人工湿地生物多样性—高效脱氮基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工湿地是一种新型的废水处理生态技术,已经在世界范围广泛推广。人工湿地处理的不同来源的污水具有极大的NO_3~-/NH_4~+比例差异性。植物是人工湿地重要角色,但不同种类的植物对NO_3~-和NH_4~+具有不同的偏好和耐受性,所以选择合适植物种类应用于人工湿地污水处理中非常重要。本文通过实验研究了6种人工湿地常见植物对不同氮形态的响应,并整合文献数据分析了不同分类群植物对NO_3~-和NH_4~+的偏好特点。此外,本文还比较分析了水培和沙培条件下植物生长的不同表现,以说明人工湿地基质微生物的作用。研究结果表明:
     1.在NO_3~-/NH_4~+混合比例75/25和50/50下,黑麦草、美人蕉和菩提子地上、地下及整株生物量均大于纯NO_3~-和纯NH_4~+处理,高NH_4~+处理对生长抑制更强。菖蒲整株、地上和地下生物量也在NO_3~-/NH_4~+混合比例50/50下最大,但在纯NO_3~-下最低,且根在纯NH_4~+下无抑制,表现出对NH_4~+的忍耐性。黄菖蒲和吉祥草在纯NO_3~-下生长最佳,生物量随NH_4~+比例的增加而降低,可见黄菖蒲和吉祥草属偏好NO_3~-但不耐NH_4~+。植物组织氮积累量与生物量之间显著相关,但与氮浓度相关性弱,因而可以根据生物量指标来选择人工湿地植物。
     2.整合文献数据发现,国内外研究过的绝大多数物种在NO_3~-下生物量要大于NH_4~+下的生物量,少数物种在NH_4~+下的生长好于NO_3~-条件下,纯NO_3~-和纯NH_4~+下生物量之比大于1的物种约占80%。目前发现的NO_3~-偏好的植物出现在茄科、葫芦科、菊科、豆科、藜科、十字花科、杨柳科、蔷薇科、大戟科、荨麻科、天南星科、鸢尾科、美人蕉科、唇形科和禾本科的一些种类中,NH_4~+偏好的植物出现在百合科、杜鹃花科、松科、壳斗科、莎草科、山龙眼科、红豆杉科、桃金娘科、山茶科、凤仙花科和禾本科的一些种类中。有些科既有NO_3~-偏好,也有NH_4~+偏好,如禾本科,NO_3~-偏好种类有黑麦草、菩提子、小麦和玉米,NH_4~+偏好种类有水稻、白茅。同属植物对NO_3~-/NH_4~+比例的响应也存在差异,石荠苧属6种植物在纯NH_4~+下只有疏花荠苧能存活到实验结束,但其各部分生物量都最低,石荠苧属植物总体表现出偏NO_3~-可见分类群与无机氮化学形态偏好没有紧密相关性,这种偏好是生态适应功能群的具体表现。
     3.在氮移除能力方面,黑麦草、美人蕉、菖蒲和菩提子的植物组织氮积累量在混合NO_3~-/NH_4~+下最大,极端氮形态处理下的氮积累量明显减少。在纯NO_3~-处理下,黄菖蒲地上地下氮积累量最高,NH_4~+比例越多,黄菖蒲组织氮积累量越低。纯NH_4~+处理下的吉祥草叶、根氮积累量明显低于其余4个含NO_3~-的氮形态处理,且其余4个处理未表现出显著差异。
     5在微生物活动存在的沙培条件下,美人蕉和菩提子在纯NH_4~+条件下的叶、茎和根生物量均低于NO_3~-/NH_4~+混合比例50/50。在生物量分配方面,沙培条件下的美人蕉和菩提子的R/S均显著大于水培条件。与生物量类似,两种栽培条件下的美人蕉和菩提子在NO_3~-/NH_4~+混合比例50/50下的整株绝对生长速率均大于纯NH_4~+处理。然而,在沙培条件下,NO_3~-/NH_4~+比例50/50和0/100下整株绝对生长速率的差距要小于水培条件,沙培一定程度上缓解了NH_4~+对美人蕉和菩提子的抑制作用,说明沙基质中的微生物起了作用。
     综合以上方面的研究,本研究筛选出一些高效脱氮植物。可根据人工湿地废水来源优化人工湿地的植物配置,并可配置成多样化的植物群落来充分利用各种氮形态资源,充分利用不同植物的功能优势,改善人工湿地的净化效果。此外,本文还结合文献数据总结发现植物对氮形态的偏好和忍耐性状与植物分类群无必然联系,而是主要与生态功能群有关,即主要取决于植物物种在生态系统中的功能作用,从而拓宽了生物多样性-生态系统功能关系的理论基础。
Constructed wetlands (CWs) are a natural alternative to technical methods of wastewatertreatment, and have been widely applied for wastewater purification. Wastewater from differentsources has different NO_3~-/NH_4~+ ratios. Plant species may have different preferences between NO_3~-and NH_4~+, so species should be carefully selected according to the inorganic N composition ofwastewater. Considering the importance of plants in CWs, this paper studied various respondings ofsix commonly used plants in CWs to different NO_3~-/NH_4~+ ratios and analyzed how the plants ofdifferent families responded to the N forms. Besides, considering the importance of microorganismsin the substrate in CWs, we also compared plant growth performances under sand and solutionculture supplied with different NO_3~-/NH_4~+ ratios.
     The shoot, root and total dry matter (DM) of Lolium perenne, Canna indica and Coixlacryma-jobi were significantly higher under NO_3~-/NH_4~+ ratios 75/25 and 50/50 than those under100%NO_3~- and 100%NH_4~+ treatments. Morever, compared with 100%NO_3~-, shoot and root DM ofthose plants were much lower under 100%NH_4~+ treatment. For Acorus calamus, shoot and root DMshowed the same trend, with NO_3~-/NH_4~+ ratios 50/50 the highest and the 100%NO_3~- lowest. However,this study didn't find growth inhibitions for Acorus calamus under 100%NH_4~+ treatment. For Irispseudacorus and Reineckia cornea, both shoot and root DM linearly declined with the increasingproportion of NH_4~+. There are positive correlations between shoot DM and shoot N accumulationand between root DM and root N accumulation for all species. But N concentration was notcorrelated with N accumulation in shoot or root for most species except Acorus calamus. So plantDM should be a main factor contributing to their N removal abilities in CWs.
     After comprehensive analysis of the related N form studies, we found that most plants got moreDM under NO_3~- condition than NH_4~+ condition. Solanaceae, Cucurbitaceae, Asteraceae, Fabaceae,Chenopodiaceae, Brassicaceae, Salicaceae, Rosaceae, Euphorbiaceae, Urticaceae, Araceae, Iridaceae,Cannaceae, Labiatae and some Gramineae prefer NO_3~-, while Alliaceae, Ericaceae, Pinaceae,Fagaceae, Cyperaceae, Proteaceae, Taxaceae, Myrtaceae, Theaceae, Balsaminaceae and someGramineae prefer NH_4~+. For Gramineae, some plants exhibit preference for NO_3~-, e.g. Loliumperenne, Coix lacryma-jobi and Triticum aestivum and some plants prefer NH_4~+, e.g. Oryza salivaand Glyceria maxima. Six plants of Mosla showed various respondings to different NO_3~-/NH_4~+ ratios.Only Mosla pauciflora survived in sole NH_4~+ treatment, other five plants died before harvest time,showing preference for NO_3~-. So the relationship between plant taxa and N form is not obvious, andecological adaptive functional groups play greater roles.
     Concerning the N removal abilities of different plant species, Lolium perenne got the most Naccumulation in both shoot and root under NO_3~-/NH_4~+ ratios of 50/50 and 75/25, while NO_3~-/NH_4~+ratio of 0/100 and 100/0 the lowest, which is similar with Canna indica, Acorus calamus and Coixlacryma-jobi. N accumulation in both shoot and root of Iris pseudacorus gradually declined with theincreasing proportion of NH_4~+. Under the NO_3~-/NH_4~+ ratio of 0/100, N accumulation in leaf and rootof Reineckia cornea is significantly lower than the other four treatments containing NO_3~-.
     Considering the importance of microorganisms in the substrate in CWs, we also compared plantgrowth performances under sand and solution culture supplied with different NO_3~-/NH_4~+ ratios.Compared with sole NH_4~+ treatment, leaf, stem, root DM and absolute growth rate (AGR) of Cannaindica and Coix lacryma-jobi were significantly higher under the mixed NO_3~-/NH_4~+ ratio of 50/50.Root/shoot (R/S) was higher for both species grown in sand than that in nutrient solution.Furthermore, we found that the reduced gap of AGR between NO_3~-/NH_4~+ ratios 0/100 and 50/50 was smaller in sand than that in nutrient solution. Compared with solution culture, plants grown in sandshowed slighter growth depressions, suggesting that microorganisms in sand played important rolesin the N transformation.
     The whole study analyzed both growth status and N removal abilities of several commonly usedplants in CWs supplied with different ratios, aiming to select and allocate plant species andbiodiversity groups that are highly efficient in removing N. We also analyzed how plants of differentfamilies responded to different N forms and have reached a primary classification, establishingtheoretical basis for species structure optimization in CWs and thus give implications for improvingN removal efficiency. Morever, we found that plants' preference and tolerance for NO_3~- or NH_4~+ wasnot depend on plant taxa, but mainly related to the ecological functional groups. The study laid asolid theoretical foundation for the research about biodiversity-ecosystem function relationship.
引文
1.鲍士旦.土壤农化分析(第三版).南京农业大学:中国农业出版社,2000.
    2.Campbell C.S.,Ogden M.H.著,1999.吴晓芙 译,2004.湿地与景观.北京:中国林业出版社.
    3.曹翠玲,李生秀,2004.氮素形态对作物生理特性及生长的影响.华中农业大学学报,23(5):581-586.
    4.Chapin Ⅲ F.S.,Matson P.A.,Mooney H.A.著,2002.李博等译,2005.陆地生态系统生态学原理.北京:高等教育出版社.
    5.陈长太,阮晓红,王雪,2003.人工湿地植物的选择原则.中国给水排水,19(3):65.
    6.常杰,葛滢,陆大根.1995.濒危植物杭州石荠苧种群密度制约与致濒机制研究.生物多样性研究进展,201-207.
    7.成水平,况琦军,夏宜峥,1997.香蒲、灯心草人工湿地的研究:1、冶化污水的效果.湖泊科学,9(4):351-358.
    8.陈巍,罗金葵,姜慧梅等,2004.不同形态氮素比例对不同小白菜品种生物量和硝酸盐含量的影响.土壤学报,41:420-424.
    9.曹向东,王宝贞,2000.强化塘-人工湿地复合生态塘系统中氮和磷的去除规律.环境科学研究,13(2):15-19.
    10.崔玉川 主编,1994.废水处理工艺设计计算.北京:水利水电出版社.
    11.方云亿,1986.浙江植物志.杭州:浙江科学技术出版社.5:p289-290.
    12.高波,2006.亚热带人工湿地微生物功能群及其与植物关系的研究.(硕士学位论文,导师:常杰、葛滢).
    13.关保华,葛滢,常杰等,2002.富营养化水体中植物的元素吸收与净化能力的关系.浙江大学学报(理学版),29(2):190-197.
    14.黄承才,葛滢,1998.富营养化水中14种野生植物蒸腾和营养吸收的相关性.浙江林业科技,18(6):3-8.
    15.葛滢,常杰,刘珂,秦国强,1999.杭州石荠苧(Mosla hangchowensis)蒸腾的生理生态学研究.植物生态学报,23:320-326.
    16.葛滢,常杰,王晓月,2000.两种程度富营养化水中不同植物生理生态特性与净化能力的关系.生态学报,20(6):1051-1055.
    17.葛滢,王晓玥,常杰,1999.不同程度富营养化水中植物净化能力比较研究.环境科学学报,19(6):690-692.
    18.郭海林,刘建秀,杭悦宇,2003.麦冬研究进展.中国野生植物资源,22(3):1-4.
    19.黄时达,杨有仪,冷冰等,1995.人工湿地植物处理污水的试验研究.四川环境,14(3):5-7.
    20.胡筱敏,1996.水网地区绿化好品种-芦竹.江苏绿化,1:31-31.
    21.蒋跃平,葛滢,岳春雷等,2004.人工湿地植物对观赏水中氮磷去除的贡献.生态学报,24(8):1718-1723.
    22.靖元孝,杨丹菁等,2002.风车草对生活污水的净化效果及其在人工湿地的应用.应用与环境生物学报,8(6):614-617.
    23.李德军,莫江明,方运霆,李志安,2005.模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响.植物生态学报,29(4):543-549.
    24.李芳柏,吴启堂,1997.无土栽培美人蕉等植物处理生活废水的研究.应用生态学报,8(1):88-92.
    25.梁威,吴振斌,周巧红等,2002.构建人工湿地基质微生物与净化效果及相关分析.中 国环境科学,22(3):283-285.
    26.廖新俤等,2002.香根草和风车草人工湿地对猪场废水氮磷处理效果的研究.应用生态学报.13(6):719-722.
    27.刘红,刘学燕,欧阳威等,2004.人工湿地植物系统优化管理研究.农业环境科学学报,23(5):1003-1008.
    28.刘剑彤,丘昌强,陈珠金等1998.复合生态系统工程中高效去除磷、氮植被植物的筛选研究.水生生物学报,22(1):1-8.
    29.刘振乾,吕宪国,2001.三江平原沼泽湿地污水处理的实地模拟研究.环境科学学报,21(2):157-161.
    30.牛晓音,2001.人工湿地生态工程净化原理及应用研究(硕士学位论文,导师:常杰、葛滢).
    31.潘瑞炽,2001.植物生理学.北京:高等教育出版社,66-79.
    32.万本太,1999.中国水资源的问题和对策.生态与自然保护,7:30-32.
    33.吴建强,阮晓红,王雪,2005.人工湿地中水生植物的作用和选择.水资源保护.21(1):1-6.
    34.王圣瑞,年跃刚,侯文华,2004.人工湿地植物的选择.湖泊科学,16(1):91-96.
    35.吴晓磊,1994.人工湿地废水处理机理.环境科学,16(3):83-86.
    36.吴振斌,成水平,贺锋等.复合垂直流人工湿地.北京:科学出版社,2008.
    37.吴振斌,梁威,邱东茹等,2002.复合垂直流构建湿地基质酶活性与污水净化效果.生态学报,22(7):1012-1017.
    38.吴振斌,任明速,付贵萍等.2001.垂直流人工湿地水学特点对污水净化效果的影响.环境科学,22(5):45-49.
    39.许光辉,郑洪元,1986.土壤微生物分析方法手册.北京:农业出版社.
    40.夏汉平,2000.香根草和水花生对垃圾污水中N、P、Cl的吸收效果.植物生态学报,24(5):623-616.
    41.夏汉平,2002.人工湿地处理污水的机理与效率.生态学杂志,21(4):51-59.
    42.夏宜铮,1993.综合生物氧化池污水净化的生物学基础研究.国家环境保护局编.水污染防治及城市污水资源化技术.北京:科学出版社.
    43.杨丽琴,封克,夏小燕等,2007.不同pH和不同氮素形态对小麦根中钙分布的影响.植物营养与肥料学报,13(1):77-80.
    44.杨昌凤,黄淦全,宋文初等,1991.模拟人工湿地处理污水的试验研究.应用生态学报,2(4):350-354.
    45.岳春雷,常杰,葛滢等,2003.利用复合垂直流人工湿地处理生活污水.中国给水排水,19(7):84-85.
    46.岳春雷,王华胜,高瞻等,2002.人工湿地循环净化杭州植物园玉泉观鱼池水效果分析.浙江林业科技,22(4):1-4.
    47.尹炜,李培军,裘巧俊等,2006.植物吸收在人工湿地去除氮、磷中的贡献.生态学杂志,25(2):218-221.
    48.岳亚鹏,李勇,薛琳等,2008.不同供氮形态对旱作水稻生长和养分吸收的影响.中国水稻科学,22(4):405-410.
    49.杨志焕,葛滢,沈琪等,2005.亚热带人工湿地中配置植物与迁入植物多样性的季节变化.生物多样性,13(6):527-534.
    50.杨志焕,2006.亚热带人工湿地植物多样性与人工湿地价值评估.(硕士学位论文,导师:常杰、葛滢).
    51.张崇邦,金则新,李均敏,2001.浙江天台山不同林型土壤环境的微生物区系和细菌生 理群的多样性.生物多样性,9(4):382-388.
    52.张光斗,1999.面临21世纪的中国水资源问题.地球科学进展,14(1):16-17.
    53.郑华,欧阳志云,易自力 等,2004.红壤侵蚀区恢复森林群落物种多样性对土壤生物学特性的影响.水土保持学报,18(4):137-141.
    54.张鸿,吴振斌,1999.两种人工湿地中氮磷净化率与细菌分布关系的初步研究.华中师范大学学报:自然科学版,33(4):575-578.
    55.张甲耀,等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究.环境科学学报,22(5):45-49.
    56.周克瑜,施书莲,1992.我国几种主要土壤中氮素形态分布及其氨基酸组成.土壤,24(6):285-288.
    57.张少艾,徐炳声,1988.长江三角洲石荠苧属群体水平变异式样的研究.云南植物研究,10:409-412.
    58.周世良,1999.石荠苧属的遗传分化与种间关系分析.植物分类学报,37:10-19.
    59.朱彤,许振成,故康萍,1991.人工湿地污水处理系统应用研究.环境科学研究,4(5):17-22.
    60.Abbes C., Parent L.E., Karam A., et al., 1995. Onion response to ammoniated peat and ammonium sulfate in relation to ammonium toxicity. Canadian Journal of Soil Science, 75: 261-272.
    61.Allen S., Smith J.A.C., 1986. Ammonium nutrition in Ricinus communis: Its effect on plant growth and the chemical composition of the whole plant, xylem and phloem saps. Journal of Experimental Botany, 184: 1599-1610.
    62.Ali A., Tucker T.C., Thompson T.L., et al., 2001. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. Journal of Agronomy and Crop Science, 186: 223-228.
    63.Armstrong W., Armstrong J., Beckett P.M., 1990. Measurement and modeling of oxygen release from roots of Phragmites australis. In: Cooper P.F., Findlater B.C., editors. The use of constructed wetlands in water pollution control. Oxford: Pergamon: pp. 41-51.
    64.Ayaz S.C, Akca L., 2001. Treatment of wastewater by natural systems. Environment International, 26: 189-195.
    65.Bachand P.A.M., Home A.J., 2000. Denitrification in constructed free-water surface wetlands: I. Very high nitrate removal rates in a macrocosm study. Ecological Engineering, 14: 9-15.
    66.Baker A.J., 1999. Metal hyperaccumulator plants: a review of the biological resource for possible exploitation in the phytoremediation of metal-polluted soils. In: Terry N., Baneulos G.S., editors. Phytoremediation of contaminated soil and water. Boca Raton (FL): CRC Press LLC, p. 85-107.
    67.Bauer G.A., Berntson GM., 1999. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: The roles of root physiology and architecture. Tree Physiology, 21: 137-14.
    68.Blew R.D., Parkinson D., 1993. Nitrification and denitrification in a white spruce forest in southwest Alberta, Canada. Canadian Journal of Forest Research, 23:1715-1719.
    69.Bijlsma R.J., Lambers H., Kooijman S.A.L.M., 2000. A dynamic wholeplant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium-nitrate interactions. Plant and Soil, 220:49-69.
    70.Bowler J.M., Press M.C., 1996. Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass. New Phytologist, 132: 391-401.
    71.Boxman A.W., Krabbendam H., Bellemakers M.J.S., et al., 1991. Effects of ammonium and aluminum on the development and nutrition of Pinus nigra in hydroculture. Environmental Pollution, 73:119-136.
    72.Britto, D.T., Kronzucker, H.J., 2002. NH_4~+ toxicity in higher plants: a critical review. Plant Physiology, 159: 567-584.
    73.Brix H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35(5): 11-17.
    74.Brix H., 1994. Use of constructed wetlands in water pollution control: historical development, present status and future perspective. Water Science and Technology, 30(8): 209-223.
    75.Brooks A.S., Rozenwald M.N., Geohring L.D., et al., 2000. Phosphorus removal by wollastonite: A constructed wetland substrate. Ecological Engineering, 15(1-2): 121-132.
    76.Bruck, H., Guo, S.W., 2006. Influence of N form on growth and photosynthesis of Phaseolus vulgaris L. Journal of Plant Nutrition and Soil Science, 169: 849-856.
    77.Caicedo, J.R., Van der steen, N.P., Arce, O., et al., 2000. Effect of ammonia nitrogen concentration and pH on growth rates of Duckweed (Spirodela Polyrrhiza). Water Research, 34: 3829-3835.
    78.Cao, H.Q., Ge, Y., Liu, D., et al., 2010. NO_3~-/NH_4~+ ratios affect ryegrass (Lolium perenne L.) growth and N accumulation in a hydroponic system. Journal of Plant Nutrition, in press.
    79.Cao W., Tibbits T.W., 1998. Response of potatoes to nitrogen concentrations differ with nitrogen forms. Journal of Plant Nutrition, 21: 615-623
    80.Chaillou S., Morot-Gaudry J.F., Salsac L., et al., 1986. Compared effects of NO_3~- or NH_4~+ on growth and metabolism of French bean. Physiol Veg, 24: 679-687
    81.Chang, J., Yue, C.L., Ge, Y., et al., 2004. Treatment of polluted creek water by multifunctional constructed wetland in China's subtropical region. Fresenius Environ. Bull, 13: 545-549.
    82.Chong S., Garelick H., Revite D.M., 1999. The microbiology associated the glycol removal in constructed wetlands. Water Science and Technology, 40(3): 99-107.
    83.Claasen M.E.T., Wilcox G.E., 1974. Effect of nitrogen form on growth and composition of tomato and pea tissue. Journal of the American Society for Horticultural Science, 99: 171-174.
    84.Clough E.C.M., Pearson J., Stewart G.R.S., 1989. Nitrate utilization and nitrogen status in English woodland communities. Ann Sci For 46 (supp): 669-672.
    85.Claussen W., Lenz F., 1999. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant and Soil, 208: 95-102
    86.Claussen W., Lenz F., 1999. Effect of ammonium and nitrate on net photosynthesis, flower formation, growth and yield of eggplants (Solanum melongena L.). Plant and Soil, 171: 267-274.
    87.Conley L.M., Dick R.I., Lion L.W., 1991. An assessment of the root-zone method of wastewater treatment. Res, JWPCE, 63: 239-247.
    88.Cooke I.J., 1962. Toxic effects of urea on plants. Nature, 194: 1262-1263
    89.Cooper P.F., Findlater B.C., 1990. Constructed wetlands in Water Pollution Control. Pergamon Press, oxford.
    90.Corbitt R.A., Bowen P.T., 1994. Constructed wetlands for wastewater treatment. In: Kent, D.M.(Eds.), Applied Wetlands Science and Technology. Lewis Publishers, BocaRaton, FL, USA,pp. 221-241.
    91.Cox, W. J., Reisenauer, H.M., 1973. Growth and ion uptake by wheat supplied N as NO_3~-, or NH-4~+, or both. Plant and Soil, 38: 363-380.
    92.Cramer, M.D., Lewis, O.A.M., 1993. The influence of nitrate and ammonium nutrition on the growth of wheat (Triticum aestivum) and maize (Zea mays) plants. Annals of Botany, 72: 359-365.
    93.Crawford N.M., Glass A.D.M., 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3: 389-395.
    94.David R.T., Muneer A., Ji J.S., et al., 2003. Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecological Engineering, 21:153-163.
    95.de Graaf M.C.C., Bobbink R., Verbeek P.J.M., et al, 1998. Differential effects of ammonium and nitrate on three heathland species. Plant Ecology, 135: 185-196.
    96.Dijk E., Eck N., 1995. Ammonium toxicity and nitrate response of axenically grown Dactylorhiza incarnata seedlings. New Phytologist, 131: 361-367.
    97.Donnelly P.K., Hedge R.S., Fletcher J.S., 1994. Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere, 28: 981-988.
    98.Dou H., Alva A.K., Bondada B.R., 1999. Growth and chloroplast ultrastructure of two citrus rootstock seedlings in response to ammonium and nitrate nutrition. Journal of Plant Nutrition, 22:1731-1744.
    99.Dunbabin, Pokorny J.S., 1998. Rhizosphere oxygenation by Typha domingensis Pers in miniature artificial wetland filters used for metal removal from wastewater. Aquatic Botany, 29: 303-317.
    100.Eviner V.T., Chapin F.S. Ⅲ, 1997. Plant-microbial interactions. Nature, 385: 26-27.
    101.Elmlinger M.W., Mohr H., 1992. Glutamine synthetase in Scots pine seedlings and its control by blue light and light absorbed by phytochrome. Planta, 188: 396-402.
    102.Fang C.W., Radosevich M., Fuhrmann J.J., 2001. Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOGY sanlyses. Soil Biology & Biochemistry, 33: 679-682.
    103.Falkengren-Grerup U., 1995. Interspecies differences in the preference of ammonium and nitrate in vascular plants. Oecologia, 102: 305-311.
    104.Fangmeier A., Hadwiger-Fangmeier A., van der Eerden L., et al., 1994. Effects of atmospheric ammonia on vegetation - a review. Environmental Pollution, 86:43-82.
    105.Feng J., Barker A.V., 1992 a. Ethylene evolution and ammonium accumulation by nutrient-stressed tomato plants. Journal of Plant Nutrition, 15: 137-153.
    106.Fennessy M.S., 1994. Macrophyte productivity and community development in created f reshwater wetlands under experimental hydrological conditions. Ecological Engineering, 1994. 3(3): 469 - 484.
    107.Frechilla, S., Lasa, B., Ibarretxe, L., Lamsfus, C, et al., 2001. Pea responses to saline stress is affected by the source of nitrogen nutrition. Plant Growth Regulation, 35: 171-179.
    108.Gardner D.K., Lane M., Spitzer A., et al., 1994. Enhanced rates of cleavages and development for sheep zygotes cultured to the blastocyst stage in vitro in absence of serum and somatic cells: Amino acids, vitamins and culturing embryos in groups stimulate development. Biology of Reproduction, 50: 390-400.
    109.Garnett T.P., Smethurst P.J., 1999. Ammonium and nitrate uptake by Eucalyptus nitens: Effects of pH and temperature. Plant and Soil, 214: 133- 140.
    110. Ge Y., Chang J., 2001. Existence analysis of populations of Molsa hangchowensis, an endangered plant. Bot. Bull. Acad. Sinica, 42: 141-147.
    111. Ge, Y., Li, S.P., Niu, X.Y., Yue, C.L., et al., 2007. Sustainable growth and nutrient uptake of plants in a subtropical constructed wetland in southeast China. Fresenius Environment bulletin, 16: 1023-1029.
    112. Gerendas J., Zhu Z., Bendixen R., et al., 1997. Physiological and biochemical processes related to ammonium toxicity in higher plants. Z Pflanzenernaehr Bodenkd, 160: 239-251
    113. Gopal B., Goel U., 1993. Competition and allelopathy in aquatic plant communities. Botanical Review, 59: 155-210.
    114. Gigon A., Rorison I.H., 1972. The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. Journal of Ecology, 60: 93- 102
    115. Gottschall, N., Boutin, C., Crolla, A., et al., 2007. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecological Engineering, 29, 154-163.
    116. Gosz J.R., White C.S., 1986. Seasonal and annual variation in nitrogen mineralization and nitrification along an elevational gradient in New Mexico. Biogeochemistry, 2: 281-297.
    117. Grayston S.J., Vaughan D., Jones D., 1996. Rhizosphere carbon flow in trees, in comparison with annual plants: the important of root exudation an its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5: 29-56.
    118. Greenway M., 1997. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Science and Technology, 35(5): 135-142.
    119. Green M, 1998. Enhancing nitrification in vertical flow constructed wetlands utilizing a passive air. Water Research, 32(12): 3513-3520.
    120. Grosse W., Consolidated Report-Project in INCO-DC-Biotechnology-of the 4th Framework Programme of European Commission. Brussels, 1999.
    121. Guo, S., Brack, H., Sattelmacher, B., 2002. Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants. Plant and Soil, 239: 267-275.
    122. Hamlin, R.L., Barker, A.V., 2006. Influence of Ammonium and Nitrate Nutrition on Plant Growth and Zinc Accumulation by Indian Mustard. Journal of Plant Nutrition, 29: 1523-1541
    123. Hammer D.A., Bastian R.X., 1989. Wetlands ecosystems: Natural water purifiers. In: Hammer D.A. (ed). Constructed wetlands for wastewater treatment: municipal, industrial, and agricultural. Chelsea, MI: Lewis Publishers, 5-19.
    124. Harada T., Takaki H., Yamada Y., 1968. Effect of nitrogen sources on the chemical components in young plants. Soil Science and Plant Nutrition, 14:47-55.
    125. Hauxwell J., Cebrian J., Furlong C., et al., 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology, 82: 1007-1022.
    126. Haynes R.J., Goh K.M., 1978. Ammonium and nitrate nutrition of plants. Biological Reviews, 53:465-510.
    127. Helal H.M., Sauerbeck D., 1989. Carbon turnover in the rhizosphere. Z Pflanzenernahr Bodenkd, 152:211-216.
    128. Hoagland, D. R., Arnon, D.I., 1950. The water culture method for growing plants without soil. Calif. Agr. Exp. St. Circ., 347: 1-32.
    129. Hoffland E., Van den Boogaard R., Nelemans J., et al., 1992. Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytologist, 122: 675-680.
    130. Holldampf B., Barker A.V., 1993. Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soil. Communications in Soil Science and Plant Analysis, 24: 1945-1957.
    131. Hooper D.U., Dukes J.S., 2004. Overyielding among plant functional groups in a long-term experiment. Ecology Letters, 7: 95-105.
    132. Horswell J., Hodge A., Killham K., 1997. Influence of plant carbon on the mineralization of atrazine residues in soils. Chemosphere, 34:1739-1751.
    133. Hunt, R., 1978. Plant Growth Analysis. Edward Arnold, London.
    134. Ingersoll T.L., 1998. Nitrate removal in wetland microcosms. Water Research, 32(2): 677-684.
    135. Jackson R.B., Caldwell M.M., 1993. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology, 74: 612-614
    136. Jerry C., Keith H., Keith G., et al., 2001. Treatment of domestic wastewater by three plant and species in constructed wetlands. Water, Air, and Soil Pollution, 128: 283-29.
    137. Jespersen D.N., Sorrell B.K., Brix H., 1998. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany, 61:165-180.
    138. Ji X.M., Peng X.X., 2005. Oxalate Accumulation as Regulated by Nitrogen Forms and Its Relationship to Photosynthesis in Rice (Oryza sativa L.). Journal of Integrative Plant Biology, 47(7): 831-838.
    139. Kaitzis G., Mikrobiozide Verbindungen aus Scirpus lacustris L. (Ein Beitrag zur O(?) kochemie des Wurzelraumes). 1970. Dissertation Universita(?)t Go(?)ttingen.
    140. Konnerup, D., Brix H., 2010. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquatic Botany, 92: 142-148.
    141. Kadlec R.H., Knight R.L., 1996. Treatment wetlands. LewisPublishers, Boca Raton, FL.
    142. Kern J., Idler C., 1999. Treatment of domestic and agricultural wastewater by reed bed systems. Ecological Engineering, 12: 13-25.
    143. Kirkby E.A., 1968. Influence of ammonium and nitrate nutrition on the cation-anion balance and nitrogen and carbohydrate metabolism of white mustard plants grown in dilute nutrient solutions. Soil Science, 105: 133-141
    144. Kirkby E.A., Mengel K., 1967. Ionic balance in different tissues of tomato plant in relation to nitrate, urea or ammonium nitrogen. Plant Physiology, 42: 6-14
    145. Klingensmith K.M., van Cleve K., 1993. Patterns of nitrogen mineralization and nitrification in floodplain successional soils along the Tanana River, interior Alaska. Canadian Journal of Forest Research, 23: 964-969
    146. K(?)chy M., Wilson S.D., 2001. Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology, 89: 807-817
    147. Koottatep T., Polpraserl C., 1997. Role of plant uptake on nitrogen removal in constructed wetlands located in tropics. Water Science and Technology, 36(12): 1-8.
    148. Kosenko E., Felipo V., Minana M.D., et al., 1991. Ammonium ingestion prevents depletion of hepatic energy metabolites induced by acute ammonium intoxication. Archives of Biochemistry and Biophysics, 290:484-488.
    149. Kotsiras, A., Olympios, C.M., Passam, H. C., 2005. Effects of Nitrogen Form and Concentration on Yield and Quality of Cucumbers Grown on Rockwool During Spring and Winter in Southern Greece. Journal of Plant Nutrition, 28: 2027-2035.
    150. Krajina V.J., Madoc-Jones S., Mellor G., 1973. Ammonium and nitrate in the nitrogen economy of some conifers growing in Douglas-fir communities of the Pacific North-West of America. Soil Biology and Biochemistry, 5: 143-147.
    151. Lasa B., Frechilla, S., Lamsfus, C., et al., 2001. The sensitivity to ammonium nutrition is related to nitrogen accumulation. Scientia Horticulturae, 91: 143-152.
    152. Lenssen J.P.M., Menting F.B.J., van der Putten, W.H., et al., 1999. Effects of sediment type and water level on biomass production of wetland plant species. Aquatic Botany, 64: 151-165.
    153. Lewis O.A.M., Chadwick S., 1983. An ~(15)N investigation into N assimilation in hydroponically grown barley (Hordeum vulgare L. cv. Clipper) in response to mixed NO_3~- and NH_4~+ nutrition. New Phytologist, 95: 635-646.
    154. Li J., Zhou J.M., Duan Z.Q., 2007. Effects of elevated CO_2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios. Journal of Environmental Science,19: 1100-1107.
    155. Lin Y.F., Jing S.R., Lee D.Y., et al, 2002. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209(1-4): 169-184.
    156. Liu D., Ge Y., Chang J., et al., 2009. Constructed wetlands in China: recent developments and future challenges. Frontiers in Ecology and the Environment, 7(5): 261-268.
    157. Liu J.G., Diamond J., 2005. China's environment in a globalizing world. Nature, 435: 1179-1186.
    158. Lu W.X., Ge Y., Wu J.Z., et al., 2004. Study on the method for the determination of nitric nitrogen, ammoniacal nitrogen, and total nitrogen in plant. Spectrosc. Spect. Anal., 24: 204-206.
    159. Lodhi M.A.K., 1978. Inhibition of nitrifying bacteria, nitrification, and mineralization of spoil soils as related to their successsional stages. Bull Torrey Bot Club, 106: 284-289.
    160. Magalhaes J.S., Wilcox G.E., 1983 a. Tomato growth and mineral composition as influenced by nitrogen form and light intensity. Journal of Plant Nutrition, 6: 847-862.
    161. Magalhaes J.S., Wilcox G.E., 1983 b. Tomato growth and nutrient uptake patterns as influenced by nitrogen form and light intensity. Journal of Plant Nutrition, 6: 941-956.
    162. Magalhaes J.S., Wilcox G.E., 1984 a. Ammonium toxicity development in tomato plants relative to nitrogen form and light intensity. Journal of Plant Nutrition, 7: 1477-1496.
    163. Magalhaes J.S., Wilcox G.E., 1984 b. Growth, free amino acids, and mineral composition of tomato plants in relation to nitrogen form and growing media. Journal of the American Society for Horticultural Science, 109: 406-411.
    164. Magalhaes J.R., Huber D.M., 1989. Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture. Fertilizer Research, 21: 1-6.
    165. Magalhaes J.R., Machado A.T., Huber D.M., 1995. Similarities in response of maize genotypes to water logging and ammonium toxicity. Journal of Plant Nutrition, 18:2339-2346.
    166. Mantovi P., Marmiroli M., Maestri E., 2003. Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresource Technology, 88: 85-94.
    167. Marcaida G., Felipo V., Hermenegildo C., et al., 1992. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Letters, 296: 67-68.
    168. Marinus, L., Van, B., Ernest, K., et al., 1988. Influence of Nitrate and Ammonium Nutrition on the Uptake, Assimilation, and Distribution of Nutrients in Ricinus communis. Plant Physiology, 86:914-921.
    169. Marschner H., H(?)ussling M., George E., 1991. Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway roots (Picea abies L. Karst). Trees, 5: 14-21
    170. Martin C.D., Moshiri G.A., 1994. Nutrient reduction in an in series constructed wetland system treating landfill leachate. Water Science and Technology, 29(4): 267-272.
    171. Mays P.A., Edwards G.S., 2001. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecological Engineering, 16(4): 487-500.
    172. McJannet C.L., Keddy P.A., Pick F.R., 1995. Nitrogen and phosphorus tissue concentrations 41 wetland plants: a comparison across habitats and functional groups. Functional Ecology, 9:231-238.
    173. Miersch J., Krauss G.J., Schlee D., 1989. Allelochemische Wechselbeziehungen zwischen Pflanzen-eine kritische Wertung. Wiss Z Univ Halle, 38:59 -74.
    174. Mirabet M., Navarro A., Lopez A., et al., 1997. Ammonium toxicity in different cell lines. Biotechnology and Bioengineering, 56: 530-537.
    175. Monselise E.B.I., Kost D., 1993. Different ammonium-ion uptake, metabolism and detoxification efficiencies in two Lemnaceae: A nitrogen-15 nuclear magnetic resonance study. Planta, 189:167-173.
    176. Moormann H., Kuschk P., Stottmeister U., 2002. The effect of rhizodeposition from helophytes on bacterial degradation of phenolic compounds. Acta Biotechnology, 22: 107-112.
    177. Murphy A. T., Lewis O. A. M., 1987. Effect of N feeding sources on the supply of N from root to shoot and the site of N assimilation in maize (Zea mays L. cv. R201). New Phytologist, 107: 327-333. .
    178. Nairn R.W., Mitsch W.J., 2000. Phosphorus removal in created wetland ponds receiving river overflow. Ecological Engineering, 14: 107-126.
    179. Nesdoly R.G., van Rees K.C.J., 1998. Redistribution of extractable nutrients following disc trenching on Luvisols and Brunisols in Saskatchewan. Canadian Journal of Soil Science, 78: 367-376
    180. Tylova E., Lorenzen B., Brix H., et al., 2005. The effects of NH_4~+ and NO_3~- on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquatic Botany, 81:326-342.
    181. Tylova E., Steinbechova L., Votrubova O., et al., 2008. Different sensitivity of Phragmites australis and Glyceria maxima to high availability of ammonium-N. Aquatic Botany, 88: 93-98.
    182. Niu X.Y., Ge Y., Chang J., et al., 2004. The role of Lolium perenne in constructed wetland ecological engineering for eutrophicate water purification. Wetland Science, 2: 202-207.
    183. Okurut TO., Rijs G.B.J., Van Bruggen J.J.A., 1999. Design and performance of experimental constructed wetlands in Uganda, Planted with Cyperus Papyrus and Pheagnites mauritianus. Water Science and Technology, 40(3): 265-271.
    184. Olff H., Huisman J., van Tooren B.F., 1993. Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. Journal of Ecology, 81: 693-706.
    185. Pearson J., Stewart G.R., 1993. The deposition of atmospheric ammonia and its effects on plants. New Phytologist, 125: 283-305.
    186. Peckol P., Rivers J.S., 1995. Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (MacLachlan) to environmental disturbances associated with eutrophication. Journal of Experimental Marine Biology and Ecology, 23: 122-127.
    187. Peterson L.A., Stang E.J., Dana M.N., 1988. Blueberry response to ammonium nitrogen and nitrate nitrogen. Journal of the American Society for Horticultural Science, 113:9-12.
    188. Petit P.X., O'Connor D., Grunwald D., et al., 1990. Analysis of the membrane potential of rat-and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem, 194: 389-397.
    189. Phillip A.M.B., Home A.J., 2000. Denitrification in constructed free-water surface wetlands: Effects of vegetation and temperature. Ecological Engineering, 14: 17-32.
    190. Platzer C., 1999. Design recommendations for subsurface flow constructed wetlands for nitrification and denitrification. Water Science and Technology, 40: 257-263.
    191. Reddy K.R., 1983. Fate of nitrogen and phosphorus in a wastewater retention reservoir containing aquatic Macrophytes. Journal of Environmental Quaity, 12(1): 137-141.
    192. Reed S.C., Crites R.W., Middlebrooks E.J., 1995. Natural systems for waste management and treatment. 2~(nd) ed. McGraw-Hill Inc., New York, NY, Washington, DC. EPA-840-B-92-002.
    193. Reed S.C., Crites R.W., Middle brooks E.W., 1998. Natural Systems for Waste Management and Treatment. New York: Me Gram - Hill, 506 - 526.
    194. Rennenberg H., 1998. Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytologist, 138: 275-285
    195. Rice E.L., Pancholy S.K., 1972. Inhibition of nitrification by climax ecosystems. American Journal of Botany, 59: 1033-1040.
    196. Ruan, J.Y., Gerendas, J., Hardter, R., et al., 2007. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Annals of Botany, doi: 10.1093/aob/mcl258.
    197. Rogers K.H., Breen A.J., Chick A.J., 1991. Nitrogen removal in experimental wetland treatment systems: evidence for the role of aquatic plants. Research Journal of the Water Pollution Control Federation, 63(7): 934-941.
    198. Sasakawa, H., Yamamoto, Y., 1978. Comparison of the uptake of nitrate and ammonium by rice seedlings. Plant Physiology, 62: 665-669.
    199. Scaife A., Saraiva F. M. E., Turner M. K., 1986. Effect of nitrogen form on the growth and nitrate concentration of lettuce. Plant and Soil, 94: 3-16.
    200. Schenk M., Wehrmann J., 1979. The influence of ammonium in nutrient solution on growth and metabolism of cucumber plants. Plant and Soil, 52: 403-414.
    201. Schrader, L.E., Domska, D., Jung, P.E., et al., 1972. Uptake and assimilation of ammonium-N and nitrate-N and their influence on the growth of corn (Zea mays L.). Agronomy Journal, 64, 690-695.
    202. Sener A., Malaisse W.J., 1980. The stimulus secretion coupling of amino-acid induced insulin release 2. Sensitivity to K~+, NH_4~+ and H~+ of leucine stimulated islets. Diabete Metab, 6: 97-101.
    203. Senzia M.A, Mashauri D.A, Mayo A.W., 2003. Suitability of constructed wetlands and waste stabilisation ponds in wastewater treatment: nitrogen transformation and removal. Physics and Chemistry of the Earth, 28: 1117-1124.
    204. Shackle J., Freeman C., Reynolds B., 2000. Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biology & Biochemistry, 32: 1935-1940.
    205. Shao M., Tang X.Y, Zhang Y.H, et al., 2006. City clusters in China: air and surface water Pollution. Frontiers in Ecology and the Environment, 4: 353-361.
    206. Shi L., Wang B.Z, Cao X.D., et al.. 2004. Performance of a subsurface-flow constructed wetland in Southern China. Journal of Environmental Sciences, 16:476-481.
    207. Simi A.L., Mitchell C.A., 1999. Design and Hydraulic Performance of a Constructed Wetland Treating Oil Refinery Wastewater. Water Science and Technology, 40(3): 301-307.
    208. Smith W.H., Bormann F.H., Likens G.E., 1968. Response of chemoautotrophic nitrifiers to forest cutting. Soil Science, 106: 471-473.
    209. Smirnoff N., Todd P., Stewart G.R., 1984. The occurrence of nitrate reductase in the leaves of woody plants. Annals of Botany, 54: 363-374.
    210. Solano M.L., Soriano P., Ciria M.P., 2004. Constructed Wetlands as a Sustainable Solution for Wastewater Treatment in Small Villages. Biosystems Engineering, 87 (1), 109-118.
    211. Song Z.W., Zheng Z.P., Li J., et al., 2006. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecological Engineering, 26: 272-282.
    212. Sorrell B.K., Armstrong W., 1994. On the difficulties of measuring oxygen release by root systems of wetland plants. Journal of Ecology, 82:177-183.
    213. Stottmeister U., Wiefiner A., Kuschk P., et al., 2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22: 93-117.
    214. Sundaravadivel M., Vigneswaran S., 2001. Constructed wetlands for wastewater treatment. Critical Reviews in Environmental Science and Technology, 31:351 -409.
    215. Tanner C.C., 1995. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands I. Removal of oxygen demand, suspended solids and faecal coliforms. Water Research, 29(1): 17-26.
    216. Tanner C.C., 1996. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering, 7:59-83.
    217. Tanner C.C., Adams D.D., Downes M.T., 1997. Methane emissions from constructed wetlands treating agricultural wastewaters. Journal of Environmental Quality, 1056-1062.
    218. Tanner C.C., 2001. Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewaters. Wetlands Ecology and Management, 9: 49-73.
    219. Tanner C.C., Sukias J.P.S., 2002. Status of Wastewater Treatment Wetlands in New Zealand. EcoEng Newsletter 1.
    220. Thomas K.L., Benstead J., Davies K.L., et al., 1996. Role of wetland plants in the diurnal control of CH_4 and CO_2 fluxes in peat. Siol Biology and Biochemistry, 28:17-23.
    221. Tremblay G.C., Bradley T.M., 1992. L-carnitine protects fish against acute ammonia toxicity. Comparative Biochemistry and Physiology, 101: 349-351.
    222. Tilman D., Lehman C.L., Thomson K.T., 1997. Plant diversity and ecosystem productivity : theoretical considerations. Proceedings of the National Academy of Sciences ,USA , 94 : 1857 - 1861.
    223. Tilman D., Reich P.B., Knops J., et al., 2001. Diversity and productivity in a long-term grassland experiment. Science, 294: 843-845.
    224. Tylova E., Lorenzen B., Brix H., et al., 2005. The effects of NH_4~+ and NO_3~- on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquatic Botany, 81: 326-342.
    225. Valiela I., Geist M., McClelland J., et al., 2000. Nitrogen loading from watersheds to estuaries: Verification of the Waquoit Bay Nitrogen Loading Model. Biogeochemistry, 49: 277-293
    226. van Cleve K., Yarie J., Erickson R., 1993. Nitrogen mineralization and nitrification in successional ecosystems on the Tanana River floodplain, interior Alaska. Canadian Journal of Forest Research, 23: 970-978
    227. van Dijk H.F.G., Creemers R.C.M., Rijniers J.P.L.W.M., et al, 1989. Impact of artificial, ammonium-enriched rainwater on soils and young coniferous trees in a greenhouse. 1. Effects on the soils. Environmental Pollution, 62: 317-336
    228. Vecchioli G.L., 1990. Use of selected antichonous soil bacteria on enhance degradation of hydrocarbons in soil. Environmental Pollution, 67(3): 249-258.
    229. Verhoeven J.T.A., Meuleman A.F.M., 1999. Wetlands for wastewater treatment: Opportunities and limitations. Ecological Engineering, 12(1-2): 5-12.
    230. Vojt(?)iskov(?)a L., Munzarov(?)a E., Votrubov(?)a O., et al., 2004. Growth and biomass allocation of sweet flag (Acorns calamus L.) under different nutrient conditions. Hydrobiologia, 518: 9-22.
    231. Vollbrecht P., Klein E., Kasemir H., 1989. Different effects of supplied ammonium on glutamine synthetase activity in mustard (Sinapis alba) and pine (Pinus sylvestris) seedlings. Plant Physiology, 77: 129-135.
    232. Vymazal J., 1999. Removal of BOD in constructed wetlands with horizontal sub-surface flow:CZECH experience. Water Science and Technology, 40(3): 133-138.
    233. Vitousek P.M., Gosz J.R., Grier C.C., et al., 1982. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecological Monographs, 52: 155-177
    234. Vitousek P.M., 1994. Beyond global warming: Ecology and global change. Ecology, 75: 1861-1876.
    235. Vitousek P.M., Mooney H.A., Lubchenco J., et al., 1997. Human domination of Earth's ecosystems. Science, 211: 494-499.
    236. Wang X.T., Below F.E., 1996. Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen source. Crop Science, 36: 121-126.
    237. Wang M.Y., Siddiqi M.Y., Ruth T.J., et al., 1993 a. Ammonium uptake by rice roots. Ⅰ. Fluxes and subcellular distribution of 13NH_4~+. Plant Physiology, 103: 1249-1258.
    238. Wang M.Y., Siddiqi M.Y., Ruth T.J., et al., 1993 b. Ammonium uptake by rice roots. Ⅱ. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiology, 103:1259-1267.
    239. Westwood J.H., Foy C.L., 1999. Influence of nitrogen on germination and early development of broomrape (Orobanche spp.). Weed Science, 47:2-7.
    240. Wolt J., 1994. Soil solution Chemistry: Applications to Environmental Science and Agriculture. John Wiley and Sons, New York.
    241. Woolhouse H.W., Hardwick K., 1966. The growth of tomato seedlings in relation to the form of the nitrogen supply. New Phytologist, 65: 518-526.
    242. Yang L., Chang H.T., Huang M.N.L., 2001. Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation. Ecological Engineering, 18(1): 91-105.
    243. Ye Z.H. 1992. The accumulation and distribution of heavy metal in Typha latifolia from the Ph/Zn mine wastewater. Acta Phytoecologica et Geobotanica Sinica, 16(1):72-79.
    244. Zhang F.C., Kang S.Z., Li F.S., et al., 2007. Growth and major nutrient concentrations in Brassica campestris supplied with different NH_4~+/NO_3~- ratios. Journal of Integrative Plant Biology, 49:455-462.
    245. Zhang Y.P., Lin X.Y., Zhang Y.S., et al., 2005. Effects of nitrogen levels and Nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. Journal of Plant Nutrition, 28: 2011-2025.