分子器件非弹性电子隧穿谱的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,非弹性电子隧穿谱测量技术作为研究有机分子器件电输运性质的重要手段引起人们广泛注意并迅速发展起来。由于隧穿谱的峰值对应于有机分子的振动模式,因此,测量分子器件非弹性电子隧穿谱不仅可以用来理解隧穿电子与分子振动模式的耦合作用,而且能够提供分子器件几何和接触构型等各类信息。由于非弹性电子隧穿谱测量技术是目前确定分子和金属电极接触形状最为有用的手段之一,因此该项技术在分子电子学的发展过程中具有十分重要的作用。
     许多实验和理论研究组对单分子的非弹性电子隧穿谱进行了相关研究,并且取得了很多有意义的成果。然而目前在该研究领域的实验技术和理论水平都还不够成熟,不但从理论上很难与实验结果完全符合,就是不同的实验组对同一类分子进行研究的结果之间也会存在很大的差别。存在以上问题的主要原因是:与电极相比,有机分子是体积很小的体系,因此外界因素的变化对分子非弹性电子隧穿谱的影响会很明显。本论文在杂化密度泛函理论的基础上,详细讨论了电场对分子器件电输运性质的影响,并分析了有外加电场情况下分子器件的电子重新分布和空间电势变化情况。发展了第一性原理的理论方法来模拟分子器件的非弹性电子隧穿过程,研究了电极距离、分子与金属间的接触构型、分子的氟化程度等因素对分子非弹性电子隧穿的影响。
     在弹性散射格林函数方法基础上对4,4'-联苯二硫酚分子器件的非线性电输运特性进行研究,结果显示分子体系的扭转角随电场的增大而单调递减,4,4'-联苯二硫酚分子沿电场的反方向有微小的移动。终端S原子与Au原子团簇之间耦合系数随着电场强度的变化呈现非线性变化趋势,这种变化趋势与S原子到Au平面垂直距离的变化一致:距离越大耦合系数越小,距离越小耦合系数越大。随着电场的增加,最高占据分子轨道和最低未占据分子轨道轨道之间的能隙变窄。电场方向的改变导致非线性I-V曲线是不对称的:4,4'-联苯二硫酚分子的电导值在0.7 V开始开启,并且在1.04 V和1.28 V分别出现两个电导峰值;在负向电压情况下两个峰值位置分别出现在-0.88 V和-1.04 V。对于该分子器件而言,不同电场情况下对分子的优化过程可以有效避免因不优化分子而得到的负微分电阻。计算结果表明有外加电压情况下电荷的重新分布在分子与电极的接触点附近产生了附加电偶极子,并进而引起非线性输运效应。通过对分子电势分布情况的分析发现,4,4'-联苯二硫酚分子两个苯环不共面,会对该分子器件电输运产生不利影响。我们的计算工作较好地符合了实验结果。
     电极距离以及分子与金属的接触构型是影响分子器件非弹性电子隧穿谱的两个重要因素。通过对4,4'-联苯二硫酚分子器件非弹性电子隧穿谱的计算表明,电极距离的不同会改变分子几何结构,从而影响分子体系的非弹性电子隧穿谱。通过分析4,4'-联苯二硫酚分子的非弹性电子隧穿谱,发现垂直于表面的振动模式对非弹性电子隧穿谱具有较大地贡献,表明了非弹性电子隧穿谱存在着取向择优性。较大相对谱强度主要是来自于ν(C-S),ν(6a),ν(18a)和ν(19a)等简正振动模式的贡献。对于每种振动模式所对应的非弹性电子隧穿谱半高全宽,基本上都是正三角形的比单个Au原子电极构型的要大一些,这表明正三角形构型情况下4,4'-联苯二硫酚分子和金属电极的相互作用要比单个Au原子情况下的强一些。随着温度由4.2 K逐步升高到50.0 K,非弹性电子隧穿谱中原先比较尖锐、易辨别的峰逐渐变得模糊不易分辨,而且谱峰宽度逐渐变宽。
     通过对十六烷硫醇分子及其部分氟化分子(F0,F1,F2,F3和F10)等五种烷烃分子的非弹性电子隧穿谱的理论计算发现,隧穿谱中C-H伸缩振动模式的贡献应该是来源于链烃分子中的与S原子相邻的亚甲基(-CH_2-)基团伸缩振动模式,而不是来源于分子终端的甲基(-CH_3)基团。该项结果与实验结论相一致,我们的理论工作有助于澄清类似的链烃硫醇分子非弹性电子隧穿谱中关于C-H伸缩振动模式来源的疑问。我们认为标记为”CH_2 wag”的实验峰可能包含CH2面外摇摆振动、CH_2扭绞振动、变形振动模式等一系列振动模式的贡献。计算发现F10分子非弹性电子隧穿谱114 mV附近存在被氟化区域的C-C-C变形振动模式对隧穿谱的贡献,实验中F10分子隧穿谱中标记为”CH_2 wag”的实验峰应该含有C-C-C变形振动模式的贡献。此外需要更深入的理论工作来研究十六烷硫醇系列分子与金属电极接触方式对分子器件非弹性电子隧穿谱的影响。
     论文共由以下八章内容组成:第一章为综述部分,简要介绍了分子器件非弹性电子隧穿谱的产生背景、该领域实验和理论发展`现状和目前存在的主要问题;第二章介绍了密度泛函理论(DFT)的基本理论,包括Hohenberg-Kohn定理、Kohn-Sham方程和交换关联泛函等;分子振动模式以及Caussian程序中的振动分析方法在第三章作了总结;弹性散射格林函数理论以及分子器件非弹性电子隧穿谱计算方法在第四章中作了详细地推导;第五章到第七章介绍了本文所做的计算工作和研究结果,第五章分析了外加电场对4,4'-联苯二硫酚分子的几何结构、电子结构和伏安特性的影响,并描述了有电场情况下的电荷重新分布以及电势的变化情况。第六章讨论了不同的电极距离和接触构型对4,4'-联苯二硫酚分子非弹性电子隧穿谱的影响,同时讨论了温度的影响。第七章对十六烷硫醇分子及其部分氟化分子等系列烷烃分子的非弹性电子隧穿谱进行了讨论,考察了氟化程度对分子器件非弹性电子隧穿谱的影响,并且与实验结果进行了比较;在第八章中对本论文工作进行了全面总结,并对分子器件非弹性电子隧穿谱研究领域未来的发展进行了展望。
One of the exciting recent developments in molecular electronics is the application of inelastic electron tunneling spectroscopy (IETS) for studying the transport properties of molecular electronic devices. The measured IET spectra show well-resolved vibronic features corresponding to certain vibrational normal modes of the molecule. The IETS not only helps us to understand the vibronic coupling between the charge carriers and nuclear motion of a molecule, but also provides us a powerful tool to detect the geometrical structures of molecular electronic devices and bonding situations between the molecule and the electrodes. In fact, the importance of the IETS for the molecular electronic devices can not be overstated, since the lack of suitable tools to identify the molecular and contact structures has hampered the progress of the field for many years.
     Many experimental and theoretical groups have devoted to the study of IETS of single molecule and obtained exciting results in recent years. While experimental techniques and theories for IETS need to be developed, because not only do theoretical results not give a well explanation for experimental measurements, but also the experimental results for the same molecule with different techniques show great difference among each other. The main reason for the questions mentioned above is that, compared with the electrode, the molecule is a very small system in the size. Therefore the IETS of the molecule is likely influenced by the external factors. In this thesis, the effect of field-induced geometry relaxation on the electron transport properties is studied, and the charge redistribution and the potential variation under the external bias are analyzed. A first-principles computational method based on hybrid density functional theory is introduced to simulate the inelastic electron tunneling process of molecular junctions. The influences of distance between electrodes, the contact structures between the molecule and the metal surface, and the semifluorinated degree in alkanethiol molecules on the IETS of molecular devices are investigated.
     The non-linear charge transport properties of 4,4'-biphenyldithiol molecular junction have been studied using the generalized Green's function theory. It is shown that the torsion angle between two phenyls is slightly decreased as increase of the external voltage while the whole molecule moves slightly along the reversed direction of the electric field. The coupling constants between the terminal sulfur atom and the gold surface show a non-linear dependence on the electric field strength. The change of the coupling constants is consistent with the change of the bond distance between gold and sulfur atoms. A longer bond distance results in a smaller coupling constant and vice verse. It is found that the energy gap between HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) becomes narrower with the increase of the electric filed. The non-linear behaviors of I-V curves and their asymmetry with respect to the direction of the electric field are clearly demonstrated. There is a conductance turn-on up to 0.7 V, and two conductance peaks appear at higher bias, 1.04 V and 1.28 V, respectively. It is found that with the negative bias, these two conductance peaks are located at -0.88 V and -1.04 V, respectively. Calculation indicates that the inclusion of molecular geometry relaxation can avoid a false prediction of negative differential resistance behavior. The charge redistribution under the external bias results in resistivity dipoles inside the molecule, which leads to the non-linear transport effect. Furthermore, the electrostatic potential analysis indicates that the non-coplanarity of the two phenyl rings has quite negative effect on the electronic transport in this molecular device. The calculated I-V curve of 4,4'-biphenyldithiol molecular junction is consistent with experimental observations in a way.
     A first-principles computational method based on the hybrid density functional theory is used to calculate the IETS of 4,4'-biphenyldithiol molecular electronic devices in the nonresonant tunneling regime. The influence of the distance of two electrodes and three different contact structures between the molecule and electrodes are investigated. The numerical results show that the change of the distance betwteen two electrodes gives various influence on the geometric structure of the extended molecule, which bring effect on the IETS of the 4,4'-biphenyldithiol molecular junction. The computational results demonstrate that the IETS has certain selection rule for vibrational modes, that’s to say the longitudinal modes with the same direction as the tunneling current have greatest contribution to the IETS. The longitudinal modes include the C-S strecthing vibration mode,ν(6a) ring mode ,ν(18a) ring mode,ν(19a) ring mode, and so forth. The values of full width at half maximum (FWHM) for the triangle contact configuration are usually larger than the corresponding ones for the one-gold-atom contact configuration with trans-structure and cis-structure in IETS. It indicates that the molecule-metal bonding in the triangle contact configuration is stronger than that in the one-gold-atom contact configuration for 4,4’-biphenyldithiol molecule. When the temperature is increased from 4.2 K to 50.0 K, some delicate spectral peaks are smeared, and broaden peaks contributed by several vibrational modes are formed.
     We investigate the IETS of 1-hexadecanethiol molecule and the semifluorinated molecules, including F0, F1, F2, F3, and F10. The careful examination on the atomic vibration and frequency indicates that the C-H stretching peak arises from the stretching of the CH_2 group localized on the region directly adjacent to sulphur atom, not from terminal CH_3 vibration. The calculated result is in agreement with recent experiment result, which can solve this disputed issue about the source of C-H stretching modes in IETS for such alkanethiol molecules. The experimental peak of CH2 wagging vibration might be a sum of several spectral features, including not only the CH2 wagging mode but also the CH_2 twisting and scissoring modes. There are contributions of C-C-C scissoring modes (belong to the fluorinated part of F10) to IET spectrum.The experimental peak ofν(C-C) vibration should comprise the contribution of C-C-C scissoring mode of the F10 junction. It calls for a deeper understanding of the the influence of veracious molecule-metal contact to the IETS for these designed molecular series.
     This thesis consists of eight chapters as follows. In the first chapter, the background of IETS of molecular electronic devices and recent development in the field of experimental and theoretical work are introduced. The questions needed to be solved in IETS area are also mentioned in this chapter. The density functional theory (DFT) is presented in the second chapter which includes the Hohenberg-Kohn Theorems, the Kohn-Sham equations and the exchange-correlation functionals in DFT. The method of displaying the vibration of molecule and the vibrational analysis in the Gaussian program are introduced briefly in the third chapter. The elastic scattering Green’s function method and the computational theory for the IETS of the molecular junctions are introduced in the fourth chapter. From the fifth chapter to the seventh chapter, the computational work and the main theoretical results are presented. In the fifth chapter, we analyse the influence of the the external field on the geometry relaxation, electronic structures, and the current-voltage properties of 4,4'-biphenyldithiol molecular junction. The charge redistribution and the electrostatic potential drop inside 4,4'-biphenyldithiol molecule under the external voltage are also investigated in this chapter. The influence of the electodes distance and the contact structures on the inelastic electron tunneling spectroscopy of 4,4'-biphenyldithiol molecular junction is discussed in the sixth chapter, and the temperature effect is also discussed. We investigate the IETS of the 1-hexadecanethiol molecule and semifluorinated molecules in the seventh chapter, in which the length of the molecular backbone remains constant while the number of fluorine atoms is varied. The theoretical work has been compared with the experimental result. The eighth chapter draws a conclusion for the whole work of this thesis and gives the prospect on the development of the IETS of molecular electronic devices in future.
引文
[1] 舒启清,电子隧穿原理,北京:科学出版社,1998 年,第 96-102 页。
    [2] R. C. Jaklevic and J. Lambe, Molecular Vibration Spectra by Electron Tunneling, Phys. Rev. Lett. 17(22), 1139–1140 (1966).
    [3] P. K. Hansma, Inelastic electron tunneling, Physics Reports 30(2), 145-206 (1977).
    [4] J. Kirtley and J. T. Hall, Theory of intensities in inelastic-electron tunneling spectroscopy orientation of adsorbed molecules, Phys. Rev. B 22(2), 848-856 (1980).
    [5] J. Lambe and R. C. Jaklevic, Molecular Vibration Spectra by Inelastic Electron Tunneling, Phys. Rev. 165(3), 821-832 (1968).
    [6] D. J. Scalapino and S. M. Marcus, Theory of Inelastic Electron-Molecule Interactions in Tunnel Junctions, Phys. Rev. Lett. 18(12), 459-461 (1967).
    [7] John Kirtley, D. J. Scalapino, and P. K. Hansma, Theory of vibrational mode intensities in inelastic electron tunneling spectroscopy, Phys. Rev. B 14(8), 3177-3184 (1976).
    [8] Y. Yamaguchi, M. Frisch, J. Gaw, H. F. Schaefer III, and J. S. Binkley, Analytic evaluation and basis set dependence of intensities of infrared spectra, J. Chem. Phys. 84(4), 2262-2278 (1986). J. Chem. Phys. 85(10), 6251 (1986).
    [9] M. J. Frisch, Y. Yamaguchi, J. F. Gaw, H. F. Schaefer III, and J. S. Binkley, Analytic Raman intensities from molecular electronic wave functions, J. Chem. Phys. 84(1), 531-532 (1986).
    [10] R. D. Amos, Dipole moment derivatives of H2O and H2S, Chem. Phys. Lett. 108(2), 185-190 (1984).
    [11] 王炜华,王兵,侯建国,扫描隧道显微术中的微分谱学及其应用,物理 35(1), 27-33 (2006).
    [12] 王兰萍,隧穿谱的研究进展,物理,18(12), 726-730 (1989).
    [13] J. B. Maddox, U. Harbola, N. Liu, C. Silien, W. Ho, G. C. Bazan, and S. Mukamel, Simulation of Single Molecule Inelastic Electron Tunneling Signals in Paraphenylene-Vinylene Oligomers and Distyrylbenzene[2.2]paracyclophanes, J. Phys. Chem. A. 110(19), 6329-6338 (2006).
    [14] H. J. Lee and W. Ho, Single-Bond Formation and Characterization with a Scanning Tunneling Microscope, Science 286(5445), 1719-1722 (1999).
    [15] A. Nitzan and M. A. Ratner, Electron Transport in Molecular Wire Junctions, Science 300(5624), 1384-1389 (2003).
    [16] B. C. Stipe, M. A. Rezaei, and W. Ho, Single-Molecule Vibrational Spectroscopy and Microscopy, Science 280(5370), 1732-1735 (1998).
    [17] H. J. Lee and W. Ho, Single-Bond Formation and Characterization with a Scanning Tunneling Microscope, Science 286(5445), 1719-1722 (1999).
    [18] B. C. Stipe, M. A. Rezaei, and W. Ho, Localization of Inelastic Tunneling and the Determination of Atomic-Scale Structure with Chemical Specificity, Phys. Rev. Lett. 82(8), 1724–1727 (1999).
    [19] H. J. Lee and W. Ho, Structural determination by single-molecule vibrational spectroscopy and microscopy: Contrast between copper and iron carbonyls, Phys. Rev. B 61(24), R16347–R16350 (2000).
    [20] B. C. Stipe, M. A. Rezaei, and W. Ho, Coupling of Vibrational Excitation to the Rotational Motion of a Single Adsorbed Molecule, Phys. Rev. Lett. 81(6), 1263-1266 (1998).
    [21] L. J. Lauhon and W. Ho, Single-molecule vibrational spectroscopy and microscopy: CO on Cu(001) and Cu(110), Phys. Rev. B 60(12), R8525–R8528 (1999).
    [22] J. Gaudioso, H. J. Lee, and W. Ho, Vibrational Analysis of Single Molecule Chemistry: Ethylene Dehydrogenation on Ni(110), J. Am. Chem. Soc. 121(37), 8479-8485 (1999).
    [23] J. Gaudioso and W. Ho, Single-Molecule Vibrations, Conformational Changes, and Electronic Conductivity of Five-Membered Heterocycles, J. Am. Chem. Soc. 123(41), 10095-10098 (2001).
    [24] F. E. Olsson, M. Persson, N. Lorente, L. J. Lauhon, and W. Ho, STM Images and Chemisorption Bond Parameters of Acetylene, Ethynyl, and Dicarbon Chemisorbed on Copper, J. Phys. Chem. B. 106(33), 8161-8171 (2002).
    [25] L. J. Lauhon and W. Ho, Single-Molecule Chemistry and Vibrational Spectroscopy: Pyridine and Benzene on Cu(001), J. Phys. Chem. A. 104(11), 2463-2467 (2000).
    [26] X. H. Qiu, G. V. Nazin, and W. Ho, Vibronic States in Single Molecule Electron Transport, Phys. Rev. Lett. 92(20), 206102 (2004).
    [27] J. Gaudioso, L. J. Lauhon, and W. Ho, Vibrationally Mediated Negative Differential Resistance in a Single Molecule, Phys. Rev. Lett. 85(9), 1918-1921 (2000).
    [28] T. Komeda, Y. Kim, M. Kawai, B. N. J. Persson, and H. Ueba, Lateral Hopping of Molecules Induced by Excitation of Internal Vibration Mode, Science 295(5562), 2055-2058 (2002).
    [29] Y. Kim, T. Komeda, and M. Kawai, Single-Molecule Reaction and Characterization by Vibrational Excitation, Phys. Rev. Lett. 89(12), 126104 (2002).
    [30] T. Komeda, Y. Kim, Y. Fujita, Y. Sainoo, and M. Kawai, Local chemical reaction of benzene on Cu(110) via STM-induced excitation, J. Chem. Phys. 120(11), 5347-5352 (2004).
    [31] Y. Sainoo, Y. Kim, T. Okawa, T. Komeda, H. Shigekawa, and M. Kawai, Excitation of Molecular Vibrational Modes with Inelastic Scanning Tunneling Microscopy Processes: Examination through Action Spectra of cis-2-Butene on Pd(110), Phys. Rev. Lett. 95(24), 246102 (2005).
    [32] H. Ueba and B. N. J. Persson, Action spectroscopy for single-molecule motion induced by vibrational excitation with a scanning tunneling microscope, Phys. Rev. B 75(4), 041403(R) (2007).
    [33] W. Ho, Single-molecule chemistry, J. Chem. Phys. 117(24), 11033-11061 (2002).
    [34] A. Troisi, M. A. Ratner, and A. Nitzan, Vibronic effects in off-resonant molecular wire conduction, J. Chem. Phys. 118(13), 6072-6082 (2003).
    [35] A. H. Flood, J. F. Stoddart, D. W. Steuerman, and J. R. Heath, Enhanced: Whence Molecular Electronics? Science 306(5704), 2055-2056 (2004).
    [36] J. G. Kushmerick, J. Lazorcik, C. H. Patterson, R. Shashidhar, D. S. Seferos, and G. C. Bazan, Vibronic Contributions to Charge Transport Across Molecular Junctions, Nano Lett. 4(4), 639-642 (2004).
    [37] W. Wang, T. Lee, I. Kretzschmar, and M. A. Reed, Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer, Nano Lett. 4(4), 643-646 (2004).
    [38] G. C. Solomon, A. Gagliardi, A.Pecchia, T. Frauenheim, A. D. Carlo, J. R. Reimers, and N. S. Hush, Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold, J. Chem. Phys. 124(9), 094704 (2006).
    [39] J. R. Reimers, G. C. Solomon, A. Gagliardi, A. Bili, N. S. Hush, T. Frauenheim, A. Di Carlo, and A. Pecchia, The Green's Function Density Functional Tight-Binding (gDFTB) Method for Molecular Electronic Conduction, J. Phys. Chem. A 111(26), 5692-5702 (2007).
    [40] J. G. Kushmerick, A. S. Blum, and D. P. Long, Metrology for molecular electronics, Analytica Chimica Acta 568(1-2), 20-27 (2006).
    [41] L. H. Yu, C. D. Zangmeister, and J. G. Kushmerick, Structural Contributions to Charge Transport across Ni-Octanedithiol Multilayer Junctions, Nano Lett. 6(11), 2515-2519 (2006).
    [42] J. M. Beebe, H. J. Moore, T. R. Lee, and J. G. Kushmerick, Vibronic Coupling in Semifluorinated Alkanethiol Junctions: Implications for Selection Rules in Inelastic Electron Tunneling Spectroscopy, Nano Lett.7(5), 1364-1368 (2007).
    [43] L. H. Yu, C. D. Zangmeister, and J. G. Kushmerick, Origin of Discrepancies in Inelastic Electron Tunneling Spectra of Molecular Junctions, Phys. Rev. Lett. 98(20), 206803 (2007).
    [44] W. Wang, A. Scott, N. Gergel-Hackett, C. A. Hacker, D. B. Janes, and C. A. Richter, Probing Molecules in Integrated Silicon-Molecule-Metal Junctions by Inelastic Tunneling Spectroscopy, Nano Lett. 8(2), 478-484 (2008).
    [45] A. Honciuc, R. M. Metzger, A. Gong, and C. W. Spangler, Elastic and Inelastic Electron Tunneling Spectroscopy of a New Rectifying Monolayer, J. Am. Chem. Soc. 129(26), 8310-8319 (2007).
    [46] W. Wang and C. A. Richter, Spin-polarized inelastic electron tunneling spectroscopy of a molecular magnetic tunnel junction, Appl. Phys. Lett. 89(15), 153105 (2006).
    [47] D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H. Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, James M. Tour, and R. Shashidhar, Effects of hydration on molecular junction transport, Nature Mater. 5(11), 901-908 (2006).
    [48] L. Cai, M. A. Cabassi, H. Yoon, O. M. Cabarcos, C. L. McGuiness, A. K. Flatt, D. L. Allara, J. M. Tour, and T. S. Mayer, Reversible Bistable Switching in Nanoscale Thiol-Substituted Oligoaniline Molecular Junctions, Nano Lett. 5(12), 2365-2372 (2005).
    [49] A.-S. Hallb?ck, N. Oncel, J. Huskens, H. J. W. Zandvliet, and B. Poelsema, Inelastic Electron Tunneling Spectroscopy on Decanethiol at Elevated Temperatures, Nano Lett. 4(12), 2393-2395 (2004).
    [50] J. Jiang, M. Kula, W. Lu, and Y. Luo, First-Principles Simulations of Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Devices, Nano Lett. 5(8), 1551-1555 (2005).
    [51] J. Jiang, M. Kula, and Y. Luo, A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices, J. Chem. Phys. 124(3), 034708 (2006).
    [52] M. Kula, J. Jiang, and Y. Luo, Probing Molecule-Metal Bonding in Molecular Junctions by Inelastic Electron Tunneling Spectroscopy, Nano Lett. 6(8), 1693-1698 (2006).
    [53] M. Kula and Y. Luo, Effects of intermolecular interaction on inelastic electron tunneling spectra, J. Chem. Phys. 128(6), 064705 (2008).
    [54] A. Troisi and M. A. Ratner, Molecular Transport Junctions: Propensity Rules for Inelastic Electron Tunneling Spectra, Nano Lett. 6(8), 1784-1788 (2006).
    [55] A. Troisi and M. A. Ratner, Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions, J. Chem. Phys. 125(21), 214709 (2006).
    [56] M. Galperin, M. A. Ratner, and A. Nitzan, On the Line Widths of Vibrational Features in Inelastic Electron Tunneling Spectroscopy, Nano Lett. 4(9), 1605-1611 (2004).
    [57] T. Frederiksen, N. Lorente, M. Paulsson, and M. Brandbyge, From tunneling to contact: Inelastic signals in an atomic gold junction from first principles, Phys. Rev. B 75(23), 235441 (2007).
    [58] G. Teobaldi, M. Pe?alba, A. Arnau, N. Lorente, and W. A. Hofer, Including the probe tip in theoretical models of inelastic scanning tunneling spectroscopy: CO on Cu(100), Phys. Rev. B 76(23), 235407 (2007).
    [59] H. Nakamura and K. Yamashita, Systematic Study on Quantum Confinement and Waveguide Effects for Elastic and Inelastic Currents in Atomic Gold Wire: Importance of the Phase Factor for Modeling Electrodes, Nano Lett. 8(1), 6-12 (2008).
    [60] D. A. Ryndyk and G. Cuniberti, Nonequilibrium resonant spectroscopy of molecular vibrons, Phys.Rev. B 76(15), 155430 (2007).
    [61] E. J. McEniry, D. R. Bowler, D. Dundas, A. P. Horsfield, C. G. Sánchez, and T. N. Todorov, Dynamical simulation of inelastic quantum transport, J. Phys.: Condens. Matter 19(19), 196201 (2007).
    [62] Jun Jiang, Chuan-Kui Wang, and Yi Luo, QCME-V1.1 (Quantum Chemistry for Molecular Electronics), Royal Institute of Technology, Sweden, (2006).
    [1] 林梦海,量子化学计算方法与应用,北京:科学出版社,2004 年,第 116 页。
    [2] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136(3B), B864-B871 (1964).
    [3] 丁迅雷,金团簇上小分子吸附的第一性原理研究,中国科学技术大学博士学位论文,2004年。
    [4] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140(4A), A1133 - A1138 (1965).
    [5] 谢希德,陆栋,固体能带理论,上海:复旦大学出版社,1998 年,第 8-14 页。
    [6] 李正中,固体理论(第二版),北京:高等教育出版社,2002 年,第 334-341 页。
    [7] G. L. Oliver and J. P. Perdew, Spin-density gradient expansion for the kinetic energy, Phys. Rev. A 20(2), 397- 403 (1979).
    [8] 李震宇,贺伟,杨金龙,密度泛函理论及其数值方法新进展,化学进展,17(2), 192-202 (2005).
    [9] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38(6), 3098-3100 (1988).
    [10] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244-13249 (1992).
    [11] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671-6687 (1992).
    [12] J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33(12), 8822-8824 (1986).
    [13] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18), 3865-3868 (1996).
    [14] C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37(2), 785-789 (1988).
    [15] A. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys. 98(2), 1372-1377 (1993).
    [16] Gaussian 03 中文用户参考手册,第 20-28 页。
    [17] J. K. Labanowski, Simplified introduction to ab initio basis sets. Terms and notation. Ohio Supercomputer Center, Columbus, OH., (2001).
    [18]李震宇,新材料物性的第一性原理研究,中国科学技术大学博士学位论文,2004 年。
    [19] H. B. Akkerman and B. de Boer, Electrical conduction through single molecules and self-assembled monolayers, J. Phys.: Condens. Matter 20(1), 013001 (2008).
    [20] T. Morita and S. Lindsay, Determination of Single Molecule Conductances of Alkanedithiols by Conducting-Atomic Force Microscopy with Large Gold Nanoparticles, J. Am. Chem. Soc. 129(23), 7262-7263 (2007).
    [21] S. Y. Quek, J. B. Neaton, M. S. Hybertsen, E. Kaxiras, and S. G. Louie, Negative Differential Resistance in Transport through Organic Molecules on Silicon, Phys. Rev. Lett. 98(6), 066807 (2007).
    [22] ?. Crljen and G. Baranovi?, Unusual Conductance of Polyyne-Based Molecular Wires, Phys. Rev. Lett. 98(11), 116801 (2007).
    [23] Z. Li, I. Pobelov, B. Han, T. Wandlowski, A. Blaszczyk, and M. Mayor, Conductance ofredox-active single molecular junctions: an electrochemical approach, Nanotechnology 18(4), 044018 (2007).
    [24] A.-D. Zhao, Q.-X. Li, L. Chen, H.-J. Xiang, W.-H. Wang, S. Pan, B. Wang, X.-D. Xiao, J.-L. Yang, J. G. Hou, and Q.-S. Zhu, Controlling the Kondo Effect of an Adsorbed Magnetic Ion Through Its Chemical Bonding, Science 309(5740), 1542-1544 (2005).
    [25] J.-X. Zhang, S.-M. Hou, R. Li, Z.-K. Qian, R.-S. Han, Z.-Y. Shen, X.-Y. Zhao, and Z.-Q. Xue, An accurate and efficient self-consistent approach for calculating electron transport through molecular electronic devices: including the corrections of electrodes, Nanotechnology 16(12), 3057-3063 (2005).
    [26] B. Xu and N. J. Tao, Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions, Science 301(5637), 1221-1223 (2003).
    [27] R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek, Measurement of the conductance of a hydrogen molecule, Nature(London) 419(6910), 906-909 (2002).
    [28] C. Joachim, J. K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices, Nature (London) 408, 541-548 (2000).
    [1] 沈德言,红外光谱学在高分子研究中的应用,北京:科学出版社,1982 年,第 1-5 页。
    [2] (加拿大) G. 赫兹堡著,王鼎昌译,分子光谱与分子结构(第二卷),北京:科学出版社,1986年,第 56-90 页。
    [3] 吴国祯,分子振动光谱学原理与研究,北京:清华大学出版社,2002 年,第 43-60 页。
    [4] (美)lra N.赖文著,徐广智,李碧钦,张建中译,分子光谱学,北京:高等教育出版社,1985年,第 246-303 页。
    [5] 梁映秋,赵文运,分子振动和振动光谱,北京:北京大学出版社,1990 年,第 13-70 页。
    [6] 董庆年,红外光谱法,北京:石油化学工业出版社,1977 年,第 7-12 页。
    [7] (美)E. B. 小威尔逊等著,胡皆汉译,分子振动:红外和拉曼振动光谱理论,北京:科学出版社,1985 年,第 12-35 页。
    [8] D. A. Long 著,顾本源等译,喇曼光谱学,北京:科学出版社,1983 年,第 50-144 页。
    [9] (加拿大) G. 赫兹堡著,徐积仁等译,简单自由基的光谱和结构——分子光谱学导论,北京:科学出版社,1989 年,第 80-113 页。
    [10] (美)D. C. 哈里斯,(美)M. D. 伯特卢西著,胡玉才,戴寰译,对称性与光谱学:振动和电子光谱学导论,北京:高等教育出版社,1988 年,第 66-154 页。
    [11] http://www.gaussian.com/g_whitepap/vib.htm
    [12] E. B. Wilson Jr., The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule, Phys. Rev. 45(10), 706-714 (1934).
    [13] G. Varsanyi, Assignments for vibrational spectra of seven hundred benzene derivatives, New York: Wiley, 1974.
    [14] http://home.arcor.de/rothw/gauss/varsanyi/molekuele/Bz/
    [1] C.-K. Wang, Y. Fu, and Y. Luo, A quantum chemistry approach for current-voltage characterization of molecular junctions, Phys. Chem. Chem. Phys. 3(22), 5017-5023 (2001).
    [2] Y. Luo, C.-K. Wang, and Y. Fu, Effects of chemical and physical modifications on the electronic transport properties of molecular junctions, J. Chem. Phys. 117(22), 10283-10290 (2002).
    [3] C.-K. Wang and Y. Luo, Current–voltage characteristics of single molecular junction: Dimensionality of metal contacts, J. Chem. Phys. 119(9), 4923-4928 (2003).
    [4] Y. Luo, C.-K. Wang, and Y. Fu, Electronic transport properties of single molecular junctions based on five-membered heteraromatic molecules, Chem. Phys. Lett. 369(3-4), 299-304 (2003).
    [5] W. Su, J. Jiang, and Y. Luo, Quantum chemical study of coherent electron transport in oligophenylene molecular junctions of different lengths, Chem. Phys. Lett. 412(4-6), 406-410 (2005).
    [6] Z.-L. Li, B. Zou, C.-K. Wang, and Y. Luo, Electronic transport properties of molecular bipyridine junctions: Effects of isomer and contact structures, Phys. Rev. B 73(7), 075326 (2006).
    [7] J. Jiang, K. Liu, W. Lu, and Y. Luo, An elongation method for first principle simulations of electronic structures and electron transport properties of finite nanostructures, J. Chem. Phys. 124(21), 214711 (2006). J. Chem. Phys. 125(14), 149902 (2006).
    [8] M. Kula, J. Jiang, W. Lu, and Y. Luo, Effects of hydrogen bonding on current-voltage characteristics of molecular junctions, J. Chem. Phys. 125(19), 194703 (2006).
    [9] 李宗良,王传奎,罗毅,薛其坤,电极维度对单分子器件伏-安特性的影响,物理学报 53(5),1490-1495 (2004).
    [10] 马勇,邹斌,李宗良,王传奎,罗毅,六元杂环分子电学特性的理论研究,物理学报 55(4), 1974-1978 (2006).
    [11] Jun Jiang, PhD Thesis: A Quantum Chemical View of Molecular and Nano-Electronics, Royal Institute of Technology, Stockholm, 2007.
    [1] A. Danilov, S. Kubatkin, S. Kafanov, P. Hedeg?rd, N. Stuhr-Hansen, K. Moth-Poulsen, and T. Bjrnholm, Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers, Nano Lett. 8(1), 1-5 (2008).
    [2] N. Jlidatb, M. Hliwaa, and C. Joachima, A semi-classical XOR logic gate integrated in a single molecule, Chem. Phys. Lett. 451(4-6), 270-275 (2008).
    [3] R. C. Hoft, M. J. Ford, V. M. García-Suárez, C. J. Lambert, and M. B. Cortie, The effect of stretching thiyl- and ethynyl-Au molecular junctions, J. Phys.: Condens. Matter 20(2), 025207 (2008).
    [4] K Stokbro, First-principles modeling of electron transport, J. Phys.: Condens. Matter 20(6), 064216 (2008).
    [5] A. Bannani, C. Bobisch, and R. M?ller, Ballistic Electron Microscopy of Individual Molecules, Science 315(5820), 1824-1828 (2007).
    [6] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath, A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter, Nature(London) 445(7126), 414-417 (2007).
    [7] M. del Valle, R. Gutiérrez, C. Tejedor, and G. Cuniberti, Tuning the conductance of a molecular switch, Nature Nanotechnology 2(3), 176-179 (2007).
    [8] A. C. Whalley, M. L. Steigerwald, X. Guo, and C. Nuckolls, Reversible Switching in Molecular Electronic Devices, J. Am. Chem. Soc. 129(42), 12590-12591 (2007).
    [9] S. Yeganeh, M. Galperin, and M. A. Ratner, Switching in Molecular Transport Junctions: Polarization Response, J. Am. Chem. Soc. 129(43), 13313-13320 (2007).
    [10] Z. Wang, C. Kim, A. Facchetti, and T. J. Marks, Anthracenedicarboximides as Air-Stable N-Channel Semiconductors for Thin-Film Transistors with Remarkable Current On-Off Ratios, J. Am. Chem. Soc. 129(44), 13362-13363 (2007).
    [11] E. L?rtscher, H. B. Weber, and H. Riel, Statistical Approach to Investigating Transport through Single Molecules, Phys. Rev. Lett. 98(17), 176807 (2007).
    [12] C. W. Bauschlicher, Jr. and J. W. Lawson, Current-voltage curves for molecular junctions: Effect of substitutients, Phys. Rev. B 75(11), 115406 (2007).
    [13] K. Gao, X. Liu, D. Liu, and S. Xie, Charge carrier generation through reexcitations of an exciton in poly(p-phenylene vinylene) molecules, Phys. Rev. B 75(20), 205412 (2007).
    [14] L. A. Agapito, E. J. Bautista, and J. M. Seminario, Conductance model of gold-molecule-silicon and carbon nanotube-molecule-silicon junctions, Phys. Rev. B 76(11), 115316 (2007).
    [15] C. Morari, G.-M. Rignanese, and S. Melinte, Electronic properties of 1-4, dicyanobenzene and 1-4, phenylene diisocyanide molecules contacted between Pt and Pd electrodes: First-principles study, Phys. Rev. B 76(11), 115428 (2007).
    [16] R. C. Hoft, N. Armstrong, M. J. Ford and M. B. Cortie, Ab initio and empirical studies on the asymmetry of molecular current–voltage characteristics, J. Phys.: Condens. Matter 19(21), 215206 (2007).
    [17] G. Romano, A. Pecchia and A. Di Carlo, Coupling of molecular vibrons with contact phonon reservoirs, J. Phys.: Condens. Matter 19(21), 215207 (2007).
    [18] L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature(London) 442(7105), 904-907 (2006).
    [19] N. J. Tao, Electron transport in molecular junctions, Nature Nanotechnology 1(3), 173-181 (2006).
    [20] W. Chen, L. Wang, C. Huang, T. T. Lin, X. Y. Gao, K. P. Loh, Z. K. Chen, and A. T. S. Wee, Effect of Functional Group (Fluorine) of Aromatic Thiols on Electron Transfer at the Molecule-Metal Interface, J. Am. Chem. Soc. 128(3), 935-939 (2006).
    [21] B. S. Kim, J. M. Beebe, Y. Jun, X.-Y. Zhu, and C. D. Frisbie, Correlation between HOMO Alignment and Contact Resistance in Molecular Junctions: Aromatic Thiols versus Aromatic Isocyanides, J. Am. Chem. Soc. 128(15), 4970-4971 (2006).
    [22] R. B. Pontes, F. D. Novaes, A. Fazzio, and A. J. R. da Silva, Adsorption of Benzene-1,4-dithiol on the Au(111) Surface and Its Possible Role in Molecular Conductance, J. Am. Chem. Soc. 128(28), 8996-8997 (2006).
    [23] D. S. Seferos, A. S. Blum, J. G. Kushmerick, and G. C. Bazan, Single-Molecule Charge-Transport Measurements that Reveal Technique-Dependent Perturbations, J. Am. Chem. Soc. 128(34), 11260-11267 (2006).
    [24] J. He, Q. Fu, S. Lindsay, J. W. Ciszek, and J. M. Tour, Electrochemical Origin of Voltage-Controlled Molecular Conductance Switching, J. Am. Chem. Soc. 128(46), 14828-14835 (2006).
    [25] M. Taniguchi, Y. Nojima, K. Yokota, J. Terao, K. Sato, N. Kambe, and T. Kawai, Self-Organized Interconnect Method for Molecular Devices, J. Am. Chem. Soc. 128(47), 15062-15063 (2006).
    [26] G. Heimel, L. Romaner, J.-L. Brédas, and E. Zojer, Interface Energetics and Level Alignment at Covalent Metal-Molecule Junctions: π-Conjugated Thiols on Gold, Phys. Rev. Lett. 96(19), 196806 (2006).
    [27] J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions, Phys. Rev. Lett. 97(2), 026801 (2006).
    [28] W. Ji, Z.-Y. Lu, and H. Gao, Electron Core-Hole Interaction and Its Induced Ionic Structural Relaxation in Molecular Systems under X-Ray Irradiation, Phys. Rev. Lett. 97(24), 246101 (2006).
    [29] J. Kr?ger, N. Néel, H. Jensen, R. Berndt, R. Rurali, and N. Lorente, Molecules on vicinal Au surfaces studied by scanning tunnelling microscopy, J. Phys.: Condens. Matter 18(13) S51-S66 (2006).
    [30] P. G. Piva, G. A. DiLabio, J. L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W. A. Hofer, and R. A. Wolkow, Field regulation of single-molecule conductivity by a charged surface atom, Nature (London) 435, 658-661 (2005).
    [31] H. B. Akkerman and B. de Boer, Electrical conduction through single molecules and self-assembled monolayers, J. Phys.: Condens. Matter 20(1), 013001 (2008).
    [32] H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, and B. de Boer, Towards molecular electronics with large-area molecular junctions, Nature(London) 441(7089), 69-72 (2006).
    [33] C. Li, I. Pobelov, T. Wandlowski, A. Bagrets, A. Arnold, and F. Evers, Charge Transport in Single Au Alkanedithiol Au Junctions: Coordination Geometries and Conformational Degrees of Freedom, J. Am. Chem. Soc. 130(1), 318-326 (2008).
    [34] H. B. Akkerman, A. J. Kronemeijer, Paul A. van Hal, D. M. de Leeuw, P. W. M. Blom, and B. de Boer, Self-Assembled-Monolayer Formation of Long Alkanedithiols in Molecular Junctions, Small4(1), 100-104 (2008).
    [35] T. Morita and S. Lindsay, Determination of Single Molecule Conductances of Alkanedithiols by Conducting-Atomic Force Microscopy with Large Gold Nanoparticles, J. Am. Chem. Soc. 129(23), 7262-7263 (2007).
    [36] Z. Huang, F. Chen, P. A. Bennett, and N. Tao, Single Molecule Junctions Formed via Au-Thiol Contact: Stability and Breakdown Mechanism, J. Am. Chem. Soc. 129(43), 13225-13231 (2007).
    [37] G. Wang, T.-W. Kim, H. Lee, and T. Lee, Influence of metal-molecule contacts on decay coefficients and specific contact resistances in molecular junctions, Phys. Rev. B 76(20), 205320 (2007).
    [38] N. A. Bruque, R. R. Pandey, and R. K. Lake, Electron transport through a conjugated molecule with carbon nanotube leads, Phys. Rev. B 76(20), 205322 (2007).
    [39] X. Shi, Z. Dai, and Z. Zeng, Electron transport in self-assembled monolayers of thiolalkane: Symmetric I-V curves and Fano resonance, Phys. Rev. B 76(23), 235412(2007).
    [40] K. Luo, D.-H. Chae, and Z. Yao, Room-temperature single-electron transistors using alkanedithiols, Nanotechnology 18(46), 465203 (2007).
    [41] C. Chu, J.-S. Na, and G. N. Parsons, Conductivity in Alkylamine/Gold and Alkanethiol/Gold Molecular Junctions Measured in Molecule/Nanoparticle/Molecule Bridges and Conducting Probe Structures, J. Am. Chem. Soc. 129(8), 2287-2296 (2007).
    [42] H. Song, H. Lee, and T. Lee, Intermolecular Chain-to-Chain Tunneling in Metal-Alkanethiol-Metal Junctions, J. Am. Chem. Soc. 129(13), 3806-3807 (2007).
    [43] L. M Ghiringhelli, R. Caputo, and L. D. Site Alkanethiol headgroup on metal (111)-surfaces: general features of the adsorption onto group 10 and 11 transition metals, J. Phys.: Condens. Matter 19(17), 176004 (2007).
    [44] T.-W. Kim, G. Wang, H. Lee, and T. Lee, Statistical analysis of electronic properties of alkanethiols in metal–molecule–metal junctions, Nanotechnology 18(31), 315204 (2007).
    [45] R. Desikan, S. Armel, H. M. Meyer III, and T. Thundat, Effect of chain length on nanomechanics of alkanethiol self-assembly, Nanotechnology 18(42), 424028 (2007).
    [46] F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules, J. Am. Chem. Soc. 128(49), 15874-15881 (2006).
    [47] K.-H. Müller, Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules, Phys. Rev. B 73(4), 045403 (2006).
    [48] S. Wang, W. Lu, Q. Zhao, and J. Bernholc, Resonant coupling and negative differential resistance in metal/ferrocenyl alkanethiolate/STM structures, Phys. Rev. B 74(19), 195430 (2006).
    [49] V. B. Engelkes, J. M. Beebe, and C. D. Frisbie, Length-Dependent Transport in Molecular Junctions Based on SAMs of Alkanethiols and Alkanedithiols: Effect of Metal Work Function and Applied Bias on Tunneling Efficiency and Contact Resistance, J. Am. Chem. Soc. 126(43), 14287-14296 (2004).
    [50] M. J. Biercuk, N. Mason, J. Martin, A. Yacoby, and C. M. Marcus, Anomalous Conductance Quantization in Carbon Nanotubes, Phys. Rev. Lett. 94(2), 026801 (2005).
    [51] H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, Multichannel Ballistic Transport in Multiwall Carbon Nanotubes, Phys. Rev. Lett. 95(8), 086601 (2005).
    [52] T. Miyake and S. Saito, Band-gap formation in (n,0) single-walled carbon nanotubes (n=9,12,15,18): A first-principles study, Phys. Rev. B 72(7), 073404 (2005).
    [53] F. Tournus, S. Latil, M. I. Heggie, and J.-C. Charlier, π-stacking interaction between carbon nanotubes and organic molecules, Phys. Rev. B 72(7), 075431 (2005).
    [54] M. J. Biercuk, S. Garaj, N. Mason, J. M. Chow, and C. M. Marcus, Gate-Defined Quantum Dots on Carbon Nanotubes, Nano Lett. 5(7), 1267-1271 (2005).
    [55] F. Liu, M.-Q. Bao, K. L. Wang, X. L. Liu, C. Li, and C.-W. Zhou, Determination of the Small Band Gap of Carbon Nanotubes Using the Ambipolar Random Telegraph Signal, Nano Lett. 5(7), 1333-1336 (2005).
    [56] Z. Yu and P. J. Burke, Microwave Transport in Metallic Single-Walled Carbon Nanotubes, Nano Lett. 5(7), 1403-1406 (2005).
    [57] A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, and P. M. Ajayan, Metal-Semiconductor Transition in Single-Walled Carbon Nanotubes Induced by Low-Energy Electron Irradiation, Nano Lett. 5(8), 1575-1579 (2005).
    [58] V. Barone, J. E. Peralta, M.Wert, J. Heyd, and G. E. Scuseria, Density Functional Theory Study of Optical Transitions in Semiconducting Single-Walled Carbon Nanotubes, Nano Lett. 5(8), 1621-1624 (2005).
    [59] Y. Takagi, T. Uda, and T. Ohno, A theoretical study for mechanical contact between carbon nanotubes, J. Chem. Phys. 122(12), 124709 (2005).
    [60] J. B. Cui, C. P. Daghlian, and U. J. Gibson, Solubility and electrical transport properties of thiolated single-walled carbon nanotubes, J. Appl. Phys. 98(4), 044320 (2005).
    [61] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science 306(5700), 1362-1364 (2004).
    [62] T. B?hler, A. Edtbauer, and E. Scheer, Conductance of individual C60 molecules measured with controllable gold electrodes, Phys. Rev. B 76(12), 125432 (2007).
    [63] L.-L. Wang and H.-P. Cheng, Density functional study of the adsorption of a C60 monolayer on Ag(111) and Au(111) surfaces, Phys. Rev. B 69(16), 165417 (2004). Phys. Rev. B 75(11), 119901(E) (2007).
    [64] A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose, L. A. K. Donev, P. L. McEuen, and D. C. Ralph, The Kondo Effect in the Presence of Ferromagnetism, Science 306(5693), 86-89 (2004).
    [65] A. V. Malyshev, DNA Double Helices for Single Molecule Electronics, Phys. Rev. Lett. 98(9), 096801 (2007).
    [66] B. B. Schmidt, M. H. Hettler, and G. Sch?n, Influence of vibrational modes on the electronic properties of DNA, Phys. Rev. B 75(11), 115125 (2007).
    [67] X. Yang, Q. Wang, K. Wang, W. Tan, J. Yao, and H. Li, Electrical Switching of DNA Monolayers Investigated by Surface Plasmon Resonance, Langmuir 22(13), 5654-5659 (2006).
    [68] S. H. Park, R. Barish, H.-Y. Li, J. H. Reif, G. Finkelstein, H. Yan, and T. H. LaBean, Three-Helix Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for Silver Nanowires, Nano Lett. 5(4), 693-696 (2005).
    [69] E. S. Kryachko and F. Remacle, Complexes of DNA Bases and Gold Clusters Au3 and Au4 Involving Nonconventional N-H···Au Hydrogen Bonding, Nano Lett. 5(4), 735-739 (2005).
    [70] U. Rant, K. Arinaga, S. Fujita, N. Yokoyama, G. Abstreiter, and M. Tornow, Dynamic Electrical Switching of DNA Layers on a Metal Surface, Nano Lett. 4(12), 2441-2445 (2004).
    [71] M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls,Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly, Science 302(5650), 1545-1548 (2003).
    [72] M. Bixon and J. Jortner, Long-range and very long-range charge transport in DNA, Chem. Phys. 281(2-3), 393-408 (2002).
    [73] C. R. Treadway, M. G. Hill, and J. K. Barton, Charge transport through a molecular π-stack: double helical DNA, Chem. Phys. 281(2-3), 409-428 (2002).
    [74] J.-O. Lee, G. Lientschnig, F. Wiertz, M. Struijk, R. A. J. Janssen, R. Egberink, D. N. Reinhoudt, P. Hadley, and C. Dekker, Absence of Strong Gate Effects in Electrical Measurements on Phenylene-Based Conjugated Molecules, Nano Lett. 3(2), 113-117 (2003).
    [75] T. Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling, A. Yacoby, and I. Bar-Joseph, Measurement of the conductance of single conjugated molecules, Nature (London) 436, 677-680 (2005). Nature (London) 436, 1200 (2005).
    [76] Y. Xue and M. A. Ratner, Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport, Phys. Rev. B 68(11), 115406 (2003).
    [77] Y. Xue and M. A. Ratner, Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure, Phys. Rev. B 68(11), 115407 (2003).
    [78] Y.-H. Kim, S. S. Jang and W. A. Goddard III, Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices: A multiscale computational study, J. Chem. Phys. 122(24), 244703 (2005). J. Chem. Phys. 123(16), 169902 (2005).
    [79] C.-K. Wang, Y. Fu, and Y. Luo, A quantum chemistry approach for current-voltage characterization of molecular junctions, Phys. Chem. Chem. Phys. 3(22), 5017-5023 (2001).
    [80] J. Jiang, W. Lu, and Y. Luo, Length dependence of coherent electron transportation in metal–alkanedithiol–metal and metal–alkanemonothiol–metal junctions, Chem. Phys. Lett. 400(4-6), 336-340 (2004).
    [81] Z.-L. Li, B. Zou, C.-K. Wang, and Y. Luo, Electronic transport properties of molecular bipyridine junctions: Effects of isomer and contact structures, Phys. Rev. B 73(7), 075326 (2006).
    [82] X.-W. Yan, R.-J. Liu, Z.-L. Li, B. Zou, X.-N. Song, and C.-K. Wang, Contact configuration dependence of conductance of 1,4-phenylene diisocyanide molecular junction, Chem. Phys. Lett. 429(1-3), 225-228 (2006).
    [83] F. Remacle and R. D. Levine, Electrical transmission of molecular bridges, Chem. Phys. Lett. 383(5-6), 537-543 (2004).
    [84] 李宗良,分子功能器件的设计与性质研究,山东师范大学博士学位论文,2007 年,第 22-24页。
    [85] Q. Tang, H. K. Moon, Y. Lee, S. M. Yoon, H. J. Song, H. Lim, and H. C. Choi, Redox-Mediated Negative Differential Resistance Behavior from Metalloproteins Connected through Carbon Nanotube Nanogap Electrodes, J. Am. Chem. Soc. 129(36), 11018-11019 (2007).
    [1] W. Wang, T. Lee, and M. A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68(3), 035416 (2003).
    [2] 武晓君, 李群祥, 黄静, 杨金龙, 单分子器件电子输运性质的理论研究, 物理化学学报 20(08S), 995-1002 (2004).
    [3] M. Koshino, T. Tanaka, N. Solin, K. Suenaga, H. Isobe, and E. Nakamura, Imaging of Single Organic Molecules in Motion, Science 316(5826), 853 (2007).
    [4] N. Bushong, J. Gamble, and M. Di Ventra, Electron Turbulence at Nanoscale Junctions, Nano Lett. 7(6), 1789-1792 (2007).
    [5] W. Haiss, T. Albrecht, H. van Zalinge, S. J. Higgins, D. Bethell, H. H?benreich, D. J. Schiffrin, R. J. Nichols, A. M. Kuznetsov, J. Zhang, Q. Chi, and J. Ulstrup, Single-Molecule Conductance of Redox Molecules in Electrochemical Scanning Tunneling Microscopy, J. Phys. Chem. B 111(24), 6703-6712 (2007).
    [6] P. Sundqvist, F. J. Garcia-Vidal, F. Flores, M. Moreno-Moreno, C. Gómez-Navarro, J. S. Bunch, and J. Gómez-Herrero, Voltage and Length-Dependent Phase Diagram of the Electronic Transport in Carbon Nanotubes, Nano Lett. 7(9), 2568-2573 (2007).
    [7] Z. Wang, T. Kadohira, T. Tada, and S. Watanabe, Nonequilibrium Quantum Transport Properties of a Silver Atomic Switch, Nano Lett. 7(9), 2688-2692 (2007).
    [8] S. S. C. Yu, E. S. Q. Tan, R. T. Jane, and A. J. Downard, An Electrochemical and XPS Study of Reduction of Nitrophenyl Films Covalently Grafted to Planar Carbon Surfaces, Langmuir 23(22), 11074-11082 (2007).
    [9] Z. Huang, F. Chen, R. D'agosta, P. A. Bennett, M. Di Ventra, and N. Tao, Local ionic and electron heating in single-molecule junctions, Nature Nanotechnology 2(11), 698-703 (2007).
    [10] T. E. Dirama and J. A. Johnson, Conformation and Dynamics of Arylthiol Self-Assembled Monolayers on Au(111), Langmuir 23(24), 12208-12216 (2007).
    [11] E. A. Osorio, K. O'Neill, M. Wegewijs, N. Stuhr-Hansen, J. Paaske, T. Bj?rnholm, and H. S. J. van der Zant, Electronic Excitations of a Single Molecule Contacted in a Three-Terminal Configuration, Nano Lett. 7(11), 3336-3342 (2007).
    [12] S. Y. Quek, L. Venkataraman, H. J. Choi, S. G. Louie, M. S. Hybertsen, and J. B. Neaton, Amine-Gold Linked Single-Molecule Circuits: Experiment and Theory, Nano Lett. 7(11), 3477-3482 (2007).
    [13] J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. H?fer, Time-Resolved Investigation of Coherently Controlled Electric Currents at a Metal Surface, Science 318(5854), 1287-1291 (2007).
    [14] B. Xu, Modulating the Conductance of a Au-octanedithiol-Au Molecular Junction, Small 3(12), 2061-2065 (2007).
    [15] J.-G. Wang and A. Selloni, Influence of End Group and Surface Structure on the Current-Voltage Characteristics of Alkanethiol Monolayers on Au(111), J. Phys. Chem. A 111(49), 12381-12385 (2007).
    [16] T. Kim and P. M. Felker, Vibrational Spectroscopy and Dynamics in the CH-Stretch Region of Fluorene by IVR-Assisted, Ionization-Gain Stimulated Raman Spectroscopy, J. Phys. Chem. A 111(49), 12466-12470 (2007).
    [17] C. Munuera, E. Barrena, and C. Ocal, Deciphering Structural Domains of AlkanethiolSelf-Assembled Configurations by Friction Force Microscopy, J. Phys. Chem. A 111(49), 12721-12726 (2007).
    [18] N. Ballav, B. Schüpbach, O. Dethloff, P. Feulner, A. Terfort, and M. Zharnikov, Direct Probing Molecular Twist and Tilt in Aromatic Self-Assembled Monolayers, J. Am. Chem. Soc. 129(50), 15416-15417 (2007).
    [19] M. H. Rümmeli, F. Sch?ffel, C. Kramberger, T. Gemming, A. Bachmatiuk, R. J. Kalenczuk, B. Rellinghaus, B. Büchner, and T. Pichler, Oxide-Driven Carbon Nanotube Growth in Supported Catalyst CVD, J. Am. Chem. Soc. 129(51), 15768-15769 (2007).
    [20] R. Huber, M. T. Gonzlez, S. Wu, M. Langer, S. Grunder, V. Horhoiu, M. Mayor, M. R. Bryce, C. Wang, R.Jitchati, C. Sch?nenberger, and M. Calame, Electrical Conductance of Conjugated Oligomers at the Single Molecule Level, J. Am. Chem. Soc. 130(3), 1080-1084 (2008).
    [21] M. P. Nikiforov, U. Zerweck, P. Milde, C.Loppacher, T.-H. Park, H. T. Uyeda, M. J. Therien, L. Eng, and D. Bonnell, The Effect of Molecular Orientation on the Potential of Porphyrin-Metal Contacts, Nano Lett. 8(1), 110-113 (2008).
    [22] K. Baheti, J. A. Malen, P. Doak, P. Reddy, S.-Y. Jang, T. D. Tilley, A. Majumdar, and R. A. Segalman, Probing the Chemistry of Molecular Heterojunctions Using Thermoelectricity, Nano Lett. 8(2), 715-719 (2008).
    [23] Y. Qi, I. Ratera, J. Y. Park, P. D. Ashby, S. Y. Quek, J. B. Neaton, and M. Salmeron, Mechanical and Charge Transport Properties of Alkanethiol Self-Assembled Monolayers on a Au(111) Surface: The Role of Molecular Tilt, Langmuir 24(5), 2219-2223 (2008).
    [24] J. Ning, Z. Qian, R. Li, S. Hou, A. R. Rocha, and S. Sanvito, Effect of the continuity of the conjugation on the conductance of ruthenium-octene-ruthenium molecular junctions, J. Chem. Phys. 126(17), 174706 (2007).
    [25] S. Yeganeh, M. A. Ratner, and V. Mujica, Dynamics of charge transfer: Rate processes formulated with nonequilibrium Green's functions, J. Chem. Phys. 126(16), 161103 (2007).
    [26] Y. X. Zhou, F. Jiang, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, First-principles study of length dependence of conductance in alkanedithiols, J. Chem. Phys. 128(4), 044704 (2008).
    [27] Z. Zhang, Z. Yang, J. Yuan, and M. Qiu, First-principles investigation of the asymmetric contact effect on current-voltage characteristics of a molecular device, J. Chem. Phys. 128(4), 044711 (2008).
    [28] A. Shaporenko, M. Elbing, A. Baszczyk, C. von H?nisch, M. Mayor, and M. Zharnikov, Self-assembled monolayers from biphenyldithiol derivatives: Optimization of the deprotection procedure and effect of the molecular conformation, J. Phys. Chem. B. 110(9), 4307-4317 (2006).
    [29] M. Riskin, B. Basnar, V. I. Chegel, E. Katz, I. Willner, F. Shi, and X. Zhang, Switchable surface properties through the electrochemical or biocatalytic generation of Ag0 nanoclusters on monolayer-functionalized electrodes, J. Am. Chem. Soc. 128(4), 1253-1260 (2006).
    [30] U. Weckenmann, S. Mittler, S. Kr?mer, A. K. A. Aliganga, and R. A. Fischer, A Study on the Selective Organometallic Vapor Deposition of Palladium onto Self-assembled Monolayers of 4,4'-Biphenyldithiol, 4-Biphenylthiol, and 11-Mercaptoundecanol on Polycrystalline Silver, Chem. Mater. 16(4), 621-628 (2004).
    [31] U. Weckenmann, S. Mittler, K. Naumann, and R. A. Fischer, Ordered Self-Assembled Monolayers of 4,4'-Biphenyldithiol on Polycrystalline Silver: Suppression of Multilayer Formation by Addition of Tri-n-butylphosphine, Langmuir 18(14), 5479-5486 (2002).
    [32] B. de Boer, M. M. Frank, Y. J. Chabal, W. Jiang, E. Garfunkel, and Z. Bao, Metallic ContactFormation for Molecular Electronics: Interactions between Vapor-Deposited Metals and Self-Assembled Monolayers of Conjugated Mono- and Dithiols, Langmuir 20(5), 1539-1542 (2004).
    [33] W. Azzam, B. I. Wehner, R. A. Fischer, A. Terfort, and C. W?ll, Bonding and Orientation in Self-Assembled Monolayers of Oligophenyldithiols on Au Substrates, Langmuir 18(21), 7766-7769 (2002).
    [34] A. Rochefort, R. Martel, and P. Avouris, Electrical Switching in π-Resonant 1D Intermolecular Channels, Nano Lett. 2(8), 877-880 (2002).
    [35] J. K. Tomfohr and O. F. Sankey, Simple estimates of the electron transport properties of molecules, phys. stat. sol. (b) 233(1), 59-69 (2002).
    [36] A. Troisi, M. A. Ratner, and A. Nitzan, Vibronic effects in off-resonant molecular wire conduction, J. Chem. Phys. 118(13), 6072-6082 (2003).
    [37] M. Paulsson, T. Frederiksen, and M. Brandbyge, Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments, Nano Lett. 6(2), 258-262 (2006).
    [38] B. Zou, Z.-L. Li, X.-N. Song, and C.-K. Wang, Simulation of inelastic electron tunneling spectroscopy on different contact structures in 4,4’-biphenyldithiol molecular junctions, Chin. Phys. Lett. 25(1), 254-257 (2008).
    [1] A. Troisi, M. A. Ratner, and A. Nitzan, Vibronic effects in off-resonant molecular wire conduction, J. Chem. Phys. 118(13), 6072-6082 (2003).
    [2] M. Galperin, M. A. Ratner, and A. Nitzan, Inelastic electron tunneling spectroscopy in molecular junctions: Peaks and dips, J. Chem. Phys. 121(23), 11965-11979 (2004).
    [3] A. Pecchia, A. Di Carlo, A. Gagliardi, S. Sanna, T. Frauenheim, and R. Gutierrez, Incoherent Electron-Phonon Scattering in Octanethiols, Nano Lett. 4(11), 2109-2114 (2004).
    [4] W. Wang, T. Lee, I. Kretzschmar, and M. A. Reed, Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer, Nano Lett. 4(4), 643-646 (2004).
    [5] A.-S. Hallb?ck, N. Oncel, J. Huskens, H. J. W. Zandvliet, and B. Poelsema, Inelastic Electron Tunneling Spectroscopy on Decanethiol at Elevated Temperatures, Nano Lett. 4(12), 2393-2395 (2004).
    [6] J. Jiang, M. Kula, W. Lu, and Y. Luo, First-Principles Simulations of Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Devices, Nano Lett. 5(8), 1551-1555 (2005).
    [7] J. Jiang, M. Kula, and Y. Luo, A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices, J. Chem. Phys. 124(3), 034708 (2006).
    [8] Y.-C. Chen, M. Zwolak, and M. Di Ventra, Inelastic Effects on the Transport Properties of Alkanethiols, Nano Lett. 5(4), 621-624 (2005).
    [9] G. C. Solomon, A. Gagliardi, A.Pecchia, T. Frauenheim, A. D. Carlo, J. R. Reimers, and N. S. Hush, Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold, J. Chem. Phys. 124(9), 094704 (2006).
    [10] L. Yan, Inelastic Electron Tunneling Spectroscopy and Vibrational Coupling, J. Phys. Chem. A 110 (49), 13249-13252 (2006).
    [11] L. H. Yu, C. D. Zangmeister, and J. G. Kushmerick, Structural Contributions to Charge Transport across Ni-Octanedithiol Multilayer Junctions, Nano Lett. 6(11), 2515-2519 (2006).
    [12] L. H. Yu, C. D. Zangmeister, and J. G. Kushmerick, Origin of Discrepancies in Inelastic Electron Tunneling Spectra of Molecular Junctions, Phys. Rev. Lett. 98(20), 206803 (2007).
    [13] A. Troisi and M. A. Ratner, Inelastic insights for molecular tunneling pathways: Bypassing the terminal groups, Phys. Chem. Chem. Phys. 9(19), 2421-2427 (2007).
    [14] J. M. Beebe, H. J. Moore, T. R. Lee, and J. G. Kushmerick, Vibronic Coupling in Semifluorinated Alkanethiol Junctions: Implications for Selection Rules in Inelastic Electron Tunneling Spectroscopy, Nano Lett.7(5), 1364-1368 (2007).
    [15] J. G. Kushmerick, J. Lazorcik, C. H. Patterson, R. Shashidhar, D. S. Seferos, and G. C. Bazan, Vibronic Contributions to Charge Transport Across Molecular Junctions, Nano Lett. 4(4), 639-642 (2004).
    [16] L. Cai, M. A. Cabassi, H. Yoon, O. M. Cabarcos, C. L. McGuiness, A. K. Flatt, D. L. Allara, J. M. Tour, and T. S. Mayer, Reversible Bistable Switching in Nanoscale Thiol-Substituted Oligoaniline Molecular Junctions, Nano Lett. 5(12), 2365-2372 (2005).
    [17] A. Troisi and M. A. Ratner, Modeling the inelastic electron tunneling spectra of molecular wire junctions, Phys. Rev. B 72(3), 033408 (2005).
    [18] M. Kula, J. Jiang, and Y. Luo, Probing Molecule-Metal Bonding in Molecular Junctions by Inelastic Electron Tunneling Spectroscopy, Nano Lett. 6(8), 1693-1698 (2006).
    [19] M. Paulsson, T. Frederiksen, and M. Brandbyge, Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments, Nano Lett. 6(2), 258-262 (2006).
    [20] D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H. Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, James M. Tour, and R. Shashidhar, Effects of hydration on molecular junction transport, Nature Mater. 5(11), 901-908 (2006).
    [21] A. Troisi and M. A. Ratner, Molecular Transport Junctions: Propensity Rules for Inelastic Electron Tunneling Spectra, Nano Lett. 6(8), 1784-1788 (2006).
    [22] A. Troisi and M. A. Ratner, Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions, J. Chem. Phys. 125(21), 214709 (2006).
    [23] J. R. Reimers, G. C. Solomon, A. Gagliardi, A. Bili, N. S. Hush, T. Frauenheim, A. Di Carlo, and A. Pecchia, The Green's Function Density Functional Tight-Binding (gDFTB) Method for Molecular Electronic Conduction, J. Phys. Chem. A 111(26), 5692-5702 (2007).
    [24] Y.-C. Chen, M. Zwolak, and M. Di Ventra, Inelastic Current-Voltage Characteristics of Atomic and Molecular Junctions, Nano Lett. 4(9), 1709-1712 (2004).
    [25] Y. Asai, Theory of Inelastic Electric Current through Single Molecules, Phys. Rev. Lett. 93(24), 246102 (2004).
    [26] N. Sergueev, D. Roubtsov, and H. Guo, Ab Initio Analysis of Electron-Phonon Coupling in Molecular Devices, Phys. Rev. Lett. 95(14), 146803 (2005).
    [27] M.-L. Bocquet, H. Lesnard, and N. Lorente, Inelastic Spectroscopy Identification of STM-Induced Benzene Dehydrogenation, Phys. Rev. Lett. 96(9), 096101 (2006).
    [28] H. Lesnard, M.-L. Bocquet, and N. Lorente, Dehydrogenation of Aromatic Molecules under a Scanning Tunneling Microscope: Pathways and Inelastic Spectroscopy Simulations, J. Am. Chem. Soc. 129(14), 4298-4305 (2007).
    [29] A. Honciuc, R. M. Metzger, A. Gong, and C. W. Spangler, Elastic and Inelastic Electron Tunneling Spectroscopy of a New Rectifying Monolayer, J. Am. Chem. Soc. 129(26), 8310-8319 (2007).
    [30] N. Sergueev, A. A. Demkov, and H. Guo, Inelastic resonant tunneling in C60 molecular junctions, Phys. Rev. B 75(23), 233418 (2007).
    [31] T. B?hler, A. Edtbauer, and E. Scheer, Conductance of individual C60 molecules measured with controllable gold electrodes, Phys. Rev. B 76(12), 125432 (2007).
    [32] Y. F. Miura, M. Takenaga, T. Koini, M. Graupe, N. Garg, R. L. Graham, Jr., and T. R. Lee, Wettabilities of Self-Assembled Monolayers Generated from CF3-Terminated Alkanethiols on Gold, Langmuir 14(20), 5821-5825 (1998).
    [33] R. D. Weinstein, J. Moriarty, E. Cushnie, R. Colorado, Jr., T. R. Lee, M. Patel, W. R. Alesi, and G. K. Jennings, Structure, Wettability, and Electrochemical Barrier Properties of Self-Assembled Monolayers Prepared from Partially Fluorinated Hexadecanethiols, J. Phys. Chem. B 107(42), 11626-11632 (2003).
    [34] R. Colorado, Jr. and T. R. Lee, Wettabilities of Self-Assembled Monolayers on Gold Generated from Progressively Fluorinated Alkanethiols, Langmuir 19(8), 3288-3296 (2003).
    [35] M. Kula and Y. Luo, Effects of intermolecular interaction on inelastic electron tunneling spectra, J. Chem. Phys. 128(6), 064705 (2008).
    [1] D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H. Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, James M. Tour, and R. Shashidhar, Effects of hydration on molecular junction transport, Nature Mater. 5(11), 901-908 (2006).
    [2] M. Galperin, M. A. Ratner, A. Nitzan, and A. Troisi, Nuclear Coupling and Polarization in Molecular Transport Junctions: Beyond Tunneling to Function, Science 319(5866), 1056-1060 (2008).
    [3] P. Reddy, S.-Y. Jang, R. A. Segalman, and A. Majumdar, Thermoelectricity in Molecular Junctions, Science 315(5818), 1568-1571 (2007).
    [4] A. Nitzan, CHEMISTRY: Molecules Take the Heat, Science 317(5839), 759-760 (2007).
    [5] Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast Flash Thermal Conductance of Molecular Chains, Science 317(5839), 787-790 (2007).
    [6] A. Pecchia, G. Romano, and A. Di Carlo, Theory of heat dissipation in molecular electronics, Phys. Rev. B 75(3), 035401 (2007).
    [7] M. Galperin, A. Nitzan, and M. A. Ratner, Heat conduction in molecular transport junctions, Phys. Rev. B 75(15), 155312 (2007).
    [8] N. Mingo and D. A. Broido, Length Dependence of Carbon Nanotube Thermal Conductivity and the "Problem of Long Waves", Nano Lett. 5(7), 1221-1225 (2005).
    [9] W. Wang and C. A. Richter, Spin-polarized inelastic electron tunneling spectroscopy of a molecular magnetic tunnel junction, Appl. Phys. Lett. 89(15), 153105 (2006).
    [10] S. Handa, E. Miyazaki, K. Takimiya, and Y. Kunugi, Solution-Processible n-Channel Organic Field-Effect Transistors Based on Dicyanomethylene-Substituted Terthienoquinoid Derivative, J. Am. Chem. Soc. 129(38), 11684-11685 (2007).
    [11] A. L. Briseno, S. C. B. Mannsfeld, C. Reese, J. M. Hancock, Y. Xiong, S. A. Jenekhe, Z. Bao, and Y. Xia, Perylenediimide Nanowires and Their Use in Fabricating Field-Effect Transistors and Complementary Inverters, Nano Lett. 7(9), 2847-2853 (2007).
    [12] C. Huang, H. E. Katz, and J. E. West, Solution-Processed Organic Field-Effect Transistors and Unipolar Inverters Using Self-Assembled Interface Dipoles on Gate Dielectrics, Langmuir 23(26), 13223-13231 (2007).
    [13] M. C. Lin, C. J. Chu, L. C. Tsai, H. Y. Lin, C. S. Wu, Y. P. Wu, Y. N. Wu, D. B. Shieh, Y. W. Su, and C. D. Chen, Control and Detection of Organosilane Polarization on Nanowire Field-Effect Transistors, Nano Lett. 7(12), 3656-3661 (2007).
    [14] A. Gruneis, M. J. Esplandiu, D. Garcia-Sanchez, and A. Bachtold, Detecting Individual Electrons Using a Carbon Nanotube Field-Effect Transistor, Nano Lett. 7(12), 3766-3769 (2007).
    [15] E. Ahmed, A. L. Briseno, Y. Xia, and S. A. Jenekhe, High Mobility Single-Crystal Field-Effect Transistors from Bisindoloquinoline Semiconductors, J. Am. Chem. Soc. 130(4), 1118-1119 (2008).
    [16] H. Li, Q. Zhang, and N. Marzari, Unique Carbon-Nanotube Field-Effect Transistors with Asymmetric Source and Drain Contacts, Nano Lett. 8(1), 64-68 (2008).
    [17] F. Fujimori, K. Shigeto, T. Hamano, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Current transport in short channel top-contact pentacene field-effect transistors investigated with the selective molecular doping technique, Appl. Phys. Lett. 90(19), 193507 (2007).
    [18] T. M. Perrine and B. D. Dunietz, Single-molecule field-effect transistors: A computational study of the effects of contact geometry and gating-field orientation on conductance-switching properties, Phys. Rev. B 75(19), 195319 (2007).
    [19] C. Klinke, J. B. Hannon, A. Afzali, and P. Avouris, Field-Effect Transistors Assembled from Functionalized Carbon Nanotubes, Nano Lett. 6(5), 906-910 (2006).