314:268-274.
    71. Kinzler KW, Vogelstein B:Lessons from hereditary colorectal cancer. Cell 1996;87:159-170.
    72. Ballhausen WG:Genetic testing for familial adenomatous polyposis. Ann NY Acad Sci 2000;910:36-49.
    73. Ahlquist DA, Skoletsky JE, Boynton KA, Harrington JJ, Mahoney DW, Pierceall WE, Thibodeau SN, Shuber AP:Colorectal cancer screening by detection of altered human DNA in stool:Feasibility of a multitarget assay panel. Gastroenterology 2000; 119:1219-1227.
    74. Zhou W, Goodman SN, Galizia G, Lieto E, Ferraraccio F, Pignatelli C, Purdie CA, Piris J, Morris R, Harrison DJ, Paty PB, Culliford A, Romans KE, Montgomery EA, Choti MA, Kinzler KW, Vogelstein B:Counting alleles to predict recurrence of early-stage colorectal cancers. Lancet 2002;359:219-225.
    75. Maruyama K, Ochiai A, Akimoto S, Nakamura S, Baba S, Moriya Y, Hirohashi S: Cytoplasmic beta-catenin accumulation as a predictor of hematogenous metastasis in human colorectal cancer. Oncology 2000;59:302-309.
    76. Ougolkov AV, Yamashita K, Mai M, Minamoto T:Oncogenic beta-catenin and MMP-7 (matrilysin) cosegregate in late-stage clinical colon cancer. Gastroenterology 2002;122:60-71.
    77. Shih IM, Yu J, He TC, Vogelstein B, Kinzler KW:The beta-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res 2000;60:1671-1676.
    78. Roh H, Green DW, Boswell CB, Pippin JA, Drebin JA:Suppression of beta-catenin inhibits the neoplastic growth of APC-mutant colon cancer cells. Cancer Res 2001;61:6563-6568.
    79. Luu HH, Zhang R, Haydon RC et al: Wnt/β-Catenin Signaling Pathway as Novel Cancer Drug Targets. Current Cancer Drug Targets 2004;4:653-671.
    80. Kawasakt T, Nosho K, Ohnishi M et al:Correlation of beta-catenin localization with cyclooxygenase-2 expression and CpG island methylator phenotype (CIMP) in colorectal cancer. Neoplasia 2007;9:569-77.
    81. Rice PL, Kelloff J, Sullivan H et al:Sulindac metabolites induce caspase-and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells. Mol Cancer Ther 2003;2:885-92.
    82. Dihlmann S, Klein S, von Knebel Doeberitz M:Reduction of betacatenin/t-cell transcription factor signaling by aspirin and indomethacinis caused by an increased stabilization of phosphorylated betacatenin. Mol Cancer Ther 2003;2:509-16.