慢性乙型肝炎患者HBV特异性细胞毒性T淋巴细胞增殖老化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性乙型肝炎(chronic hepatitis B,CHB)危害严重,是肝癌、肝硬化的首要病因。2005年,慢性乙型肝炎被列为我国四大重点防治的传染病之一。明确乙型肝炎病毒(hepatitis B virus,HBV)持续感染的免疫病理机制,对慢性乙型肝炎的防治至关重要。HBV特异性CD8+ T细胞,即细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTLs)介导的免疫应答在病毒清除过程中起主导作用;HBV特异性CTLs功能低下是慢性乙型肝炎病毒持续感染的关键原因。探讨HBV特异性CTLs功能低下的机制是研究的焦点。在慢性乙型肝炎研究中发现,患者的HBV特异性CTLs在体外给予抗原刺激后不能增殖或增殖能力下降;而急性自限性乙型肝炎患者以及恢复期患者的HBV特异性CTLs在体外给予抗原刺激后可以迅速增殖,分泌细胞因子并行使其效应功能。克隆扩增是淋巴细胞最基本的功能,抗原特异性CTLs增殖的同时获得效应功能,CTLs的增殖能力是病原体能否清除的关键。因此慢性乙型肝炎患者HBV特异性CTLs增殖能力下降是其功能低下的关键。然而,慢性乙型肝炎患者HBV特异性CTLs不能增殖或增殖能力下降的原因并没有进一步的研究报道。
     T细胞增殖老化(replicative senescence)是指细胞有新陈代谢,但是增殖能力下降或不能进一步增殖。老化T细胞的首要特点是:细胞增殖能力下降、CD28表达缺失。老化T细胞还具有以下重要特点:(1)细胞表面表达自然杀伤细胞相关受体(natural killer-associated receptors, NKRs),如CD56、CD57、杀伤细胞抑制性受体(killer inhibitory receptor, KIR); (2)细胞对凋亡耐受;(3)细胞多处于分化晚期或终末期;(4)老化T细胞效应功能低下。T细胞增殖老化是正常人体老化的一部分,是老年人免疫功能低下的重要原因。
     然而T细胞增殖老化的过程与年龄无关,因为它是根据T细胞增殖历史而不是人的寿命命名的。研究表明抗原持续存在引起的免疫活化,迅速导致病毒特异性CTLs老化。在年轻的慢性炎症、持续感染患者体内能够发现老化的T细胞,与患者的年龄不相符,并且这群细胞与疾病的严重程度密切相关,它们的存在和意义正引起人们的
More than 400 million people worldwide are persistently infected with the hepatitis B virus (HBV) and are at risk of developing chronic liver disease, cirrhosis and hepatocellular carcinoma. The ability to clear HBV after infection has been associated with the presence of a strong HBV-specific cytotoxic T lymphocytes (CTLs) response. However, the main immunological feature that characterizes chronically infected patients is a state of relative hyporesponsiveness of HBV-specific CTLs compared with that demonstrable in acute self-limited hepatitis B patients.
     HBV-specific CTLs of chronic hepatitis B (CHB) patients couldn’t expand when stimulated with antigen peptides in vitro, while HBV-specific CTLs of acute self-limited hepatitis B patients and resolved patients could expand vigorously. The difference in peptide induced CTLs proliferation has not been explained till now. Clone expanding is the fundamental function of T lymphocytes. During persistent infections, the principal determining viral control has been suggested to be the ability of virus-specific CTLs to clonally expand, and the antiviral effector functions are always coupled with clonally expand. So elucidating the reason why HBV-specific CTLs of CHB patients couldn’t expand may be the key to explain the hyporesponsiveness of HBV-specific CTLs.
     Studies have suggested that chronic stimulation can result in the development of specific CTLs that are incapable of cell division. Such a failure to proliferate is generally attributed to replicative senescence. The key feature of senescent T cells is the loss of CD28, the dominant costimulatory receptor required for the induction and maintenance of T-cell-mediated immunity. Senescent T cells also possess other features: these cells express a variety of natural killer-associated receptors (NKRs) and are resistant to apoptosis, most
引文
1. Effros, R.B. Replicative senescence of CD8 T cells: effect on human ageing. Exp Gerontol 2004;39(4):517-524.
    2. Linton PJ, Dorshkind K.Age-related changes in lymphocyte development and function. Nature Immunology 2004;5(2):133-139.
    3. Globerson A, Effros RB. Ageing of lymphocytes and lymphocytes in the aged. Immunol Today 2000; 21(10):515-521.
    4. Effros RB. Loss of CD28 expression on T lymphocytes: A marker of replicative senescence. Dev Comp Immunol 1997;21(6):471-478.
    5. Spaulding C, Guo W, Effros RB. Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp Gerontol 1999;34(5):633-644.
    6. Abedin S, Michel JJ, Lemster B, et al. Diversity of NKR expression in aging T cells and in T cells of the aged: the new frontier into the exploration of protective immunity in the elderly. Exp Gerontol 2005;40(7):537-548.
    7. Valenzuela HF, Effros RB. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 2002;105(2):117-125.
    8. van Baarle D, Tsegaye A, Miedema F, et al. Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol Lett 2005;97(1):19-29.
    9. Weyand CM, Fulbright JW, Goronzy JJ. Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol 2003;38(8):833-841.
    10. Papagno L, Spina CA, Marchant A, et al. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2004; 2 (2): 173-185
    11. Bestilny LJ, Gill MJ, Mody CH, et al. Accelerated replicative senescence of the peripheral immune system induced by HIV infection. AIDS 2000;14:771-780
    12. Paul ME, Shearer WT, Kozinetz CA, et al. Comparison of CD8+T-cell subsets in HIVinfected rapid progressor children versus non-rapid progressor children.J Allergy Clin Immunol 2001;108:258–264.
    13. Dunne PJ, Faint JM, Gudgeon NH, et al. Epstein-Barr virus-specific CD8(+) T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood 2002;100(3):933-940.
    14. Voehringer D, Blaser C, Brawand P, et al. Viral infections induce abundant numbers of senescent CD8 T cells. J Immunol 2001;167(9):4838-4843.
    15. Maini, M.K., Boni, C., Ferrari, C. et al. Direct ex vivo analysis of hepatitis B virus-specific CD8+ T cells associated with the control of infection. Gastroenterology 1999; 117(6):1386-1396.
    16. Rehermann B, Lau D, Hoofnagle JH, et al. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest 1996; 97(7) : 1655-1665.
    17. Penna A, Artini M, Cavalli A, et al. Long-lasting memory T cell responses following self-limited acute hepatitis B. J Clin Invest 1996; 98(5):1185-1194.
    18. Rehermann B, Ferrari C, Pasquinelli C, et al. The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response.Nat Med 1996; 2(10):1104-1108.
    19. Appleman LJ, Boussiotis VA. T cell anergy and costimulation. Immunol Rev, 2003,192:161-180
    20. Nikolich-Zugich J. T cell aging: naive but not young. J Exp Med. 2005;201(6):837-840.
    21. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 1995;13:29-60.
    22. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection.Nat Rev Immunol. 2005;5(3):215-29.
    23. Chisari FV. Rous-Whipple Award Lecture. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol 2000;156(4):1117-1132.
    24. Maini MK, Boni C, Lee CK, et al. The role of virus-specific CD8(+) cells in liverdamage and viral control during persistent hepatitis B virus infection. J Exp Med 2000 ;191(8):1269-1280.
    25. 闻玉梅. 治疗性乙肝疫苗基础与应用研究.中华肝脏病杂志 2003;11(9):519-521.
    26. Kakimi K, Isogawa M, Chung J, et al. Immunogenicity and tolerogenicity of hepatitis B virus structural and nonstructural proteins: implications for immunotherapy of persistent viral infections. J Virol 2002;76(17):8609–8620.
    27. Pichoud C, Berby F, Stuyver L, et al. Persistence of viral replication after anti-HBe serocon-version during antiviral therapy for chronic hepatitis B. J Hepatol 2000;32(2):307-316.
    28. Rehermann B, Pasquinelli C, Mosier SM, Chisari FV. Hepatitis B virus (HBV) sequence variation of cytotoxic T lymphocyte epitopes is not common in patients with chronic HBV infection. 1995. J. Clin. Invest. 96, 1527–1534
    29. Lin CL, Tsai SL, Lee TH, Chien RN, et al. High frequency of functional anti-YMDD and -mutant cytotoxic T lymphocytes after in vitro expansion correlates with successful response to lamivudine therapy for chronic hepatitis B. 2005. Gut. 54(1):152-61
    30. Webster GJ, Reignat S, Brown D, et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol 2004;78(11):5707-5719.
    31. Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signaling. Nat Rev Immunol 2003;3(12):939-951.
    32. Wherry EJ, Teichgraber V, Becker TC, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003;4(3):225-234.
    33. Champagne P, Ogg GS, King AS et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 2001;410 (6824):106–111.
    34. Catalina MD, Sullivan JL, Brody RM, et al. Phenotypic and functional heterogeneity of EBV epitope-specific CD8+ T cells. J Immunol 2002;168(8):4184–4191.
    35. 范振平, 张玲霞, 杨斌, 等.乙型肝炎患者外周血 T 淋巴细胞亚群的特点和意义.世界华人消化杂志 2005;13(2):194-197.
    36. Altman JD, Moss PA, Goulder PJ, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996;274(5284):94-96.
    37. Welsh RM. Assessing CD8 T cell number and dysfunction in the presence of antigen. J Exp Med 2001;193:F19-22.
    38. Appay V, Rowland-Jones SL. The assessment of antigen-specific CD8+ T cells through the combination of MHC class I tetramer and intracellular staining. J Immunol Methods 2002; 268(1):9-19.
    39. Bertoletti A, Costanzo A, Chisari FV, et al. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 1994;180(3):933-943.
    40. Cerny A. Viral Crosstalk: Who Gets to Say What First? Hepatology 2002;35(6): 1540-1543.
    41. Wu Y, Zhang J, Chen S, et al. Frequencies of epitope-specific cytotoxic T lymphocytes in active chronic viral hepatitis B infection by using MHC class I peptide tetramers. Immunol Lett 2004;92(3):253-258.
    42. Nowak, M.A., and C.R. Bangham. Population dynamics of immune responses to persistent viruses. Science. 1996.272:74–79.
    43. Urbani S, Boni C, Missale G, et al. Virus-specific CD8+ lymphocytes share the same effector-memory phenotype but exhibit functional differences in acute hepatitis B and C. J Virol 2002;76(24):12423-12434.
    44. Migueles SA, Laborico AC, Shupert WL, et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 2002;3(11):1061- 1068.
    45. Gattinoni L, Klebanoff CA, Palmer DC, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 2005;115(6):1616-1626.
    46. Appay V, Dunbar PR, Callan M, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 2002;8(4):379-385.
    47. Raulet DH. Interplay of natural killer cells and their receptors with the adaptiveimmune response. Nat Immunol 2004;5(10):996-1002.
    48. Merino J, Martinez-Gonzalez MA, Rubio M, et al. Progressive decrease of CD8high+ CD28+ CD57- cells with ageing.Clin Exp Immunol 1998;112(1):48-51.
    49. Assarsson E, Kambayashi T, Sandberg JK, et al. CD8+ T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J Immunol 2000;165(7):3673-3679.
    50. Brenchley JM, Karandikar NJ, Betts MR, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8t T cells. Blood 2003;101 (7):2711–2720.
    51. Tarazona R, DelaRosa O, Casado JG, et al. NK-associated receptors on CD8 T cells from treatment-naive HIV-infected individuals: defective expression of CD56. AIDS 2002;16(2):197-200.
    52. Lanier LL. Face off--the interplay between activating and inhibitory immune receptors. Curr Opin Immunol 2001;13(3):326-331.
    53. Vivier E, Anfossi N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 2004;4(3):190-198.
    54. Huard B, Karlsson L. KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement. Nature 2000;403(6767):325-328.
    55. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 2002;20:217-251.
    56. Rajagopalan S, Long EO. Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 2005;201(7):1025-1029.
    57. Costa P, Rusconi S, Fogli M, et al. Low expression of inhibitory natural killer receptors in CD8 cytotoxic T lymphocytes. AIDS 2003;17(2):257-260.
    58. Moser JM, Gibbs J, Jensen PE, et al. CD94-NKG2A receptors regulate antiviral CD8(+) T cell responses. Nat Immunol 2002; 3(2):189-195.
    59. Maini MK, Soares MV, Zilch CF, et al. Virus-induced CD8+ T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence. J Immunol 1999;162(8):4521-4526.
    60. Hooijberg E, Ruizendaal J J., Snijders P J. F., et al. Immortalization of Human CD8+T Cell Clones by Ectopic Expression of Telomerase Reverse Transcriptase.The Journal of Immunology, 2000, 165: 4239–4245.
    61. Hsu HC, Scott DK, Mountz JD. Impaired apoptosis and immune senescence - cause or effect? Immunol Rev 2005;205:130-146.
    62. Jaruga E, Skierski J, Radziszewska E, et al. Proliferation and apoptosis of human T cells during replicative senescence--a critical approach. Acta Biochim Pol 2000;47(2):293-300.
    63. Vallejo AN, Schirmer M, Weyand CM, et al. Clonality and longevity of CD4+CD28null T cells are associated with defects in apoptotic pathways. J Immunol 2000;165(11):6301-6307.
    64. Arlettaz L, Degermann S, De Rham C, et al. Expression of inhibitory KIR is confined to CD8+ effector T cells and limits their proliferative capacity. Eur J Immunol 2004; 34(12):3413-3422.
    65. Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999;284(5415):825-829.
    66. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001;19:65-91.
    67. Robek MD, Boyd BS, Wieland SF, et al. Signal transduction pathways that inhibit hepatitis B virus replication. Proc Natl Acad Sci USA 2004;101(6):1743-1747.
    68. Guidotti LG, Morris A, Mendez H, et al. Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. J Virol 2002;76(6):2617-2621.
    69. Urbani S, Boni C, Amadei B, et al. Acute phase HBV-specific T cell responses associated with HBV persistence after HBV/HCV coinfection. Hepatology 2005;41(4):826-831.
    70. 李若冰,陈红松,谢桡等。慢性乙型肝炎患者外周血树突状细胞诱导特异性T淋巴细胞应答。中华肝脏病杂志。2003;11(10):588-591
    71. Zhang D, Shankar P, Xu Z, Most antiviral CD8 T cells during chronic viral infection do not express high levels of perforin and are not directly cytotoxic. Blood2003;101(1):226-235.
    72. Yang OO, Lin H, Dagarag M, et al. Decreased perforin and granzyme B expression in senescent HIV-1-specific cytotoxic T lymphocytes. Virology 2005;332(1):16-19.
    73. Dagarag M, Ng H, Lubong R, et al. Differential impairment of lytic and cytokine functions in senescent human immunodeficiency virus type 1-specific cytotoxic T lymphocytes. J Virol 2003;77(5):3077-3083.
    74. Murali-Krishna K, Altman JD, Suresh M, et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 1998; 8(2):177-187.
    1. Chisari, F. V. and Ferrari C. 1995. Hepatitis B virus immunopathogenesis. Annu.Rev.Immunol. 13:29-60.
    2. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection.Nat Rev Immunol. 2005;5(3):215-29.
    3. Maini, M. K., Boni C., Lee C. K., Larrubia J. R., Reignat S., Ogg G. S., King A. S., Herberg J., Gilson R., Alisa A., Williams R., Vergani D., Naoumov N. V, Ferrari C., andBertoletti A.. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med. 2000 ;191(8):1269-80.
    4. Rehermann, B., Lau, D. Hoofnagle J. H. and Chisari F. V.. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest. 1996;97(7):1655-65.
    5. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284(5415):825-9.
    6. Guidotti, L. G. and Chisari F. V.. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu.Rev.Immunol. 2001. 19:65-91.
    7. Pasquetto, V., Wieland S. F., Uprichard S. L., Tripodi M., and Chisari F. V.. Cytokine-sensitive replication of hepatitis B virus in immortalized mouse hepatocyte cultures. J Virol. 2002;76(11):5646-53.
    8. Robek MD, Boyd BS, Wieland SF, Chisari FV. Signal transduction pathways that inhibit hepatitis B virus replication. Proc Natl Acad Sci U S A. 2004;101(6):1743-7
    9. Heise, T., Guidotti, L. G. & Chisari, F. V. Characterization of nuclear RNases that cleave hepatitis B virus RNA near the La protein binding site. J Virol. 2001;75(15):6874-83.
    10. Guidotti LG, Morris A, Mendez H, Koch R, Silverman RH, Williams BR, Chisari FV. Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. J Virol. 2002;76(6):2617-21.
    11. Guidotti, L. G., McClary, H., Loudis, J. M. & Chisari, F. V. Nitric oxide inhibits hepatitis B virus replication in the livers of transgenic mice. J Exp Med.2000;191(7):1247-52.
    12. Wieland, S. F., Spangenberg H. C., Thimme R., Purcell R. H., andChisari F. V.. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc.Natl.Acad.Sci.U.S.A 2004;101(7):2129-34.
    13. An Chen, Li Wang, Jingbo Zhang, Liyun Zou, Zhengcai Jia, Wei Zhou, Ying Wan, and Yuzhang Wu.H-2 Kd-Restricted Hepatitis B Virus-Derived Epitope Whose Specific CD8_ T Lymphocytes Can Produce Gamma Interferon without Cytotoxicity J Virol. 2005;Accepted
    14. Kakimi K, Lane TE, Wieland S, Asensio VC, Campbell IL, Chisari FV, Guidotti LG.Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J Exp Med. 2001;194(12):1755-66.
    15. Price, D. A., Klenerman P., Booth B. L., Phillips R. E., andSewell A. K.. Cytotoxic T lymphocytes, chemokines and antiviral immunity. Immunol Today. 1999;20(5):212-6.
    16. Rossi, D. and Zlotnik A.. 2000. The biology of chemokines and their receptors. Annu.Rev.Immunol. 18:217-242.
    17. Sitia, G., Isogawa M., Kakimi K., Wieland S. F., Chisari F. V., andGuidotti L. G.. Depletion of neutrophils blocks the recruitment of antigen-nonspecific cells into the liver without affecting the antiviral activity of hepatitis B virus-specific cytotoxic T lymphocytes. Proc.Natl.Acad.Sci.U.S.A 2002; 99(21):13717-13722.
    18. Sitia G, Isogawa M, Iannacone M, Campbell IL, Chisari FV, Guidotti LG. MMPs are required for recruitment of antigen-nonspecific mononuclear cells into the liver by CTLs. J Clin Invest. 2004;113(8):1158-67.
    19. Chisari FV. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol. 2000;156(4):1117-32.
    1. Geiger H, Van Zant G. The aging of lympho-hematopoietic stem cells. Nat Immunol. 2002;3(4):329-33.
    2. French RA, Broussard SR, Meier WA, Minshall C, Arkins S, Zachary JF, Dantzer R, Kelley KW. Age-associated loss of bone marrow hematopoietic cells is reversed by GH and accompanies thymic reconstitution. Endocrinology. 2002;143(2):690-9.
    3. Nikolich-Zugich J. T cell aging: naive but not young. J Exp Med. 2005;201(6):837-40.
    4. Aspinall R, Andrew D. Age-associated thymic atrophy is not associated with a deficiency in the CD44(+)CD25(-)CD3(-)CD4(-)CD8(-) thymocyte population. Cell Immunol. 2001;212(2):150-7.;
    5. Ceredig R, Rolink T. A positive look at double-negative thymocytes. Nat Rev Immunol. 2002;2(11):888-97.
    6. Anderson G, Jenkinson EJ.Lymphostromal interactions in thymic development and function. Nat Rev Immunol. 2001;1(1):31-40.
    7. Globerson A, Kollet O, Abel L, Fajerman I, Ballin A, Nagler A, Slavin S, Hur HB, Hagay Z, Sharp A, Lapidot T. .Differential effects of CD4+ and CD8+ cells on lymphocyte development from human cord blood cells in murine fetal thymus explants. Exp Hematol. 1999;27(2):282-92.
    8. Savino W, Dardenne M. Neuroendocrine control of thymus physiology. Endocr Rev. 2000;21(4):412-43.
    9. Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D, Meraz A, Bhandoola A. Thymopoiesis independent of common lymphoid progenitors. Nat Immunol. 2003;4(2):168-74.
    10. Neese RA, Misell LM, Turner S, Chu A, Kim J, Cesar D, Hoh R, Antelo F, Strawford A, McCune JM, Christiansen M, Hellerstein MK. Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc Natl Acad Sci U S A. 2002;99(24):15345-50.
    11. Weyand CM, Fulbright JW, Goronzy JJ. Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol. 2003 Aug;38(8):833-41.
    12. Mala K. Maini, Maria Vieira D. Soares, Christian F. Zilch, Arne N. Akbar, and Peter C.L. Beverley Virus-induced CD81 T cell clonal expansion is associated with telomerase upregulation and telomere length preservation: a mechanism for rescue from replicative senescence. 1999. J. Immunol. 162(8):4521-6.
    13. Migliaccio M, Amacker M, Just T, Reichenbach P, Valmori D, Cerottini JC, Romero P, Nabholz M. Ectopic human telomerase catalytic subunit expression maintains telomere length but is not sufficient for CD8+ T lymphocyte immortalization. J Immunol. 2000;165(9):4978-84.
    14. Valenzuela HF, Effros RB. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol. 2002;105(2):117-25.
    15. Vallejo AN, Schirmer M, Weyand CM, Goronzy JJ. Clonality and longevity of CD4+CD28null T cells are associated with defects in apoptotic pathways. J Immunol. 2000 ;165(11):6301-7.
    16. Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, Nikolich-Zugich J. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med. 2004 ;200(10):1347-58.
    17. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.Y., Campisi, J., 2001.Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and ageing. Proc Natl Acad Sci U S A. 2001;98(21):12072-7.
    18. Arosa, F.A. CD8+CD28- T cells: certainties and uncertainties of a prevalent human T-cell subset. Immunol Cell Biol. 2002;80(1):1-13
    19. Saurwein-Teissl M, Lung TL, Marx F, Gschosser C, Asch E, Blasko I, Parson W, Bock G, Schonitzer D, Trannoy E, Grubeck-Loebenstein B.Lack of antibody production following immunization in old age: association with CD8(+)CD28(-) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol. 2002;168(11):5893-9.
    20. Cortesini R, LeMaoult J, Ciubotariu R, Cortesini NS. CD8+CD28- T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity. Immunol Rev. 2001;182:201-6.