RNA结合蛋白QKI-5对FoxO1的转录后调控在维甲酸抑制乳腺癌细胞增殖中的功能研究及新基因Apr3参与维甲酸诱导细胞周期阻滞的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
QKI是一类RNA结合蛋白,在神经系统中表达含量很高,基因部分缺失小鼠由于神经髓鞘发育障碍,在出生后10天出现严重的震颤表型。尽管关于QKI的研究主要集中于在神经系统领域,但是在神经系统以外的器官,如心,肺,睾丸,也有广泛表达。
     在神经系统中的研究发现,QKI-6, 7主要在细胞浆负责目的RNAs的运输及参与稳定性的调控。QKI-5可与目的转录本结合将其滞留在细胞核,但是关于其更多的功能研究却未见报道。
     除了在神经系统中对于髓鞘的形成发挥重要功能以外,QKI蛋白在血管发育,凋亡,细胞黏附,细胞生长及形态形成和器官发生等方面具有举足轻重的功能。根据RNA结合蛋白QKI-5对目的基因3’UTR的结合具有特异性以及到目前为止经实验验证的结合位点,我们在通过生物信息学预测的1430个靶基因中选择FoxO1作为我们的研究对象。主要基于以下几方面的原因。
     一、对转录因子FoxO1的功能研究发现,FoxO1主要参与细胞的新陈代谢、氧化应激、细胞周期调控、凋亡、衰老以及血管发育等生命过程,与QKI的功能存在某种程度的交叉。如在QKI-5以及FoxO1基因分别敲除的小鼠中,都观察到由于血管发育障碍导致的胚胎致死表型,进一步研究发现这两种敲除小鼠中都存在维甲酸通路功能障碍。
     二、对FoxO1的mRNA的3’UTR进行了生物信息学分析,发现在其3’UTR存在三个十分保守的QKI-5结合位点。同时软件预测发现FoxO1的3’UTR在物种间高度保守,且二级结构复杂度非常高,暗示它的3’UTR具有生物学功能,提示可能有转录后调控的存在。
     为了验证QKI-5对FoxO1存在转录后调控,我们首先构建含FoxO1的3’UTR的荧光素酶报告系统,发现QKI-5能够明显降低报告系统的活性,提示是一种转录后负性调控。通过RNA免疫共沉淀实验证实QKI-5可与FoxO1的3’UTR特异结合,提示二者之间在细胞内存在相互作用。在此基础上为了进一步验证它们之间的相关性,通过人为升高和降低QKI-5的表达,观察到FoxO1与QKI-5的表达存在负相关。提示QKI-5可能通过转录后水平参与调控FoxO1的表达。那么,QKI-5对FoxO1的这种转录后调控在何种情况下发生且具有什么生理意义呢?
     在RA诱导乳腺癌细胞周期阻滞的模型中,我们检测到QKI-5和FoxO1的表达均明显上升。运用siRNA技术特异沉默QKI-5之后,FoxO1及其相关细胞周期蛋白cyclin D1和P27均发生明显改变,使RA诱导后MCF-7细胞周期阻滞进程发展加快。进一步分析QKI对FoxO1的作用机理,特异沉默QKI-5表达组,FoxO1 mRNA稳定性增强。提示QKI-5介导了RA引起FoxO1 mRNA稳定性下降的过程。
     由于RA诱导之后,FoxO1的mRNA整体水平是升高的,QKI-5对FoxO1的负性调控具有什么意义呢?结合FoxO1的功能考虑,我们在RA抑制MCF-7细胞增殖模型中,通过SA-gal细胞衰老功能实验发现特异沉默QKI-5表达实验组,RA诱导后,细胞衰老的发生率与未沉默组比较明显增加,提示,正是由于QKI-5对FoxO1的负性调控延缓了FoxO1的快速升高所致的细胞衰老,从而使ATRA对细胞周期的精细调控朝着诱导分化或凋亡的途径进行。
     本实验不但证实QKI-5可与FoxO1的3’UTR结合,并且是通过影响了FoxO1的mRNA稳定性发挥转录后负性调控作用;更重要的是,在RA抑制MCF-7细胞增殖中,QKI-5对FoxO1的这种负性调控能够抑制细胞衰老,从而有利于RA更好地发挥调节细胞周期阻滞,诱导分化或凋亡的功能。
     维甲酸(All-trans-retinoic acid,ATRA)是一种经典的分化和凋亡诱导剂。在体外一些髓样细胞系中ATRA可以诱导细胞周期阻滞及启动终末分化。并且由于它的这一特性已在临床用于治疗急性早幼粒细胞性白血病,并取得很好的疗效。除了造血系统,RA对许多实体瘤细胞系也具有诱导分化的功能。
     尽管研究人员对RA的许多生物学功能了解地非常清楚,但是关于它发挥作用的分子机制却知道的非常有限。我们的前期实验通过基于PCR的消减杂交方法从ATRA诱导人早幼粒白血病HL-60细胞分化过程中,克隆了一系列新基因,Apr3是其中之一。
     我们首先通过InterPro和PROSITE这两个蛋白质分析软件对Apr3进行了功能结构域的预测,发现Apr3在其氨基端含有一段信号肽序列,之后紧跟一个EGF domain,在其羧基端分别为跨膜区及氨基酸系列非常短的胞内区,提示Apr3可能是一个膜蛋白。
     Apr3是ATRA诱导HL-60细胞分化时差异表达的一个新基因,它是否存在于其他实体瘤呢?RT-PCR分析显示Apr3在多种细胞中有广泛的分布,并且绝大多数细胞经ATRA诱导后,Apr3的表达都有不同程度的升高。通过间接免疫荧光对Apr3的亚细胞定位进行研究发现Apr3沿细胞膜分布,是一个膜蛋白;然而缺失跨膜区及胞内区的截短体Apr3?在细胞浆内呈颗粒样、点状分布,具备分泌蛋白的典型特征。
     RA作为分化诱导剂,它可以抑制细胞的增殖,同时促进细胞的分化。相关的机理研究表明,ATRA可诱导细胞周期阻滞于G1期,Apr3是受到RA诱导表达的分子,它是否参与对细胞周期的调控是我们首先关注的内容。流式细胞仪检测发现Apr3能将细胞周期阻滞于G1/S期,而Apr3?使S期细胞增多,提示它可以促进细胞的增殖。在细胞周期进程中,cyclin D1是发挥作用最关键的调节因子。为此通过荧光素酶报告系统观察Apr3是否影响cyclin D1启动子的活性,结果表明Apr3过表达能显著抑制cyclin D1的启动子活性,而Apr3?则具有完全相反的作用,高度提示膜蛋白Apr3可能是调控细胞周期的关键分子。进一步检测细胞周期调控的关键分子cyclin D1的mRNA和蛋白水平,与报告系统结果一致。
     本课题研究结果提示Apr3在多种肿瘤细胞中广泛表达,并且受到RA信号通路的上调。它分布在细胞膜表面,主要可能通过识别相关配体直接参与对细胞周期的调控,特别是通过抑制cyclin D1的表达,引起细胞周期的阻滞。说明此分子在ATRA信号通路的重要作用。
QKI is an RNA binding protein essential for normal myelination, and are abundantly expressed in the central nervous system. QKI viable mice exhibit extensive body tremors detectable by postnatal day 10 resulting from a severe deficit in myelination. Although the most extensive study about QKI are foused on nervous system, profound and abundant distribution of QKI-5, was observed in various other tissues of adult, such as heart, lung or testis.
     Analyzing the functions of QKI isoform in nervous system disclosed that QKI-6, 7 are mainly responsible for transport and stability of target RNAs. Whereas, QKI-5 binds target transcripts to retain them in the nucleus., Specific role of QKI-5 has been largly unknown
     In addition to its fundamental role in myelination, QKI also participated in vascular development, apoptosis, cell adhesion, cell growth, morphogenesis and organogenesis. In light of the validated target motif and RNA binding specificity of QKI with its targets, we select FoxO1 as a candidate gene from 1430 new putative mRNA targets predicted by other researcher.
     1. As we known, FoxO proteins have an important role in the regulation of metabolism, resistance to oxidative stress, cell cycle progression, apoptosis, longevity, senescence and vascular development. Interestingly, there is a common embryonic lethal phenotype shared by QKI or FoxO1 knockout mice due to vascular development disturbance, hinting the functional overlap between them. The underlying mechanism are both related with dysregulation of retinoic acid (RA) signaling pathways.
     2. One the basis of bioinformatics analysis on FoxO1 3’UTR., it contains 3 predicted QRE and may be a QKI target transcript, its mRNA sequence is evolutionarily conserved among organisms, and secondary structure is highly complicated. These features highly suggested that 3’UTR of FoxO1 is functionally important in vivo.
     In order to assess whether QKI-5 could regulate FoxO1 expression at post-transcriptional level, we made a reporter constructs containing 3”UTR of FoxO1 at the downstream of luc reporter gene. Upon QKI-5 overexpression, the luciferase activity were gradually decreased, implying that QKI-5 could negatively regulate FoxO1 expression at post-transcriptional level. Furthermore we performed RNA co-immprecipitation assay, and verified that QKI-5 could associate specifically with 3’UTR of FoxO1 in vivo. Is this type of regulation functionally important in vivo?
     In model of RA-induced cell cycle arrest of mammary cancer cells, the expression of QKI-5 and FoxO1 were both up-regulated. we analyzed the effect of QKI-5 on cell cycle regulation following RA induction by specifically silencing the expression of QKI-5. As expected, the FoxO1 and related cell cycle regulators were moderately altered, implying that the effects of RA is partially mediated by QKI-5. Besides the stability of FoxO1 mRNA was greatly enhanced upon RA induction in QKI-5-silenced cells compared with that of controls, confirming the effects of RA on the stability of FoxO1 mRNA was mediated by QKI-5.
     It was known that ATRA is able to induce the differentiation of breast epithelium normally. In MCF-7 breast cancer line, ATRA induced cell cycle arrest, Under the condition of lacking QKI-5 , or at very low level, mimicked by qki-5 RNAi treatment, we found the incidence of senescence was dramatically enhanced determined by SA-gal detection assay. Our results have disclosed an underlying importance of QKI-5 in the posttranscriptional regulation of FoxO1 during ATRA induced cell cycle and differentiation process, without QKI-5, the cell tends to be more susceptible to become senescent under the ATRA treatment.
     All-trans-retinoic acid (ATRA) is a classic differentiation and apoptosos agent. ATRA treatment induce terminal differentiation and growth arrest of several established human myeloid cell lines in vitro and has also proven to be effective in the clinical treatment of acute promyelocytic leukemia (APL) by inducing differentiation and apoptosis of the immature blasts. Besides, ATRA is capable of directing the differentiation of several solid tumor cell lines.
     Although the biologic effects of ATRA are well characterized, the molecular mechanisms involved are largely unknown. Our previous experiment identified a series of differentially expressed genes in HL-60 cells upon treatment with ATRA by use of PCR-based subtractive hybridization method. Apr3 was one of the novel genes among them.
     The structural analysis by use of InterPro and PROSITE predicted that Apr3 contains several putative functional domains, including a signal sequence at N-terminus, following with one EGF-domain, one transmembrane region and the extremely short intracellular region at C-terminus. Our specific interest is to characterize if Apr3 was a membrane protein and participate in RA signal pathway in vivo.
     Since Apr3 was a differentially expressed genes in HL-60 cells upon ATRA treatment, In order to define its expression pattern in other cell line, RT-PCR analyses was employed to observe that Apr3 has a wide distribution among several cell lines, and be obviously up-regulated upon ATRA treatment. Indirect immunofluorescence assay disclosed that Apr3 was localized on the cell membrane, but its truncated mutant, lacking the transmembrane region and intracellular domain, was shown to be dotted and be likely a secreted one. Previous studies have indicated that retinoic acids could inhibit cell proliferation by inducing G1 arrest in many different cell types. In order to study the effects of Apr3 on cell cycle progression, FACS showed a higher ratio of cells arrest at G1 cell cycle phase after transient Apr3 transfection, while its mutant form overexpression showed the opposite effects with higher number of cells at S phase, denoting the high rate of cell proliferation. Cyclin D1 is one of the most important marker in G1 phase. we first performed cyclin D1 promoter reporter assay. Apr3 overexpression strongly inhibited the cyclin D1 promoter activities, in contrast, its mutant showed an opposite enhancing effects on cyclin D1. Both RT-PCR and Western Blot analyses confirmed the above results.
     Our data provide the first evidence to show that Apr3 is a membrane protein and plays a critical role in inducing cell cycle arrest at G1 phase by inhibiting Cyclin D1 expression. Its mutant form Apr3? showed opposite effects, suggesting that Apr3 is functionally important to regulate the cell proliferative status in vivo.
引文
T1T.Vernet C, Artzt K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 1997, 13(12):479-484.
    T2T.Chen T, Cote J, Carvajal HV, Richard S. Identification of Sam68 arginine glycine-rich sequences capable of conferring nonspecific RNA binding to the GSG domain. J Biol Chem. 2001, 276(33):30803-30811.
    T3T.Lakiza O, Frater L, Yoo Y, Villavicencio E, Walterhouse D, Goodwin EB, Iannaccone P. STAR proteins quaking-6 and GLD-1 regulate translation of the homologues GLI1 and tra-1 through a conserved RNA 3'UTR-based mechanism. Dev Biol. 2005, 287(1):98-110.
    T4T.Ebersole TA, Chen Q, Justice MJ, Artzt K. The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Nat Genet. 1996, 12(3):260-265.
    T5T. Sidman RL, Dickie MM, Appel SH. Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system. Science. 1964, 144:309-11.
    T6T.Ebersole T, Rho O, Artzt K. The proximal end of mouse chromosome 17: new molecular markers identify a deletion associated with quakingviable. Genetics. 1992,131(1):183-190.
    T7T.Kondo T, Furuta T, Mitsunaga K, Ebersole TA, Shichiri M, Wu J, Artzt K, Yamamura K, Abe K. Genomic organization and expression analysis of the mouse qkI locus. Mamm Genome. 1999, 10(7):662-669.
    T8T.King TR, Dove WF. Pleiotropic action of the murine quaking locus: structure of the qkv allele. amm Genome. 1991, 1(1):47-52.
    T9T.Larocque D, Richard S. QUAKING KH domain proteins as regulators of glial cell fate and myelination. RNA Biol. 2005, 2(2):37-40.
    T10T.Hardy RJ, Loushin CL, Friedrich VL Jr, Chen Q, Ebersole TA, Lazzarini RA, Artzt K. Neural cell type-specific expression of QKI proteins is altered in quakingviable mutant mice. J Neurosci. 1996, 16(24):7941-7949.
    T11T.Zorn AM, Grow M, Patterson KD, Ebersole TA, Chen Q, Artzt K, Krieg PA. Remarkable sequence conservation of transcripts encoding amphibian and mammalian homologues of quaking, a KH domain RNA-binding protein. Gene. 1997, 188(2):199-206.
    T12T.Murata T, Yamashiro Y, Kondo T, Nakaichi M, Une S, Taura Y. Nucleotide sequence of complementary DNA encoding for quaking protein of cow, horse and pig. DNA Seq. 2005, 16(4):300-303.
    T13T.Tanaka H, Abe K, Kim CH. Cloning and expression of the quaking gene in the zebrafish embryo. Mech Dev. 1997, 69(1-2):209-213.
    T14T.Chen T, Richard S. Structure-function analysis of Qk1: a lethal point mutation in mouse quaking prevents homodimerization. Mol Cell Biol. 1998, 18(8):4863-7481.
    
    T15T.Haroutunian V, Katsel P, Dracheva S, Davis KL. The human homolog of the QKI gene affected in the severe dysmyelination "quaking" mouse phenotype: downregulated in multiple brain regions in schizophrenia. Am J Psychiatry. 2006, 163(10):1834-1837.
    T16T.Lu Z, Zhang Y, Ku L, Wang H, Ahmadian A, Feng Y. The quakingviable mutation affects qkI mRNA expression specifically in myelin-producing cells of the nervous system. Nucleic Acids Res. 2003, 31(15):4616-4624.
    T17T.Zhao L, Tian D, Xia M, Macklin WB, Feng Y. Rescuing qkV dysmyelination by a single isoform of the selective RNA-binding protein QKI. J Neurosci. 2006, 26(44):11278-11286.
    T18T.Hardy RJ. Molecular defects in the dysmyelinating mutant quaking. J Neurosci Res. 1998, 51(4):417-422.
    T19T.Wu J, Zhou L, Tonissen K, Tee R, Artzt K. The quaking I-5 protein (QKI-5) has a novel nuclear localization signal and shuttles between the nucleus and the cytoplasm. J Biol Chem. 1999, 274(41):29202-2910.
    T20T.Pilotte J, Larocque D, Richard S. Nuclear translocation controlled by alternatively spliced isoforms inactivates the QUAKING apoptotic inducer. Genes Dev. 2001, 15(7):845-858.
    T21T.McInnes LA, Lauriat TL. RNA metabolism and dysmyelination in schizophrenia. Neurosci Biobehav Rev. 2006, 30(4):551-561.
    T22T.Wu JI, Reed RB, Grabowski PJ, Artzt K. Function of quaking in myelination: regulation of alternative splicing. Proc Natl Acad Sci U S A. 2002, 99(7):4233-4238.
    T23T.Li Z, Zhang Y, Li D, Feng Y. Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins. J Neurosci. 2000, 20(13):4944-4953.
    T24T.Larocque D, Galarneau A, Liu HN, Scott M, Almazan G, Richard S. Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nat Neurosci. 2005, 8(1):27-33.
    T25T.Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science. 1998, 281: 1305–1308.
    PT26TP Galarneau A, Richard S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol. 2005, 12(8):691-698.
    T27T.Larocque D, Pilotte J, Chen T, Cloutier F, Massie B, Pedraza L, Couture R, Lasko P, Almazan G, Richard S. Nuclear retention of MBP mRNAs in the quaking viable mice. Neuron. 2002, 36(5):815-829.
    T28T.Zhang Y, Feng Y. Distinct molecular mechanisms lead to diminished myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase in qk(v) dysmyelination. J Neurochem. 2001, 77(1):165-172.
    T29T.Saccomanno L, Loushin C, Jan E, Punkay E, Artzt K, Goodwin EB. The STAR protein QKI-6 is a translational repressor. Proc Natl Acad Sci U S A. 1999, 96(22):12605-12610.
    T30T.Lorenzetti D, Antalffy B, Vogel H, Noveroske J, Armstrong D, Justice M. The neurological mutant quaking(viable) is Parkin deficient. Mamm Genome. 2004, 15(3):210-217.
    T31T.Wolf MK, Nunnari JN, Billings-Gagliardi S. Quaking*shiverer double-mutant mice survive for at least 100 days with no CNS myelin. Dev Neurosci. 1999, 21(6):483-490.
    T32T.Zhao L, Ku L, Chen Y, Xia M, LoPresti P, Feng Y. QKI binds MAP1B mRNA and enhances MAP1B expression during oligodendrocyte development. Mol Biol Cell. 2006, 17(10):4179-4186.
    T33T.Schumacher B, Hanazawa M, Lee MH, Nayak S, Volkmann K, Hofmann ER, Hengartner M, Schedl T, Gartner A. Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell. 2005, 120(3):357-368.
    T34T.Lorenzetti D, Bishop CE, Justice MJ. Deletion of the Parkin coregulated gene causes male sterility in the quaking(viable) mouse mutant. Proc Natl Acad Sci U S A. 2004, 101(22):8402-8407.
    T35T.Tucker TA, Kundert JA, Bondareva AA, Schmidt EE. Reproductive and neurological Quaking(viable) phenotypes in a severe combined immune deficient mouse background. Immunogenetics. 2005, 57(3-4):226-231.
    T36T.Dapper JD, Justice MJ. Defining the breakpoints of the quaking(viable) mouse mutation reveals a duplication from a Parkin intron. Mov Disord. 2005, 20(10):1369-1374.
    T37T.Cox RD, Hugill A, Shedlovsky A, Noveroske JK, Best S, Justice MJ, Lehrach H, Dove WF. Contrasting effects of ENU induced embryonic lethal mutations of the quaking gene. Genomics. 1999, 57(3):333-3341.
    T38T.Casaccia-Bonnefil P, Hardy RJ, Teng KK, Levine JM, Koff A, Chao MV. Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation. Development. 1999, 126(18):4027-4037.
    T39T.Boise LH, Gonzales-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell, 1993, 74: 597–608.
    T40T.LeVine SM, Brown DC. IL-6 and TNFalpha expression in brains of twitcher, quaking and normal mice. J Neuroimmunol. 1997, 73(1-2):47-56.
    T41T.Bedell MA, Jenkins NA, Copeland NG. Good genes in bad neighbourhoods. Nat Genet. 1996, 12(3):229-232.
    T42T.Noveroske JK, Hardy R, Dapper JD, Vogel H, Justice MJ. A new ENU-induced allele of mouse quaking causes severe CNS dysmyelination. Mamm Genome. 2005, 16(9):672-682.
    T43T.Noveroske JK, Lai L, Gaussin V, Northrop JL, Nakamura H, Hirschi KK, Justice MJ. Quaking is essential for blood vessel development. Genesis. 2002, 32(3):218-230.
    T44T.Bohnsack BL, Lai L, Northrop JL, Justice MJ, Hirschi KK. Visceral endoderm function is regulated by quaking and required for vascular development. Genesis. 2006, 44(2):93-104.
    T45T.Chubb C. Oligotriche and quaking gene mutations. Phenotypic effects on mouse spermatogenesis and testicular steroidogenesis. J Androl. 1992, 13(4):312-317.
    T46T.Fyrberg C, Becker J, Barthmaier P, Mahaffey J, Fyrberg E. A Drosophila muscle-specific gene related to the mouse quaking locus. Gene. 1997, 197(1-2):315-323.
    T47T.Zorn AM, Krieg PA. The KH domain protein encoded by quaking functions as a dimer and is essential for notochord development in Xenopus embryos. Genes Dev. 1997, 11(17):2176-2190.
    T48T.Lo PC, Frasch M. A novel KH-domain protein mediates cell adhesion processes in Drosophila. Dev Biol. 1997, 190(2):241-256.
    T49T.Mezquita J, Pau M, Mezquita C. Four isoforms of the signal-transduction and RNA-binding protein QKI expressed during chicken spermatogenesis. Mol Reprod Dev. 1998, 50(1):70-78.
    T50T.Neufeld TP. Shrinkage control: regulation of insulin-mediated growth by FOXO transcription factors. J Biol. 2003, 2(3):18.
    T51T.Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004, 1;380(Pt 2):297-309.
    T52T. Hosaka T, Biggs WH 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A. 2004, 101(9):2975-80.
    T53T. Arden KC. FoxO: linking new signaling pathways. Mol Cell. 2004, 14(4):416-8.
    T54T. Pohl BS, Schon C, Rossner A, Knochel W. The FoxO-subclass in Xenopus laevis development. Gene Expr Patterns. 2004, 5(2):187-92
    T55T. Huang H, Tindall DJ. FOXO factors: a matter of life and death. Future Oncol. 2006, 2(1):83-9.
    T56T. Adachi M, Osawa Y, Uchinami H, Kitamura T, Accili D, Brenner DA. The Forkhead Transcription Factor FoxO1 Regulates Proliferation and Transdifferentiation of Hepatic Stellate Cells.Gastroenterology. 2007 [Epub ahead of print]
    T57T. Coffer PJ, Burgering BM. Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol. 2004, 4(11):889-99.
    T58T. Arden KC. Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol. 2006, 41(8):709-17.
    T59T. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007 Jan 26;128(2):309-23.
    T60T. Onuma H, Vander Kooi BT, Boustead JN, Oeser JK, O'Brien RM. Correlation between FoxO1a (FKHR) and FOXO3a (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin. Mol Endocrinol. 2006, 20(11):2831-47.
    T61T. Furuyama T, Yamashita H, Kitayama K, Higami Y, Shimokawa I, Mori N. Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Microsc Res Tech. 2002, 59(4):331-4.
    T62T. Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science. 2003, 300(5619):644-7.
    T63T. Onuma H, Vander Kooi BT, Boustead JN, Oeser JK, O'Brien RM. Correlation between FoxO1a (FKHR) and FOXO3a (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin. Mol Endocrinol. 2006, 20(11):2831-47.
    T64T. Birkenkamp KU, Coffer PJ. Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans. 2003, 31(Pt 1):292-7.
    T65T. Finlay D, Patel S, Dickson LM, Shpiro N, Marquez R, Rhodes CJ, Sutherland C. Glycogen synthase kinase-3 regulates IGFBP-1 gene transcription through the thymine-rich insulin response element. BMC Mol Biol. 2004, 5:15.
    T66T. Martinez-Gac L, Alvarez B, Garcia Z, Marques M, Arrizabalaga M, Carrera AC. Phosphoinositide 3-kinase and Forkhead, a switch for cell division. Biochem Soc Trans. 2004, 32(Pt 2):360-1.
    T67T. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 2003, 278(38):35959-67.
    T68T. Zhang X, Gan L, Pan H, Guo S, He X, Olson ST, Mesecar A, Adam S, Unterman TG. Phosphorylation of serine 256 suppresses transactivation by FKHR (FoxO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem. 2002, 277(47):45276-84.
    T69T. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004, 303(5666):2011-5.
    T70T. Seoane J, Le HV, Shen L, Anderson SA, Massague J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 2004, 16;117(2):211-23
    T71T. Lynch RL, Konicek BW, McNulty AM, Hanna KR, Lewis JE, Neubauer BL, Graff JR. The progression of LNCaP human prostate cancer cells to androgen independence involves decreased FOXO3a expression and reduced p27KIP1 promoter transactivation. Mol Cancer Res. 2005, 3(3):163-9.
    T72T. Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune H, Nishikawa S, Nakayama K, Nakayama K, Ikeda K, Motoyama N, Mori N. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem. 2004, 279(33):34741-9.
    T73T. Guo S, Dunn SL, White MF. The reciprocal stability of FoxO1 and IRS2 creates a regulatory circuit that controls insulin signaling. Mol Endocrinol. 2006, 20(12):3389-99.
    T74T. Grinius L, Kessler C, Schroeder J, Handwerger S. Forkhead transcription factor FoxO1A is critical for induction of human decidualization. J Endocrinol. 2006, 189(1):179-87.
    T75T. Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005, 16(4):183-9.
    T76T. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004, 131(16):3897-906.
    T77T. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signaling in brain and fat body. Nature.2004, 429(6991):562-6.
    T78T. Fabre S, Lang V, Harriague J, Jobart A, Unterman TG, Trautmann A, Bismuth G. Stable activation of phosphatidylinositol 3-kinase in the T cell immunological synapse stimulates Akt signaling to FoxO1 nuclear exclusion and cell growth control. J Immunol. 2005, 174(7):4161-71.
    T79T. Martinez SC, Cras-Meneur C, Bernal-Mizrachi E, Permutt MA. Glucose Regulates Foxo1 Through Insulin Receptor Signaling in the Pancreatic Islet {beta}-cell. Diabetes. 2006, 55(6):1581-91.
    T80T. Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D. Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol. 2003, 162(4):535-41.
    T81T. Bois PR, Grosveld GC. FKHR (FoxO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J. 2003, 22(5):1147-57.
    T82T. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004, 14(3):395-403.
    T83T. Allen DL, Unterman TG. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol. 2007, 292(1):C188-99.
    T84T. Coffer PJ, Burgering BM. Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol. 2004, 4(11):889-99.
    T85T. So CW, Cleary ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood. 2003, 101(2): 633–639.
    T86T. Davis, R.J., D'Cruz, C.M., Lovell, M.A., Biegel, J.A., Barr, F.G., Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994.54, 2869–2872..
    T87T. Lynch RL, Konicek BW, McNulty AM, Hanna KR, Lewis JE, Neubauer BL, Graff JR. The progression of LNCaP human prostate cancer cells to androgen independence involves decreased FOXO3a expression and reduced p27KIP1 promoter transactivation. Mol Cancer Res. 2005, 3(3):163-9.
    T88T. Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem. 2002, 277(49):47928-37.
    T89T. Essafi A, Fernandez de Mattos S, Hassen YA, Soeiro I, Mufti GJ, Thomas NS, Medema RH, Lam EW. Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene. 2005, 24(14):2317-29.
    T90T. Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol. 2002, 168(10):5024-31.
    T91T. Urbich C, Knau A, Fichtlscherer S, Walter DH, Bruhl T, Potente M, Hofmann WK, de Vos S, Zeiher AM, Dimmeler S. FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J. 2005, 19(8):974-6.
    T92T. Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA, Coffer PJ, Medema RH, Coombes RC, Lam EW. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 2003, 278(50):49795-805.
    T93T. Baugh LR, Sternberg PW. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr Biol. 2006, 18;16(8):780-5.
    T94T. Chandramohan V, Jeay S, Pianetti S, Sonenshein GE. Reciprocal control of Forkhead box O 3a and c-Myc via the phosphatidylinositol 3-kinase pathway coordinately regulates p27Kip1 levels. J Immunol. 2004, 172(9):5522-7.
    T95T. Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem. 2002, 277(30):26729-32.
    T96T. Bicknell KA. Forkhead (FOX) transcription factors and the cell cycle: measurement of DNA binding by FoxO and FoxM transcription factors. Methods Mol Biol. 2005, 296:247-62.
    T97T. Urbich C, Knau A, Fichtlscherer S, Walter DH, Bruhl T, Potente M, Hofmann WK, de Vos S, Zeiher AM, Dimmeler S. FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J. 2005, 19(8):974-6.
    T98T. Xia SJ, Pressey JG, Barr FG. Molecular pathogene sis of rhabdomyosarcoma. Cancer Biol. Ther. 2002, 1(2):97–104.
    T99T. Burgring BM, Kops GJ. Cell cycle and death control: long live Forkheads. Trends Biochem Sci. 2002, 27(7):352-60.
    T100T. Gilley J, Coffer PJ, Ham J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol. 2003, 162(4):613-22.
    T101T. Yang JY, Xia W, Hu MC. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int J Oncol. 2006, 29(3):643-8.
    T102T. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002, 296(5567):530-4.
    T103T. Arking R. Multiple longevity phenotypes and the transition from health to senescence. Ann N Y Acad Sci. 2005, 1057:16-27.
    T104T. Murakami S. Stress resistance in long-lived mouse models. Exp Gerontol. 2006, 41(10):1014-9.
    T105T. Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K, Motoyama N. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med. 2005, 16(2):237-43.
    T106T. Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, Partridge L. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science. 2004, 305(5682):361.
    T107T. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003, 424(6946):277-83.
    T108T. Lamitina ST, Strange K. Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress. Am J Physiol Cell Physiol. 2005, 288(2):C467-74.
    T109T. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005, 24(50):7410-25.
    T110T. Kajihara T, Jones M, Fusi L, Takano M, Feroze-Zaidi F, Pirianov G, Mehmet H, Ishihara O, Higham JM, Lam EW, Brosens JJ. Differential expression of FoxO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization. Mol Endocrinol. 2006, 20(10):2444-55.
    T111T. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. 2002, 296(5567): 530–534
    T112T. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005, 308(5725):1181-4.
    T113T. Honda, Y. and Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999, 13, 1385–1393.
    T114T. Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N. FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal. 2005, 7(5-6):752-60.
    T115T. Taub J, Lau JF, Ma C, Hahn JH, Hoque R, Rothblatt J, Chalfie M. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature. 1999, 399 (6732):162–166.
    T116T. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG.T TThe p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999, 402(6759):309–313.
    T117T. Abid MR, Yano K, Guo S, Patel VI, Shrikhande G, Spokes KC, Ferran C, Aird WC. Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia. J Biol Chem. 2005, 280(33):29864-73.
    T118T. Li J, Wang E, Rinaldo F, Datta K. Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene. 2005, 24(35):5510-20.
    T119T. Paik JH. FOXOs in the maintenance of vascular homoeostasis. Biochem Soc Trans. 2006, 34(Pt 5):731-4.
    T120T. Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest. 2005, 115(9):2382-92.
    T121T. Chlench S, Mecha Disassa N, Hohberg M, Hoffmann C, Pohlkamp T, eyer G, Bongrazio M, Da Silva-Azevedo L, Baum O, Pries AR, akrzewicz A. Regulation of Foxo-1 and the angiopoietin-2/Tie2 system by shear tress. EBS Lett. 2007,81(4):673-80.
    T122T. Reagan-Shaw S, Ahmad N. The role of Forkhead-box Class O (FoxO) transcription factors in cancer: A target for the management of cancer. oxicol Appl Pharmacol. 2006 Dec 15; [Epub ahead of print]
    T123T. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC, IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell. 2004, 117 (2): 225–237.
    T124T. Li J, Wang E, Rinaldo F, Datta K. Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene. 2005, 24(35):5510-20.
    T125T. Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J. Biol. Chem. 2002, 277(49): 47928–47937.
    T126T. Jackson JG, Kreisberg JI, Koterba AP, Yee D, Brattain MG. Phosphorylation and nuclear exclusion of the forkhead transcription factor FKHR after epidermal growth factor treatment in human breast cancer cells. Oncogene 2000, 19 (40): 4574–4581.
    T127T. Lee BC, Lee TH, Avraham S, Avraham HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res. 2004, 2 (6):327–338.
    T128T. Mazumdar A, Kumar R. Estrogen regulation of Pak1 and FKHR pathways in breast cancer cells. FEBS Lett. 2003, 535 (1-3):6–10.
    T129T. Sunters A, Fernandez de MS, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA, Coffer PJ, Medema RH, Coombes RC, Lam EW. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J. Biol. Chem. 2003, 278 (50):49795–49805.
    T130T. Ramljak D, Romanczyk LJ, Metheny-Barlow LJ, Thompson N, Knezevic V, Galperin M, Ramesh A, Dickson RB. Pentameric procyanidin from Theobroma cacao selectively inhibits growth of human breast cancer cells. Mol. Cancer Ther. 2005, 4(4):537–546.
    T131T. Hussain AR, Al-Rasheed M, Manogaran PS, Al-Hussein KA, Platanias LC, Al Kuraya K, Uddin S. Curcumin induces apoptosis via inhibition of PI3-kinase/AKT pathway in acute T cell leukemias. Apoptosis. 2006, 11(2): 245–254.
    T132T. Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell. 2005, 7 (6):561–573.
    1. Pfoertner S, Goelden U, Hansen W, Toepfer T, Geffers R, Ukena SN, von Knobloch R, Hofmann R, Buer J, Schrader AJ. Cellular retinoic acid binding protein I: expression and functional influence in renal cell carcinoma. Tumour Biol. 2005, 26(6):313-23.
    2. Manor D, Shmidt EN, Budhu A, Flesken-Nikitin A, Zgola M, Page R, Nikitin AY, Noy N. Mammary carcinoma suppression by cellular retinoic acid binding protein-II. Cancer Res. 2003, 63(15):4426-33.
    3. Dong D, Ruuska SE, Levinthal DJ, Noy N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem. 1999, 274(34):23695-8.
    4 . Chen G, Radominska-Pandya A. Direct photoaffinity labeling of cellular retinoic acid-binding protein I (CRABP-I) with all-trans-retinoic acid: identification of amino acids in the ligand binding site. Biochemistry. 2000 Oct 17;39(41):12568-74.
    5. Hewson QC, Lovat PE, Pearson AD, Redfern CP. Retinoid signalling and gene expression in neuroblastoma cells: RXR agonist and antagonist effects on CRABP-II and RARbeta expression. J Cell Biochem. 2002, 87(3):284-91.
    6. Wolf G. Cellular retinoic acid-binding protein II: a coactivator of the transactivation by the retinoic acid receptor complex RAR.RXR. Nutr Rev. 2000, 58(5):151-3.
    7. Budhu A, Gillilan R, Noy N. Localization of the RAR interaction domain of cellular retinoic acid binding protein-II. J Mol Biol. 2001, 305(4):939-49.
    8. Won JY, Nam EC, Yoo SJ, Kwon HJ, Um SJ, Han HS, Kim SH, Byun Y, Kim SY. The effect of cellular retinoic acid binding protein-I expression on the CYP26-mediated catabolism of all-trans retinoic acid and cell proliferation in head and neck squamous cell carcinoma. Metabolism. 2004, 53(8):1007-12.
    9. Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006, 46(2):451-80.
    10. Donato LJ, Noy N. Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res. 2005, 65(18):8193-9.
    11. Matt N, Ghyselinck NB, Wendling O, Chambon P, Mark M. Retinoic acid-induced developmental defects are mediated by RARbeta/RXR heterodimers in the pharyngeal endoderm. Development. 2003130(10):2083-93.
    12. Mic FA, Molotkov A, Benbrook DM, Duester G. Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc Natl Acad Sci U S A. 2003, 100(12):7135-40.
    13. Okuno M, Kojima S, Matsushima-Nishiwaki R, Tsurumi H, Muto Y, Friedman SL,Moriwaki H. Retinoids in cancer chemoprevention. Curr Cancer Drug Targets. 2004, 4(3):285-98.
    14. Marill J, Idres N, Capron CC, Nguyen E, Chabot GG. Retinoic acid metabolism and mechanism of action:.Curr Drug Metab. 2003, 4(1):1-10.
    15 . Segalla S, Rinaldi L, Kilstrup-Nielsen C, Badaracco G, Minucci S, Pelicci PG, Landsberger N. Retinoic acid receptor alpha fusion to PML affects its transcriptional and chromatin-remodeling properties. Mol Cell Biol. 2003, 23(23):8795-808.
    16. Kamashev D, Vitoux D, De The H. PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med. 2004, 199(8):1163-74.
    17. Orlandi M, Mantovani B, Ammar K, Avitabile E, Dal Monte P, Bartolini G. Retinoids and cancer: antitumoral effects of ATRA, 9-cis RA and the new retinoid IIF on the HL-60 leukemic cell line. Med Princ Pract. 2003,12(3):164-9.
    18. Okuno M, Kojima S, Matsushima-Nishiwaki R, Tsurumi H, Muto Y, Friedman SL, Moriwaki H. Retinoids in cancer chemoprevention. Curr Cancer Drug Targets. 2004, 4(3):285-98.
    19. Gianni M, Tarrade A, Nigro EA, Garattini E, Rochette-Egly C. The AF-1 and AF-2 domains of RAR gamma 2 and RXR alpha cooperate for triggering the transactivation and the degradation of RAR gamma 2/RXR alpha heterodimers. J Biol Chem. 2003, 278(36):34458-66.
    20. Puccetti E, Ruthardt M. Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell. Leukemia. 2004, 18(7):1169-75.
    21.Hatoum A, El-Sabban ME, Khoury J, Yuspa SH, Darwiche N. Overexpression of retinoic acid receptors alpha and gamma into neoplastic epidermal cells causes retinoic acid-induced growth arrest and apoptosis. Carcinogenesis. 2001, 22(12):1955-63.
    22. Yen A, Fenning R, Chandraratna R, Walker P, Varvayanis S. A retinoic acid receptor beta/gamma-selective prodrug (tazarotene) plus a retinoid X receptor ligand induces extracellular signal-regulated kinase activation, retinoblastoma hypophosphorylation, G0 arrest, and cell differentiation.Mol Pharmacol. 2004, 66(6):1727-37. .
    23. Chung J, Liu C, Smith DE, Seitz HK, Russell RM, Wang XD. Restoration of retinoic acid concentration suppresses ethanol-enhanced c-Jun expression and hepatocyte proliferation in rat liver. Carcinogenesis. 2001, 22(8):1213-9.
    24. Prus E, Fibach E. Retinoic acid induction of CD38 antigen expression on normal and leukemic human myeloid cells: relationship with cell differentiation. Leuk Lymphoma. 2003, 44(4):691-8.
    25. Park HY, Park JY, Kim JW, Lee MJ, Jang MJ, Lee SY, Baek DW, Park YM, Lee SW, Yoon S, Bae YS, Kwak JY. Differential expression of dendritic cell markers by all-trans retinoic 102acid on human acute promyelocytic leukemic cell line. Int Immunopharmacol. 2004, 4(13):1587-601.
    26. Xie P, Chan FS, Ip NY, Leung M. Nerve growth factor potentiated the sodium butyrate- and PMA-induced megakaryocytic differentiation of K562 leukemia cells. Leuk Res. 2000 , 24(9):751-9.
    27. Visonneau S, Cesano A, Santoli D. A revertant TCR gamma delta + cell clone which has lost MHC nonrestricted cytotoxic activity but retains redirected killing upon stimulation of the CD3 receptor.Cell Immunol. 1995, 165 (2): 252-265.
    28. Agura ED, Howard M, Collins SJ. Identification and sequence analysis of the promoter for the leukocyte integrin beta-subunit (CD18): a retinoic acid-inducible gene. Blood. 1992, 79(3):602-9.
    29. Ohnuma-Ishikawa K, Morio T, Yamada T, Sugawara Y, Ono M, Nagasawa M, Yasuda A, Morimoto C, Ohnuma K, Dang NH, Hosoi H, Verdin E, Mizutani S. Knockdown of XAB2 enhances all-trans retinoic acid-induced cellular differentiation in all-trans retinoic acid-sensitive and -resistant cancer cells. Cancer Res. 2007, 67(3):1019-29.
    30. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006, 66(18):9299-307.
    31. Nandan R. Promising results achieved with a combination of chemotherapy and two retinoids in patients with advanced non-small-cell lung cancer. Lung Cancer. 2006, 51(3):387-8.
    32. Berg G, Andersson T, Sjodell L, Jansson S, Nystrom E. Development of severe thyroid-associated ophthalmopathy in a patient with disseminated thyroid cancer treated with recombinant human thyrotropin/radioiodine and retinoic acid. Thyroid. 2005, 15(12):1389-94.
    33. Hsu SL, Hsu JW, Liu MC, Chen LY, Chang CD. Retinoic acid-mediated G1 arrest is associated with induction of p27(Kip1) and inhibition of cyclin-dependent kinase 3 in human lung squamous carcinoma CH27 cells. Exp Cell Res. 2000, 258(2):322-31.
    34. Tokumoto YM, Tang DG, Raff MC. Two molecularly distinct intracellular pathways to oligodendrocyte differentiation: role of a p53 family protein. EMBO J. 2001, 20(18):5261-8.
    35.Sato A, Imaizumi M, Hoshi Y, Rikiishi T, Fujii K, Kizaki M, Kagechika H, Kakizuka A, Hayashi Y, Iinuma K. Alteration in the cellular response to retinoic acid of a human acute promyelocytic leukemia cell line, UF-1, carrying a patient-derived mutant PML-RARalpha chimeric gene. Leuk Res. 2004, 28(9):959-67.
    36. Yen A, Fenning R, Chandraratna R, Walker P, Varvayanis S. A retinoic acid receptor beta/gamma-selective prodrug (tazarotene) plus a retinoid X receptor ligand induces extracellular signal-regulated kinase activation, retinoblastoma hypophosphorylation, G0 arrest, and cell differentiation. Mol Pharmacol. 2004, 66(6):1727-37.
    37. Niu MY, Menard M, Reed JC, Krajewski S, Pratt MA. Ectopic expression of cyclin D1 amplifies a retinoic acid-induced mitochondrial death pathway in breast cancer cells. Oncogene. 2001, 20(27):3506-18.
    38. Beumer TL, Roepers-Gajadien HL, Gademan IS, Kal HB, de Rooij DG. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol Reprod. 2000, 63(6):1893-8.
    39.Geary SM, Ashman LK. HL-60 myeloid leukaemia cells acquire immunostimulatory capability upon treatment with retinoic acid: analysis of the responding population and mechanism of cytotoxic lymphocyte activation. Immunology. 1996, 88(3):428-40.
    40. Zhou Q, Stetler-Stevenson M, Steeg PS. Inhibition of cyclin D expression in human breast carcinoma cells by retinoids in vitro. Oncogene. 1997, 15(1):107-15.
    41. Glozak MA, Rogers MB. Retinoic acid- and bone morphogenetic protein 4-induced apoptosis in P19 embryonal carcinoma cells requires p27. Exp Cell Res. 2001, 268(2):128-38.
    42. Zancai P, Cariati R, Rizzo S, Boiocchi M, Dolcetti R. Retinoic acid-mediated growth arrest of EBV-immortalized B lymphocytes is associated with multiple changes in G1 regulatory proteins: p27Kip1 up-regulation is a relevant early event. Oncogene. 1998, 17(14):1827-36.
    43. Visonneau S, Cesano A, Santoli D. A revertant TCR gamma delta + cell clone which has lost MHC nonrestricted cytotoxic activity but retains redirected killing upon stimulation of the CD3 receptor.Cell Immunol. 1995, 165(2):252-65.
    44. Zaragoza R, Gimeno A, Miralles VJ, Garcia-Trevijano ER, Carmena R, Garcia C, Mata M, Puertes IR, Torres L, Vina JR. Retinoids induce MMP-9 expression through RAR{alpha} during mammary gland remodeling. Am J Physiol Endocrinol Metab. 2007, 292(4):E1140-8.
    45. Hsu SL, Hsu JW, Liu MC, Chen LY, Chang CD. Retinoic acid-mediated G1 arrest is associated with induction of p27(Kip1) and inhibition of cyclin-dependent kinase 3 in human lung squamous carcinoma CH27 cells. Exp Cell Res. 2000, 258(2):322-31.
    46. Papadimitrakopoulou VA, Izzo J, Mao L, Keck J, Hamilton D, Shin DM, El-Naggar A, den Hollander P, Liu D, Hittelman WN, Hong WK. Cyclin D1 and p16 alterations in advanced premalignant lesions of the upper aerodigestive tract: role in response to chemoprevention and cancer development. Clin Cancer Res. 2001, 7(10):3127-34.
    47. Liu J, Guo L, Jun-Wei L, Liu N, Li H. All-trans retinoic acid modulates fas expression and enhances chemosensitivity of human medulloblastoma cells. Int J Mol Med. 2000, 5(2):145-9.
    48. Pettersson F, Dalgleish AG, Bissonnette RP, Colston KW. Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-gamma and altered expression of Bcl-2/Bax. Br J Cancer. 2002 , 87(5):555-61.
    49. Kato Y, Salumbides BC, Wang XF, Qian DZ, Williams S, Wei Y, Sanni TB, Atadja P, Pili R. Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with13-cis-retinoic acid in human malignant melanoma. Mol Cancer Ther. 2007, 6(1):70-81.
    50. Kasimir-Bauer S, Beelen D, Flasshove M, Noppeney R, Seeber S, Scheulen ME. Impact of the expression of P glycoprotein, the multidrug resistance-related protein, bcl-2, mutant p53, and heat shock protein 27 on response to induction therapy and long-term survival in patients with de novo acute myeloid leukemia. Exp Hematol. 2002, 30(11):1302-8.
    51. Pepper C, Ali K, Thomas A, Hoy T, Fegan C, Chowdary P, Kell J, Bentley P. Retinoid-induced apoptosis in B-cell chronic lymphocytic leukaemia cells is mediated through caspase-3 activation and is independent of p53, the retinoic acid receptor, and differentiation. Eur J Haematol. 2002, 69(4):227-35.
    52. Danforth DN, Zhu Y. Conversion of Fas-resistant to Fas-sensitive MCF-7 breast cancer cells by the synergistic interaction of interferon-gamma and all-trans retinoic acid. Breast Cancer Res Treat. 2005, 94(1):81-91.
    53. Poggi A, Venturino C, Catellani S, Clavio M, Miglino M, Gobbi M, Steinle A, Ghia P, Stella S, Caligaris-Cappio F, Zocchi MR. Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res. 2004, 64(24):9172-9.
    54. Kasimir-Bauer S, Beelen D, Flasshove M, Noppeney R, Seeber S, Scheulen ME. Impact of the expression of P glycoprotein, the multidrug resistance-related protein, bcl-2, mutant p53, and heat shock protein 27 on response to induction therapy and long-term survival in patients with de novo acute myeloid leukemia. Exp Hematol. 2002, 30(11):1302-8.
    55. Zhu F, Yan W, Zhao ZL, Chai YB, Lu F, Wang Q, Peng WD, Yang AG, Wang CJ. Improved PCR-based subtractive hybridization strategy for cloning differentially expressed genes. Biotechniques. 2000, 29(2):310-3.
    56. Guodong Yang, Fang Yu, Haiyan Fu, Fan Lu, Bo Huang, Liyuan Bai, Zhongliang Zhao, Libo Yao, Zifan Lu. Identification of the distinct promoters for the two transcripts of apoptosis related protein-3 and their transcriptional regulation by NFAT and NF-kB. Molecular and Cellular Biochemistry (accepted)