DNA甲基化用于肺癌早期诊断的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究的目的在于通过检测肺癌患者癌组织、相应的支气管灌洗液(Bronchoalveolar Lavage Fluid, BALF)以及远癌肺组织和非肿瘤患者的支气管灌洗液的甲基化水平,初步筛选并建立用于肺癌早期诊断的DNA甲基化分子标志物。
     方法:1.2008年10月-2009年10月天津医科大学总医院肺外科手术治疗肺癌患者15例,留取患者的肺部肿瘤标本、远癌肺组织及支气管灌洗液标本。应用甲基化特异性PCR的方法对各组标本进行甲基化检测,判断RARβ、DAPK、MGMT、APClA、ECAD5个基因的甲基化水平,筛选出用于肺癌早期诊断的基因。2.2008年10月-2009年10月天津医科大学总医院最终经病理确诊为肺癌的患者69例作为病例组,肺部良性病变患者30例作为对照组,留取支BALF,应用甲基化特异性PCR的方法进行甲基化检测,判断RARβ、DAPK、MGMT APClA、ECAD 5个基因的甲基化水平,分析DNA甲基化与肺癌发生的关系。
     结果:(1)肺癌组织:RARβ、DAPK、MGMT、APClA、ECAD及多基因联合检测启动子甲基化检出率分别为66.7%(10/15)、73.3%(11/15)、53.3%(8/15)、80%(12/15)、66.7%(10/15)和100%(15/15);
     (2)远癌肺组织:RARβ、DAPK、MGMT、APClA、ECAD及多基因联合检测启动子甲基化检出率分别为53.3%(8/15)、0%(0/15)、26.7%(4/15)、73.3%(11/15)、0%(0/15)和93.3%(14/15);
     (3)支气管灌洗液:RARβ、DAPK、MGMT、APClA、ECAD及多基因联合检测启动子甲基化检出率分别为73.3%(11/15)、46.7%(7/15)、80%(12/15)、40%(6/15)、20%(3/15);和100%(15/15);
     (4)支气管灌洗液中肺癌组与良性病变组甲基化发生率比较:RARβ和APClA基因甲基化发生率在两组中区别有统计学意义(P=0.00,P=0.041);
     (5)肺癌诊断的敏感性和特异性:RARβ基因诊断肺癌的敏感性为60.9%特异性为80%;DAPK基因诊断肺癌的敏感性为56.5%特异性为53.3%; MGMT基因诊断肺癌的敏感性为50.7%特异性为56.7%; APClA基因诊断肺癌的敏感性为42%特异性为80%;ECAD基因诊断肺癌的敏感性为10.1%特异性为83%;多基因联合检测断肺癌的敏感性为91.3%和23.3%;
     (6)抑癌基因启动子甲基化与肺癌相关性:经多因素回归分析发现,高龄及RARβ基因启动子甲基为肺癌发生的危险因素OR值分别为7.565(1.687~33.922)和6.833(1.937~24.108)。
     结论:(1)肺癌患者癌组织、远癌组织和支气管灌洗液中均存在不同程度的RARβ、DAPK、MGMT、APClA和ECAD基因启动子过度甲基化;(2)肺癌患者癌组织与支气管灌洗液中抑癌基因启动子过度甲基化水平相似;(3)多基因联合检测支气管灌洗液中启动子甲基化有助于肺癌早期诊断;(4)单独检测某一个抑癌基因启动子甲基化作为肺癌诊断的分子标志物敏感性和特异性不高;(5)多基因联合检测可以提高肺癌诊断的敏感性。
OBJECTIVE:The aim of this research was to find the candidate genes for lung cancer early diagnosis by using DNA specific PCR (MSP).
     METHODS:We selected 15 patients with lung cancer in the pulmonary surgery department of the Tianjin medical university general hospital from October 2008 to October 2009 and getted the tumor tissue the tumor remote lung tissue and BALF of the same patients. We extracted DNA from the samples and applied MSP which based on sodium bisulfite modification to detect the methylation status between the three different group samples. We detected RARβ、DAPK、MGMT、APClA、ECAD gene methylation status to find the difference between the three-group samples. 2.69 patients with lung cancer and 30 non-tumor patients was selected in the pulmonary surgery and respiratory department of general hospital from October 2008 to October 2009 the lung cancer patients was defined as cases and the non-tumor patients as control. We detected RARβ、DAPK、MGMT、APClA.ECAD gene methylation statu difference by using MSP in the two groups in the BALF and analyzed the relationship between the two groups in associated with the 5 genes methylation status.
     RESULTS:(1)In the lung cancer tissue,the methylation positive rate of the RARβ、DAPK、MGMT、APClA,ECAD and multiple genes was 53.3%(8/15)、0%(0/15)、26.7%(4/15)、73.3%(11/15)、0%(0/15) and 93.3%(14/15) respectively;
     (2)In the remote lung tumor tissue,the methylation positive rate of the RARβ、DAPK、MGMT、APClA、ECAD and multiple genes was 53.3%(8/15)、0%(0/15)、26.7%(4/15)、73.3%(11/15)、0%(0/15)and 93.3%(14/15);
     (3)In the BALF,the methylation positive rate of the RARβ、DAPK、MGMT、APCIA、ECAD and multiple genes was 73.3%(11/15)、46.7%(7/15)、80%(12/15)、40%(6/15)、20%(3/15)and100%(15/15);
     (4)The methylation status of the RARβand APClA reached statistical difference (P=0.00, P=0.041) between lung cancer group and non-malignant tumor group;
     (5)The sensitivity and specificity of DNA methylation to predict lung cancer:The sensitivity of the 5 genes were 60.0%,56.5%,50.7%,42%,10.1%; and the specificity were 80%,53%,56.7%,80%,83% respectivelly;
     (6)DNA methylation and lung cancer risk.By using logistic regression,we found advanced age and RARβgene promoter hypermethylation were risk factor of lung cancer with an odds ratio of 7.565 (1.687~33.922) and 6.833 (1.937~24.108) respectively.
     CONCLUSIONS:(1)Hypermetylation of the RARβ、DAPK、MGMT、APClA、ECAD five genes was observed in lung cancer tissue remote lung tumor tissue and BALF of the lung cancer patients.(2)The hypermethylation status of the tumor inhibite genes was similar between lung cancer tissue and BALF.(3)It was usefull for lung cancer early diagnosis by detecting multiple gene methylation status.(4)Sensitivity and specificity was not acceptable by using single gene methylation status.(5)The sensitivity and specificity was improved by detecting multiple tumor inhibitor genes.
引文
[1]Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics,2009. CA Cancer J Clin [J].2009.59(4):225-249.
    [2]Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer:epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc[J].2008.83(5):584-594.
    [3]Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc [J]. 2008.83(5):584-594.
    [4]Nagai K, Yoshida J, Nishimura M. Postoperative mortality in lung cancer patients. Ann Thorac Cardiovasc Surg [J].2007.13(6):373-377.
    [5]Kim H, Kwon YM, Kim JS, et al. Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J Clin Oncol [J]. 2004.22(12):2363-2370.
    [6]Bach PB, Kelley MJ, Tate RC, McCrory DC. Screening for lung cancer:a review of the current literature. Chest [J].2003.123(1 Suppl):72S-82S.
    [7]Weiss W, Boucot KR, Seidman H. The Philadelphia Pulmonary Neoplasms Research Project. Clin Chest Med [J].1982.3(2):243-256.
    [8]Micke P, Faldum A, Metz T, et al. Staging small cell lung cancer:Veterans Administration Lung Study Group versus International Association for the Study of Lung Cancer--what limits limited disease. Lung Cancer [J].2002. 37(3):271-276.
    [9]Hayata Y, Funatsu H, Kato H, Saito Y, Sawamura K, Furose K. Results of lung cancer screening programs in Japan. Recent Results Cancer Res [J].1982. 82:163-173.
    [10]Nash FA, Morgan JM, Tomkins JG. South London Lung Cancer Study. Br Med J[J].1968.2(5607):715-721.
    [11]Conolly S, Hearnshaw S, Low S, Edwards R. Low-dose spiral computed tomography for lung-cancer screening. Lancet.1998.352(9123):235;author reply [J] 236-237.
    [12]Henschke CI, McCauley DI, Yankelevitz DF, et al. Early lung cancer action project:a summary of the findings on baseline screening. Oncologist [J].2001. 6(2):147-152.
    [13]Fontana RS. The Mayo Lung Project:a perspective. Cancer [J].2000.89(11 Suppl):2352-2355.
    [14]Henschke CI, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP, Miettinen OS. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med [J].2006.355(17):1763-1771.
    [15]Jett JR. Limitations of screening for lung cancer with low-dose spiral computed tomography. Clin Cancer Res [J].2005.11(13 Pt 2):4988s-4992s.
    [16]Flake GP, Rivera MP, Funkhouser WK, et al. Detection of pre-invasive lung cancer:technical aspects of the LIFE project. Toxicol Pathol [J].2007.35(1): 65-74.
    [17]Esteller M. CpG island hypermethylation and tumor suppressor genes:a booming present, a brighter future. Oncogene [J].2002.21(35):5427-5440.
    [18]Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet [J].1999. 21(2):163-167.
    [19]Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet [J].2001.10(7):687-692.
    [20]Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA. DNA methylation analysis:a powerful new tool for lung cancer diagnosis. Oncogene [J].2002. 21(35):5450-5461.
    [21]Lu XP, Fanjul A, Picard N, et al. Novel retinoid-related molecules as apoptosis inducers and effective inhibitors of human lung cancer cells in vivo. Nat Med [J].1997.3(6):686-690.
    [22]Picard E, Seguin C, Monhoven N, et al. Expression of retinoid receptor genes and proteins in non-small-cell lung cancer. J Natl Cancer Inst [J].1999.91(12): 1059-1066.
    [23]Harden SV, Tokumaru Y, Westra WH, et al. Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res [J]. 2003.9(4):1370-1375.
    [24]Fujiwara K, Fujimoto N, Tabata M, et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res [J].2005.11(3):1219-1225.
    [25]Liu Y, Lan Q, Siegfried JM, Luketich JD, Keohavong P. Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia [J].2006.8(1):46-51.
    [26]Hu Z, Wang H, Shao M, et al. Genetic variants in MGMT and risk of lung cancer in Southeastern Chinese:a haplotype-based analysis. Hum Mutat [J]. 2007.28(5):431-440.
    [27]Rathi A, Virmani AK, Harada K, et al. Aberrant methylation of the HIC1 promoter is a frequent event in specific pediatric neoplasms. Clin Cancer Res [J].2003.9(10 Pt 1):3674-3678.
    [28]Russo AL, Thiagalingam A, Pan H, et al. Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer. Clin Cancer Res [J].2005.11(7):2466-2270.
    [29]Schmiemann V, Bocking A, Kazimirek M, et al. Methylation assay for the diagnosis of lung cancer on bronchial aspirates:a cohort study. Clin Cancer Res [J].2005.11(21):7728-7734.
    [30]Russo AL, Thiagalingam A, Pan H, et al. Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer. Clin Cancer Res [J].2005.11(7):2466-2470.
    [31]Liu Y, Lan Q, Siegfried JM, Luketich JD, Keohavong P. Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia [J].2006.8(1):46-51.
    [32]Ginsberg MS. Epidemiology of lung cancer. Semin Roentgenol [J].2005. 40(2):83-89.
    [33]Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med [J].2002. 346(2):92-98.
    [34]Pirozynski M.100 years of lung cancer. Respir Med.2006.100(12):2073-84.
    [35]Mattson ME, Pollack ES, Cullen JW. What are the odds that smoking will kill you. Am J Public Health [J].1987.77(4):425-431.
    [36]Bastarrika G, Garcia-Velloso MJ, Lozano MD, et al. Early lung cancer detection using spiral computed tomography and positron emission tomography. Am J Respir Crit Care Med [J].2005.171(12):1378-1383.
    [37]Twombly R. Lung cancer screening debate continues despite international CT study results. J Natl Cancer Inst [J].2007.99(3):190-195.
    [38]Marshall E. Medicine. A bruising battle over lung scans. Science [J].2008. 320(5876):600-603.
    [39]Bach PB, Kelley MJ, Tate RC, McCrory DC. Screening for lung cancer:a review of the current literature. Chest [J].2003.123(1 Suppl):72S-82S.
    [40]Henschke CI, McCauley DI, Yankelevitz DF, et al. Early lung cancer action project:a summary of the findings on baseline screening. Oncologist[J].2001. 6(2):147-152.
    [41]Henschke CI, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP, Miettinen OS. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med [J].2006.355(17):1763-1771.
    [42]Jett JR. Limitations of screening for lung cancer with low-dose spiral computed tomography. Clin Cancer Res [J].2005.11(13 Pt 2):4988s-4992s.
    [43]Flake GP, Rivera MP, Funkhouser WK, et al. Detection of pre-invasive lung cancer:technical aspects of the LIFE project. Toxicol Pathol [J].2007.35(1): 65-74.
    [44]Tao L, Wang W, Li L, Kramer PK, Pereira MA. DNA hypomethylation induced by drinking water disinfection by-products in mouse and rat kidney. Toxicol Sci [J].2005.87(2):344-352.
    [45]Bird A. DNA methylation de novo. Science [J].1999.286(5448):2287-2288.
    [46]Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science[J].2001.293(5532):1068-1070.
    [47]Tefre T, Ryberg D, Haugen A, et al. Human CYP1A1 (cytochrome P(1)450) gene:lack of association between the Msp I restriction fragment length polymorphism and incidence of lung cancer in a Norwegian population. Pharmacogenetics[J].1991.1(1):20-25.
    [48]Koike H, Ichikawa D, Ikoma H, Otsuji E, Kitamura K, Yamagishi H. Comparison of methylation-specific polymerase chain reaction (MSP) with reverse transcriptase-polymerase chain reaction (RT-PCR) in peripheral blood of gastric cancer patients. J Surg Oncol [J].2004.87(4):182-186.
    [49]Tani N, Ichikawa D, Ikoma D, et al. [An early detection of recurrence using reverse transcriptase-polymerase chain reaction (RT-PCR) and methylation-specific polymerase chain reaction (MSP) from peripheral blood in patients after gastrectomy]. Gan To Kagaku Ryoho [J].2006.33(12): 1720-1722.
    [50]Liu JY, An Q, Xu GD, et al. [Hypermethylation of p16 gene in clinical specimens of patients with lung cancer]. Zhonghua Zhong Liu Za Zhi [J]. 2004.26(2):75-77.
    [51]Digel W, Lubbert M. DNA methylation disturbances as novel therapeutic target in lung cancer:preclinical and clinical results. Crit Rev Oncol Hematol [J].2005.55(1):1-11.
    [52]Shivapurkar N, Stastny V, Suzuki M, et al. Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Lett [J].2007.247(1): 56-71.
    [53]Fischer JR, Ohnmacht U, Rieger N, et al. Prognostic significance of RASSF1A promoter methylation on survival of non-small cell lung cancer patients treated with gemcitabine. Lung Cancer [J].2007.56(1):115-123.
    [54]Sirera R, Gil M, Blasco A, et al. Retrospective analysis of the prognostic role of p16 protein inactivation in plasma in patients with locally advanced non-small cell lung cancer. Lung Cancer [J].2008.61(1):104-108.
    [55]Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res [J].2000. 60(21):5954-5958.
    [56]Belinsky SA, Liechty KC, Gentry FD, et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res[J].2006.66(6):3338-3344.
    [57]Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res[J].1977.37(3):646-650.
    [58]Belinsky SA, Klinge DM, Dekker JD, et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin Cancer Res[J].2005. 11(18):6505-6511.
    [59]Wang Y, Yu Z, Wang T, Zhang J, Hong L, Chen L. Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer[J].2007.56(2): 289-294.
    [60]Kersting M, Friedl C, Kraus A, Behn M, Pankow W, Schuermann M. Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol[J].2000.18(18): 3221-3229.
    [61]Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res[J]. 1999.59(1):67-70.
    [62]Belinsky SA, Klinge DM, Dekker JD, et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin Cancer Res[J].2005. 11(18):6505-6511.
    [63]Cirincione R, Lintas C, Conte D, et al. Methylation profile in tumor and sputum samples of lung cancer patients detected by spiral computed tomography:a nested case-control study. Int J Cancer[J].2006.118(5): 1248-1253.
    [64]Belinsky SA, Grimes MJ, Casas E, et al. Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum. Br J Cancer[J].2007.96(8):1278-1283.
    [65]Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res[J].2000. 60(21):5954-5958.
    [66]Kersting M, Friedl C, Kraus A, Behn M, Pankow W, Schuermann M. Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol[J].2000.18(18): 3221-3229.
    [67]Liu Y, An Q, Li L, et al. Hypermethylation of p16INK4a in Chinese lung cancer patients:biological and clinical implications. Carcinogenesis[J].2003. 24(12):1897-1901.
    [68]Kim H, Kwon YM, Kim JS, et al. Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J Clin Oncol[J]. 2004.22(12):2363-2370.
    [69]Ahrendt SA, Chow JT, Xu LH, et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst[J].1999.91(4):332-339.
    [70]de Fraipont F, Moro-Sibilot D, Michelland S, Brambilla E, Brambilla C, Favrot MC. Promoter methylation of genes in bronchial lavages:a marker for early diagnosis of primary and relapsing non-small cell lung cancer. Lung Cancer[J].2005.50(2):199-209.
    [71]Topaloglu O, Hoque MO, Tokumaru Y, et al. Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer. Clin Cancer Res[J].2004.10(7):2284-2288.
    [72]Schmiemann V, Bocking A, Kazimirek M, et al. Methylation assay for the diagnosis of lung cancer on bronchial aspirates:a cohort study. Clin Cancer Res[J].2005.11(21):7728-7734.
    [73]Bird A. DNA methylation patterns and epigenetic memory. Genes Dev[J]. 2002.16(1):6-21.
    [74]Esteller M, Herman JG. Cancer as an epigenetic disease:DNA methylation and chromatin alterations in human tumours. J Pathol[J].2002.196(1):1-7.
    [75]Ahmad I, Rao DN. Chemistry and biology of DNA methyltransferases. Crit Rev Biochem Mol Biol[J].1996.31(5-6):361-380.
    [76]Vertino PM, Yen RW, Gao J, Baylin SB. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol[J].1996.16(8):4555-4565.
    [77]Chen CM, Chen HL, Hsiau TH, et al. Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol[J].2003.163(1):37-45.
    [78]Tao L, Wang W, Li L, Kramer PK, Pereira MA. DNA hypomethylation induced by drinking water disinfection by-products in mouse and rat kidney. Toxicol Sci[J].2005.87(2):344-352.
    [79]Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994.91(21):9700-9704.
    [80]Singal R, Ginder GD. DNA methylation. Blood[J].1999.93(12):4059-4070.
    [81]Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev[J].1993.3(2):226-231.
    [82]Rountree MR, Selker EU. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev[J].1997.11(18): 2383-2395.
    [83]Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet[J].2001.10(7):687-692.
    [84]Knudson AG Jr. Mutation and cancer:statistical study of retinoblastoma. Proc Natl Acad Sci U S A[J].1971.68(4):820-823.
    [85]Kersting M, Friedl C, Kraus A, Behn M, Pankow W, Schuermann M. Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol[J].2000.18(18): 3221-2329.
    [1]Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer:epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc[J].2008.83(5):584-594.
    [2]Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics,2009. CA Cancer J Clin[J].2009.59(4):225-249.
    [3]Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science[J].2001.293(5532):1068-1070.
    [4]Bird A. DNA methylation de novo. Science.1999.286(5448):2287-8.
    [5]Ahmad I, Rao DN. Chemistry and biology of DNA methyltransferases. Crit Rev Biochem Mol Biol[J].1996.31(5-6):361-380.
    [6]Singal R, Ginder GD. DNA methylation. Blood[J].1999.93(12):4059-4070.
    [7]Piyathilake CJ, Henao O, Frost AR, et al. Race- and age-dependent alterations in global methylation of DNA in squamous cell carcinoma of the lung (United States). Cancer Causes Control[J].2003.14(1):37-42.
    [8]Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res[J].2000. 60(21):5954-5958.
    [9]Vertino PM, Yen RW, Gao J, Baylin SB. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol[J].1996.16(8):4555-4565.
    [10]Chen CM, Chen HL, Hsiau TH, et al. Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol[J].2003.163(1):37-45.
    [11]Tao L, Wang W, Li L, Kramer PK, Pereira MA. DNA hypomethylation induced by drinking water disinfection by-products in mouse and rat kidney. Toxicol Sci[J].2005.87(2):344-352.
    [12]Bird A. DNA methylation patterns and epigenetic memory. Genes Dev[J]. 2002.16(1):6-21.
    [13]Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev[J].1993.3(2):226-231.
    [14]Gitan RS, Shi H, Chen CM, Yan PS, Huang TH. Methylation-specific oligonucleotide microarray:a new potential for high-throughput methylation analysis. Genome Res[J].2002.12(1):158-164.
    [15]Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science[J].2001.293(5532):1068-1070.
    [16]Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet[J].2001.10(7):687-692.
    [17]Knudson AG Jr. Mutation and cancer:statistical study of retinoblastoma. Proc Natl Acad Sci U S A[J].1971.68(4):820-823.
    [18]Esteller M. CpG island hypermethylation and tumor suppressor genes:a booming present, a brighter future. Oncogene[J].2002.21(35):5427-5440.
    [19]Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet[J].2001.10(7):687-692.
    [20]Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A[J]. 1994.91(21):9700-9704.
    [21]Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature[J].1998.395(6697): 89-93.
    [22]Momparler RL, Eliopoulos N, Ayoub J. Evaluation of an inhibitor of DNA methylation,5-aza-2'-deoxycytidine, for the treatment of lung cancer and the future role of gene therapy. Adv Exp Med Biol[J].2000.465:433-446.
    [23]Jang SJ, Soria JC, Wang L, et al. Activation of melanoma antigen tumor antigens occurs early in lung carcinogenesis. Cancer Res[J].2001.61(21): 7959-7963.
    [24]Vachtenheim J, Horakova I, Novotna H. Hypomethylation of CCGG sites in the 3'region of H-ras protooncogene is frequent and is associated with H-ras allele loss in non-small cell lung cancer. Cancer Res[J].1994.54(5): 1145-1148.
    [25]Digel W, Lubbert M. DNA methylation disturbances as novel therapeutic target in lung cancer:preclinical and clinical results. Crit Rev Oncol Hematol[J].2005.55(1):1-11.
    [26]Xie GS, Hou AR, Li LY, Gao YN, Cheng SJ. Aberrant p16 promoter hypermethylation in bronchial mucosae as a biomarker for the early detection of lung cancer. Chin Med J (Engl)[J].2006.119(17):1469-1472.
    [27]Maruyama R, Sugio K, Yoshino I, Maehara Y, Gazdar AF. Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer[J]. 2004.100(7):1472-1477.
    [28]Nakata S, Sugio K, Uramoto H, et al. The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma:epigenetic silencing, clinical features, and prognostic significance. Cancer[J].2006.106(10):2190-2199.
    [29]Rathi A, Virmani AK, Schorge JO, et al. Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin Cancer Res[J].2002.8(11):3324-3331.
    [30]Brabender J, Usadel H, Danenberg KD, et al. Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene[J].2001.20(27):3528-3532.
    [31]Virmani AK, Rathi A, Sathyanarayana UG, et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res[J].2001.7(7):1998-2004.
    [32]Usadel H, Brabender J, Danenberg KD, et al. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res[J].2002.62(2): 371-375.
    [33]Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA. DNA methylation analysis:a powerful new tool for lung cancer diagnosis. Oncogene[J].2002. 21(35):5450-5461.
    [34]Schmiemann V, Bocking A, Kazimirek M, et al. Methylation assay for the diagnosis of lung cancer on bronchial aspirates:a cohort study. Clin Cancer Res[J].2005.11(21):7728-7734.
    [35]Wali A, Srinivasan R, Shabnam MS, Majumdar S, Joshi K, Behera D. Loss of fragile histidine triad gene expression in advanced lung cancer is consequent to allelic loss at 3p14 locus and promoter methylation. Mol Cancer Res[J]. 2006.4(2):93-99.
    [36]Zochbauer-Muller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res[J].2001.61(1):249-255.
    [37]Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet[J].2000.25(3):315-319.
    [38]Wang Y, Yu Z, Wang T, Zhang J, Hong L, Chen L. Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer[J].2007.56(2): 289-294.
    [39]Grote HJ, Schmiemann V, Geddert H, et al. Methylation of RAS association domain family protein IA as a biomarker of lung cancer. Cancer[J].2006. 108(2):129-134.
    [40]Schmiemann V, Bocking A, Kazimirek M, et al. Methylation assay for the diagnosis of lung cancer on bronchial aspirates:a cohort study. Clin Cancer Res[J].2005.11(21):7728-7734.
    [41]Liu Y, Gao W, Siegfried JM, Weissfeld JL, Luketich JD, Keohavong P. Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers. BMC Cancer[J]. 2007.7:74.
    [42]Fujiwara K, Fujimoto N, Tabata M, et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res[J].2005.11(3):1219-1225.
    [43]Esteller M, Herman JG. Cancer as an epigenetic disease:DNA methylation and chromatin alterations in human tumours. J Pathol[J].2002.196(1):1-7.
    [44]Toyooka S, Toyooka KO, Miyajima K, et al. Epigenetic down-regulation of death-associated protein kinase in lung cancers. Clin Cancer Res[J].2003. 9(8):3034-3041.
    [45]Fujiwara K, Fujimoto N, Tabata M, et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res[J].2005.11(3):1219-1225.
    [46]Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation:a fundamental aspect of neoplasia. Adv Cancer Res[J].1998.72: 141-196.
    [47]Wachsman JT. DNA methylation and the association between genetic and epigenetic changes:relation to carcinogenesis. Mutat Res[J].1997.375(1): 1-8.
    [48]Veigl ML, Kasturi L, Olechnowicz J, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A[J].1998.95(15):8698-7802.
    [49]Wang YC, Lu YP, Tseng RC, et al. Inactivation of hMLHl and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest[J].2003.111(6):887-895.
    [50]Safar AM,3rd SH, Su X, et al. Methylation profiling of archived non-small cell lung cancer:a promising prognostic system. Clin Cancer Res[J].2005. 11(12):4400-4405.
    [51]Hsu HS, Wen CK, Tang YA, et al. Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clin Cancer Res[J].2005. 11(15):5410-5416.
    [52]Rusin M, Samojedny A, Harris CC, Chorazy M. Novel genetic polymorphisms in DNA repair genes:O(6)-methylguanine-DNA methyltransferase (MGMT) and N-methylpurine-DNA glycosylase (MPG) in lung cancer patients from Poland. Hum Mutat[J],1999.14(3):269-270.
    [53]Liu Y, Lan Q, Siegfried JM, Luketich JD, Keohavong P. Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia[J].2006.8(1):46-51.
    [54]Fujiwara K, Fujimoto N, Tabata M, et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res[J].2005.11(3):1219-1225.
    [55]Nakata S, Sugio K, Uramoto H, et al. The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma:epigenetic silencing, clinical features, and prognostic significance. Cancer[J].2006.106(10):2190-2199.
    [56]Shibanuma H, Hirano T, Tsuji K, et al. Influence of E-cadherin dysfunction upon local invasion and metastasis in non-small cell lung cancer. Lung Cancer[J].1998.22(2):85-95.
    [57]Toyooka S, Toyooka KO, Miyajima K, et al. Epigenetic down-regulation of death-associated protein kinase in lung cancers. Clin Cancer Res[J].2003. 9(8):3034-3041.
    [58]Toyooka KO, Toyooka S, Virmani AK, et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res[J].2001.61(11):4556-4560.
    [59]Toyooka S, Toyooka KO, Harada K, et al. Aberrant methylation of the CDH13 (H-cadherin) promoter region in colorectal cancers and adenomas. Cancer Res[J].2002.62(12):3382-3386.
    [60]Maruyama R, Sugio K, Yoshino I, Maehara Y, Gazdar AF. Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer[J]. 2004.100(7):1472-1477.
    [61]Brower V. Biomarker studies abound for early detection of lung cancer. J Natl Cancer Inst[J].2009.101(1):11-13.