纳帕海湿地多时空尺度景观格局变化及其驱动机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态过程的多时空尺度研究是深入认识某一特定区域生态变化的基本方法。基于多时空尺度的景观格局变化过程分析是认识高原湖沼湿地生态过程的重要途径。纳帕海高原湖沼湿地(Ramsar湿地)具有高原湖沼湿地的典型性特征,对其开展多时空尺度景观研究、识别其现阶段的变化(退化)态势具有重要意义。本研究以湿地学与景观生态学的理论为基础;基于GIS平台操作,分别从年际-小流域、年际-湿地区、年内季节-湿地区,以及夏季某一时间点-斑块等4个时空尺度,对纳帕海流域、纳帕海湿地区以及其斑块群落进行了景观格局变化过程研究,并分析导致其变化的驱动机制。得到主要结论如下:
     1.纳帕海流域面积593km2,景观类型为林地为主,湿地景观面积占到流域总面积的6%左右。在1994-2006年中,流域整体景观从数量上看变化不大,但是存在着景观类型间的相互转化。景观整体数量上变化不大说明这种保护和破坏在现阶段流域尺度上维持了生态平衡。
     2.1994-2006年降水量呈下降趋势。其对流域整体影响不大,但是对纳帕海湿地区影响显著。主要表现为:湿地类景观的破碎化、湿地类景观向非湿地类景观的转换,流域内湿地类景观的总丧失比例达到16.8%。而这些湿地类景观的丧失主要集中在纳帕海湿地区;湿地类景观内部也存在明显的转换;以中生草甸为主的非湿地类景观已经替代湿地类景观成为了纳帕海湿地区的基质性景观,湿地区生态退化严重。特定的人为活动扰动,对纳帕海湿地区湿地生态的影响较为显著,主要包括河流中上游水库的建设和入湖河流的渠化改造工程、湿地区北部落水洞的疏浚、环湿土质公路的石质-混凝土改造等,都对湿地区湿地生态的演替产生了直接的影响。气候变化和人为活动的共同扰动促使纳帕海流域内湿地生态退化。
     3.基于遥感数据对2008年12月与2009年5月(即干季和湿季)纳帕海湿地区景观格局的判析表明,该时段研究区干季与湿季景观变化巨大。主要体现为:湿地类景观大幅度萎缩,湿地向非湿地转化。这是受流域降水显著的年内季节性分异等气候特征所决定。该时段湿地区各类景观向破坏地景观的转换,主要是季节性气候背景下周边村落家畜放养导致的破坏。其中破坏地景观面积已占到纳帕海湿地区总面积的15.74%,而且遍布于整个湿地区。春夏时期的气候(特别是降水)背景和区域人为活动扰动,是决定纳帕海湿地水文生态过程和景观格局变化的直接驱动。
     4.以2009年6-8月对纳帕海湿地区的土壤、植物群落踏查为基础,在斑块空间尺度上,分析了该时间点上湿地区内长、短期恢复群落斑块的植物群落结构及物种类型,初步识别了该湿地区退化斑块的植物群落自我修复过程。研究认为适度地控制外来人工高强度干扰和主要湿地水环境因子,是促进纳帕海退化湿地自我恢复必不可少的途径;对于强度退化区域的湿地植物群落的恢复,可能需要采取人工生态干预方式,才能较快地实现该类型退化湿地区的植被生态恢复。
The research of multi-spatial-temporal scales ecological process is the basic way which could recognize and deeply understand the ecological changes in some particular areas. Plateau lake-marsh research has long been the weak parts in the field of wetland researches. And if the analysis method of multi-spatial-temporal scales would be used in the recognition of landscape pattern change process of plateau lake-marsh, the ecosystem changing mechanism could be understanded in a multi-dimension way. Napa Wetland (Ramsar Wetlands) has the typical feature of plateau lake-marsh. So, to carry out the study of multi-spatial-temporal landscape pattern change process and to comprehend its driving mechanism would be a proper way to understand the ecological succession process of this kind of wetland.
     This researche proceed by using the Geographic Information System (GIS), through 4 spatial-temporal scales. Such as: (1) multi-year, small watershed spatial-temporal scale; (2) multi-year, wetland zone spatial-temporal scale; (3) seasonal, wetland zone spatial-temporal scale; (4) one time point in summer, patch and plant community spatial-temporal scale. And the main conclution are as follow:
     1.Napa wetland catchment has 593km2, and its main landscape type is forest. The wetland landscapes are only 6% of the whole catchment. The landscapes of the watershed have little change quantitatively from 1994 to 2006, but turely there is mutual transformation among some types. This phenomenon had shown the maintenance of an ecological balance through some destruction and protection.
     2.The annual precipitation decreased from 1994 to 2006. The descent also has little impact on the whole watersed, but impacts on Napa wetland significantly. (1) All wetland landscape types are fragmentary; (2) Wetland landscape changed into non-wetland landscape substantially; (3) The total wetland in the catchment lost (transform) 16.8%, mainly in Napa wetland area; (4) Transformations also appeard among the wetland landscape types for the hydrological changes in Napa wetland area. Wetland ecosystems in this area degrade severely.
     Specific disturbance of human activities on Napa wetland areas are the significant impact to the wetland ecosystem. Such as: the construction of reservoir in the upstream of the rivers, which inflow into the wetland; canalization of these rivers; dredging the caves which are the drain of the water from wetland to Yangzi river; upgrading the“Surrounding the wetland”road by using concrete and so on.
     Climate change and human activities collaboratively prompt the degradation of the wetland.
     3.Analyzing the seasonal landscape change of Napa wetland area by using remote sensing data in December 2008 and May 2009 (the dry season and wet season), a huge differentiation is found from the two seasonal landscapes. The wetland landscape shrinks sharply and a lot of wetland landscape change into non-wetland. This is determined by the seasonal significant variation of precipitation in the catchment.
     Various types of landscape change into destroyed land landscape, mainly because the unordered stocking by the villagers under the condition of seasonal climate differentiation. The destroyed land landscape has already been 15.74% of Napa wetland area, and spread over the whole area.
     The climat differentiation during spring and summer, and human activities in the area are the direct driving force of hydrology and landscape pattern change in Napa wetland area.
     4.Based on the investigation of soil and vegetation of Napa wetland area in June-August 2009, the plant community structure and species are described. Initially reveal the self-recovering model of plant community in destroyed patch. And the study also show that moderate controlling of high human interferences and environmental factors of wetland water is the indispensable way to promote the self-restoration of the degradation patches in Napa wetland.
引文
Austin D,Nivala J.2009.Energy requirements for nitrification and biological nitrogen removal in engineered wetlands.Ecological Engineering,35:184–192
    Bartley R,Roth C H,Ludwig J,et al.2006.Runoff and erosion from Australia’s tropical semi-arid Rangelands:influence of ground cover for differing space and time scales.Hydrol. Process,20:3317–333
    Batzer D P,Sharitz P R,2006.Ecology of freshwater and estuarine wetlands,Berkley and Los Angeles:University of California Press,CA
    Bies L.2006.wetland management in the United States.Wildlife Society Bulletin,34(3):894-896
    Boyle T P,Caziani S M,Waltermire R G.2004.Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America.Wetlands Ecology and Management,12:563–573
    Brenner M,Keenan L W,Miller S J,et al.1999.Spatial and temporal patterns of sediment and nutrient accumulation in shallow lakes of the Upper St. Johns River Basin, Florida.Wetlands Ecology and Management,6:221–240
    Cohen M C L,Lara R J.2003.Temporal changes of mangrove vegetation boundaries in Amazonia: Application of GIS and remote sensing techniques Marcelo.Wetlands Ecology and Management,11:223–231
    Corbane C,Raclot D,Jacob F,et al.2008.Remote sensing of soil surface characteristics from a multiscale classification approach.Catena,75:308-318
    Epaphras A M,Gereta E,Lejora I A,et al.2008.Wildlife water utilization and importance of artificial waterholes during dry season at Ruaha National Park, Tanzania.Wetlands Ecol Manage,16:183–188
    Finlayson C M,Davidson N C,1999.Summary report,In:Finlayson C M and Davidson N C(eds),Global review of wetland resources and priorities for wetland inventory,Supervising Scientist Report 144,Supervising Scientist,Canberr,1-14
    Forman R T T,Godron M.1986.Landscape Ecology.New York:John Wiley& Sons Forman R T T.1995.Some general principles of landscape ecology.Landscape Ecology,10(3):133-142
    Garbrecht J,Martz L W.1997.The assignment of drainage direction over flat surfaces in raster digital elevation models.Journal of Hydrology,193:204-213
    Gottgens J F,Swartz B P,Kroll R W,et al.1998.Long-term GIS-based records of habitat changes in a Lake Erie coastal marsh.Wetlands Ecology and Management,6:5–17
    Jenson S K,Dominique J O.1988.Extracting topographic structure from digital elevation data for geographical information system analysis.Photogrametric engineering and remote sensing,54:1593-1600
    Khaznadar M,Vogiatzakis I N,Griffiths G H.2008.Land degradation and vegetation distribution in Chott El Beida wetland, Algeria.Journal of Arid Environments,1–9
    Kotliar N B,Wiens J A.1990.Multiple scales of patchiness and patch structure:a hierarchical framework for the study of heterogeneity.Oikos,59:253~260
    Madon S P.2008.Fish community responses to ecosystem stressors in coastal estuarine wetlands: a functional basis for wetlands management and restoration.Wetlands Ecol Manage,16:219–236
    Manderü,Kull A,Kuusemets V.2000.Nutrient flows and land use change in a rural catchment:a modelling approach.Landscape Ecology,15:187–199
    Martz W,Garbrecht J.1992.Numerical definition of drainage network and subcatchment areas from digitalel evation models.Computers& Geosciences,18(6):747–761
    Menezes M,Berge U,Worbes M.2003.Annual growth rings and long-term growth patterns of mangrove trees from the Bragan?a peninsula, North Brazil.Wetlands Ecology and Management,11:233–242
    Mitsch W J,Gosselink J G.2007.Wetlands(4th Edition).New York:Wiley
    Morris L R,West N E,Baker F A,et al.2009.Developing an approach for using the soil phytolith record to infer vegetation and disturbance regime changes over the past 200 years.Quaternary International,193:90–98
    Mwashote B M,Ohowa B O,Wawiye P O,et al.2005.Spatial and temporal distribution of dissolved inorganic nutrients and phytoplankton in Mida Creek, Kenya.Wetlands Ecology and Management,13:599–614
    Myers N,Mittermeier R A,Mittermeier C G,et al.2000.Biodiversity hotspots for conservation priorities.Nature,403:853-858
    Mittermeier R A,Gil P R., Hoffman M,et al.2005.Hotspots Revisited– Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions.USA,Chicago:The University of Chicago Press
    O’Connor T G,Kuyler P.2009.Impact of land use on the biodiversity integrity of the moist sub-biome of the grassland biome,South Africa.Journal of Environmental Management,90:384-395
    O′Neill R V,Gardner R H,Milne B T,et al.1991.Heterogeneity and spatial hierarchies.In:Kolasa J and Pickett S T A,eds.Ecological Heterogeneity.New York:Springer-Verlag,85~96
    O′Neill R V.1999.Theory in landscape ecology.In:Wiens J A,Moss M R,ed.Issues in Landscape Ecology,Greeley:Pioneer Press of Greeley.1-5
    Owen C R.1999.Hydrology and history: land use changes and ecological responses in an urban wetland.Wetlands Ecology and Management,6:209–219
    Pichon C L,Gorges G,Baudry J,et al.2008.Spatial metrics and methods for riverscapes: quantifying variability in riverine fish habitat patterns.Environmetrics,John Wiley & Sons Quinn P,Beven K,Chevalier P,et al.1991.The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models.Hydrological Processes,5(1):59–79
    Reddy K R,DeLaune R D.2008.Biogeochemistry of Wetlands:Science and Applications.Boca Raton:CRC Press,1~139
    Riffell S K,Keas B E,Burton T M.2003.Birds in North American Great Lakes coastal wet meadows: is landscape context important? Landscape Ecology,18:95–111
    Risser P G,Karr J R and Forman R T T.1984.Landscape ecology:Directions and approaches.A workshop held at Allerton Park:Conty Illinois,16
    Risser P G.1987.Landscape Ecology:state-of–the-art.In M. G. Turner,ed.Landscape Heterogeneity and Disturbance,New York:Springer-Verlag,1,3-14
    Turcotte R,Fortin J P,Rousseau A N,et al.2001.Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network.Journal of Hydrology,240:225-242
    Turner M G.1989.Landscape Ecology: The effect of pattern on process.Annual Review of Ecologyand Systermatics, 20:171-1971
    Urban D L,O′Neill R V,Shugart H H Jr.1987.Landscape Ecology.Bioscience,37:119~127
    Van Horssen P W,Schot P P,Barendregt A.1999.A GIS-based plant prediction model for wetland ecosystems.Landscape Ecology,14:253–265
    Viedam O,Mella J.1999.Monitoring temporal changes in the spatial patterns of a Mediterranean shrubland using Landsat TM images.Diversity and Distributions,5:275–293
    Wang D Z,Hao Z Q,Xiong Z P.2004.Modified method for extraction of watershed boundary with digital elevation modeling.Journal of Forestry Research,15(4):283–286
    Watts C H,Vojvodic-Vukovic M,Arnold G C,et al.2008.A comparison of restoration techniques to accelerate recovery of litter decomposition and microbial activity in an experimental peat bog restoration trial.Wetlands Ecol Manage,16:199–217
    Ward J V,Tockner K,Schiemer F.1999.Biodiversity of floodplain river ecosystems:ecotones and connectivity.Regul. Rivers:Res. Mgmt. 15:125–139
    Webster K,Soranno P A,Baines S B,et al.2000.Structuring features of lake districts: landscape controls on lake chemical responses to drought.Freshwater Biology,43:499-515
    Wu J.1999.Hierarchy and scaling:Extrapolating information along a scaling ladder.Canadian Journal of Remote Sensing,25:367-380
    Zampella R A,Lathrop R G.1997.Landscape changes in Atlantic white cedar(Chamaecyparis thyoides)wetlands of the New Jersey Pinelands.Landscape Ecology,12:397-408
    白军红,欧阳华,杨志锋,等.湿地景观格局变化研究进展.地理科学进展,2005,24(4):36-45
    白军红,欧阳华,杨志峰,等.2005.湿地景观格局变化研究进展.地理科学进展,24(4):37-45
    白军红,欧阳华,杨志峰,等.2005.湿地景观格局变化研究进展.地理科学进展,24(4):36-45
    毕艳,王金亮,王平,等.2004.香格里拉高原湿地威胁因子分析.环境保护,6:26-30
    常凤来,田昆,莫剑锋,等.2005.不同利用方式对纳帕海高原湿地土壤质量的影响.湿地科学,3(2):132-135
    陈奇伯,寸玉康,李明春,等.2005.香格里拉县典型区段水土保持生态修复监测评价.西南林学院学报,25(2):24-30
    崔保山,杨志峰.2006.湿地学.北京:北京师范大学出版社
    丁圣彦,梁国付.2004.近20年来河南沿黄湿地景观格局演变.地理学报,59(5):653-661
    段志成.1997.中甸县志.昆明:云南民族出版社, 65~112,527~546
    傅伯杰,陈利顶,王军,等.2003.土地利用结构与生态过程.第四纪研究,23(3):247-255
    郭笃发.2005.黄河三角洲滨海湿地土地覆被和景观格局的变化.生态学杂志,24(8):907-912
    郝振纯,李丽.2002.基于DEM的数字水系的生成.水文,22(4):8–10,52.
    侯伟,张树文,张养贞,等.2004.三江平原挠力河流域50年代以来湿地退缩过程及驱动力分析.自然资源学报,19(6):725-731
    洪雪花,李作生,杨春伟.2006.云南湿地的现状和保护对策.云南环境科学,25(增刊):58-60
    胡金明,李杰,袁寒,等.2010.纳帕海湿地景观格局的季节动态及其驱动.地理研究,(29)5:899-908
    黄凤英(主编).1995.中甸县畜牧志.昆明:云南民族出版社
    黄锡畴.1988.中国沼泽研究.北京:科学出版社
    黄易.2009.纳帕海湿地退化对碳氮积累影响的研究.安徽农业科学,37(13):6095-6097
    金振洲.2009.云南高原湿地植物的分类与地理生态特征汇编.北京:科学出版社
    李恒.1987.横断山区的湖泊植被.云南植物研究,9(3):257-270
    李杰,胡金明,董云霞,等.2010.1994-2006年滇西北纳帕海流域及其湿地景观变化研究.山地学报,28(2):247-255
    李加林,张忍顺,王艳红,等.2003.江苏淤泥质海岸湿地景观格局与景观生态建设.地理与地理信息科学,19(5):87-90
    李宁云.2006.纳帕海湿地生态系统退化评价指标体系研究.西南林学院
    李晓文,肖笃宁,胡远满.2002.辽东湾滨海湿地景观规划预案分析与评价.生态学报,22(2):224-232
    李锡文,李捷.1993.横断山脉地区种子植物区系的初步研究.云南植物研究,15(3):217-231
    李秀珍,肖笃宁,胡远满,等.2001.辽河三角洲湿地景观格局对养分去除功能的影响.地理学报,56(1):32-43
    李秀珍,胡远满,贺红士,等.2007.从第七届国际景观生态学大会看当前景观生态学研究的特点.应用生态学报,18(12):2915-1916
    李翀,杨大文.2004.基于栅格数字高程模型DEM的河网提取及实现.中国水利水电科学研究院学报,2(3):208~214
    刘殿伟,宋开山,王丹丹,等.2006.近50年来松嫩平原西部土地利用变化及驱动力分析.地理科学,26(3):277-283
    刘红玉,吕宪国,张世奎.2004.三江平原流域湿地景观多样性及其50年变化研究.生态学报,24(7):1472-1479
    刘红玉,李兆富.挠力河流域湿地景观演变的累积效应.地理研究,2006,25(4):606-616
    刘红玉,李玉凤,曹晓,等.我国湿地景观研究现状、存在的问题与发展方向.地理学报,2009,64(11):1394~1401.
    陆健健.1990.中国湿地.上海:华东师范大学出版社
    陆健健,何文珊,童春富,等.2006.湿地生态学.北京:高等教育出版社
    卢晓宁,邓伟,张树清.2006.近50a来霍林河流域下游沿岸湿地景观格局演变.干旱区地理,29(6):829-837
    鲁学军,周成虎,张洪岩,等.2004.地理空间的尺度——结构分析模式探讨.地理科学进展,23:107~114
    罗姗,张昆,彭涛,等.2008.旅游活动对高原湿地纳帕海土壤理化性质的影响研究.安徽农业科学,36(6):2391-2393
    吕宪国.2004.湿地生态系统保护与管理.北京:化学工业出版社
    穆静秋.2007.纳帕海湿地生态环境保护的问题与对策.林业调查规划,32(4):114-117
    宁龙梅,王学雷,吴后建,等.2005.武汉市湿地景观格局变化研究.长江流域资源与环境,14(1):44-49
    潘竟虎,刘菊玲.2005.黄河源区土地利用和景观格局变化及其生态环境效应.干旱区资源与环境,19(4):69-74
    申卫军,邬建国,林永标,等.2003.空间粒度变化对景观格局分析的.生态学报,2506-2519
    沈中原,李占斌,李鹏,等.2009.基于DEM的流域数字河网提取算法研究.水资源与水工程学报,20(1):20~28
    孙广友.1998.横断山区沼泽与泥炭.北京:科学出版社
    孙广友.2000.中国湿地科学的进展与展望.地球科学进展,15(6):666-672
    田昆,莫剑锋,陆梅,等.2004.人为活动干扰对纳帕海湿地环境影响的研究.长江流域资源与环境,13(3):292-295
    田昆,常凤来,陆梅,等.2004.人为活动对云南纳帕海湿地土壤碳氮变化的影响.土壤学报,41(5):681-686
    田昆.2004.云南纳帕海高原湿地土壤退化过程及驱动机制.中国科学院研究生院.23~97
    汤国安,杨昕.2006.ArcGIS地理信息系统空间分析试验教程.北京:科学出版社,429–441
    王声跃(主编).2002.云南地理.昆明:云南民族出版社
    王凯,杨晓君,赵建林等.2009.云南纳帕海越冬黑颈鹤日间行为模式与年龄和集群的关系.动物学研究,30(1):74-82
    汪东川,卢玉东.2006.基于ArcGIS的数字河网模拟.科技咨讯,5:4–5
    吴运军,张树文,侯伟,等.2006.近50年来挠力河流域居民地、耕地和沼泽地动态关系分析.资源科学,28(4):78-83
    吴征镒,朱彦丞(主编).1987.云南植被.北京:科学出版社
    邬建国.2007.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社
    肖笃宁,胡远满,李秀珍,等.1995.我国北方滨海湿地的生态环境特点和利用保护,中国湿地研究.长春:吉林科学出版社
    肖笃宁,李秀珍.1997.当代景观生态学的进展和展望.地理科学,17(4):356-363
    肖笃宁,李晓文,王连平.2001.辽东湾滨海湿地资源景观演变与可持续利用.资源环境,23(2):31-36
    肖笃宁,胡远满,李秀珍,等.2001.环渤海三角洲湿地景观生态学研究.北京:科学出版社
    肖笃宁,李秀珍.2003.景观生态学的学科前沿与发展战略.生态学报,23(8):1616-1621
    肖笃宁,李秀珍,高峻,等.2003.景观生态学.北京:科学出版社
    肖笃宁,李小玉,宋冬梅.2005.石羊河尾闾绿洲的景观变化与生态恢复对策.生态学报,25(10):2477-2483
    肖德荣,田昆,袁华,等.2006.高原湿地纳帕海水生植物群落分布格局及变化.生态学报,26(11):3624~3630
    肖德荣,田昆,袁华,等.2007.滇西北高原典型退化湿地纳帕海植物群落景观多样性.生态学杂志,26(8):1171-1176
    肖德荣,田昆,杨宇明,等.2007.高原退化湿地纳帕海植物多样性格局特征及其驱动力.生态环境,16(2):523-529
    肖德荣,田昆,张利权.2008.滇西北高原纳帕海湿地植物多样性与土壤肥力的关系.生态学报,28(7):3116~3124
    徐守国,郭辉军,田昆,等.2006.高原湿地纳帕海水生植被调查与分析.山东林业科技,4:48-50
    杨学光,2006,香格里拉县林业志,昆明:云南民族出版社
    姚敏,崔保山.2006.哈尼梯田湿地生态系统的垂直特征.生态学报,26(7):2115-2124
    原立峰,周启刚.2006.基于DEM的流域水文特征提取方法研究.人民黄河,28(5):20–21
    张昆,田昆,莫剑锋,等.2007.水文周期对纳帕海高原湿地草甸土壤碳素的影响.湖泊科学,19(6):705~709
    张昆,吕宪国,田昆.2008.纳帕海高原湿地土壤有机质对水分梯度变化的响应.云南大学学报(自然科学版),30(4):424-427
    张娜.2006.生态学中的尺度问题:内涵与分析方法.生态学报,26(6):2340—2355
    张强,马友鑫,刘文俊,等.2007.滇西北高原湿地区土地利用变化特征.山地学报,125(3):265-273
    赵健,贾忠华,罗纨.2006.ARCGIS环境下基于DEM的流域特征提取.水资源与水工程学报,17(1):74–76
    赵建林,韩联宪,冯理等.2008.云南纳帕海黑颈鹤越冬行为与生境利用初步观察.四川动物,27(1):87-91
    赵魁义.1988.滇西北横断山区沼泽植被类型及其垂直地带性特征.黄锡畴编著,中国沼泽研究.北京:科学出版社
    赵魁义.1999.中国沼泽志.北京:科学出版社