雷达高分辨距离像姿态敏感性机理分析与识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨距离像(HRRP)以易于获取和处理、工程代价合理等优势而在雷达目标识别中占据重要地位。受应用场合和电磁散射计算技术发展的限制,基于现有目标建模和识别算法的HRRP识别技术难以取得令人满意的实用性能。以战场侦察和态势感知为需求背景,本文在HRRP姿态敏感性机理分析和识别方法研究两大方面展开工作,为雷达目标HRRP识别技术的实用化提供技术支撑。
     第一章阐述了论文的研究背景和意义,回顾了雷达自动目标识别技术的发展,总结了姿态敏感性、平移敏感性、预处理、特征提取和分类器设计等关键技术的研究现状,指出了现有HRRP识别技术手段存在的问题。
     第二章介绍HRRP的基本理论。基于理想散射点模型假设,阐述了HRRP的形成原理和数学模型,重点分析了HRRP的姿态敏感性。基于HRRP的数学模型,推导了HRRP对理想点目标的分辨能力,完善了雷达功能分辨力的定义,揭示了功能分辨力的产生原因——雷达有限带宽导致理想散射点在HRRP上体现为主瓣具有一定宽度的sinc函数,引出了HRRP的闪烁现象,为下一章的工作奠定基础。
     第三章研究HRRP的姿态敏感性机理。(1)发现了HRRP的闪烁现象及其“伪双峰”特点,建立了闪烁HRRP的数学模型,推导了闪烁现象的精确发生条件,得到了闪烁现象发生概率与雷达、目标参数的关系,并用暗室数据验证了上述理论分析结果。(2)推导了闪烁HRRP与平均HRRP的匹配度特性,以此为依据实验研究了闪烁现象对固定角域划分和基于相关系数的自适应角域划分模板数量的影响,为HRRP模板库的建立提供理论基础。(3)定性分析了闪烁对强散射中心、径向长度等HRRP结构特征的影响,并基于匹配度这一数学工具度量了闪烁对幅度谱、功率谱等HRRP谱特征的影响,为HRRP特征提取提供指导。
     第四章研究HRRP姿态敏感性的利用问题。基于理想散射点模型假设下的高分辨回波模型,推导得到了距离单元回波功率随慢时间的近似余弦变化规律,发现了回波功率-慢时间频谱中蕴含的目标“局部”横向尺寸信息。结合HRRP的径向分辨特性,提出了基于HRRP幅度起伏特性的目标横向尺寸快速估计方法。相比传统基于ISAR像的横向尺寸估计方法,所提方法避免了ISAR成像的繁琐步骤且横向上只需一次傅里叶变换,因此运算量和估计误差大幅度降低。仿真和暗室数据的实验结果证明了该方法的有效性和低复杂度。
     第五章研究HRRP的幂变换预处理技术。利用Gaussian分布的统计特性,提出了基于松弛偏峰度正态检验的幂变换参数学习方法。在此基础上,分析了三种典型距离单元回波的幂变换特点,并结合HRRP的高维特性和姿态敏感性,提出了HRRP的自适应幂变换预处理方法。该方法为不同目标、不同角域的HRRP以及HRRP的不同距离单元自适应选择幂变换参数,能够显著提升HRRP样本的Gaussian性能,充分发挥线性分类器的潜力。基于MSTAR实测数据的实验证明了该算法的有效性。
     第六章研究HRRP的特征提取技术。提出了基于距离单元间稳定性差异的加权HRRP特征,该特征具有较松弛的方位敏感性。在此基础上,结合HRRP样本在单位超球面上的“局部紧凑+整体稀疏”分布特点,建立了“类心+紧密度球”特征模板库,定义了基于紧密度球的距离度量准则,提出了基于样本紧密度的HRRP识别方法。该方法充分利用了HRRP样本的空间分布特性,提高了HRRP的识别性能。基于MSTAR实测数据的实验证明了该算法的有效性。
     第七章研究HRRP的分类器设计。基于HRRP的稀疏特性和姿态敏感性,定义了散射中心模型表示残差,设计了散射中心模型-稀疏表示分类器(SCM-SRC)。SCM-SRC能够避免传统SRC应用于HRRP识别时的散射中心模型间的“过拟合”问题,提高识别性能。基于MSTAR实测数据的实验证明了该算法的有效性。
     论文最后总结了全文工作,并指出了下一步要着力开展的研究内容。
High resolution range profile (HRRP) plays an important part in the radarautomatic target recognition community for the simplicity in acquiring and processing,the feasibility in engineering, and so on. However, the HRRP recognition performancebased on the popular template database and recognition algorithms is not alwayssatisfying for some factors, such as the constraint at the application background and thedevelopment in electromagnetic calculation. In allusion to the requirement in battlefieldreconnaissance and situation awareness, this dissertation focuses on the research on theazimuth sensitivity and recognition algorithms of HRRP and provides some technicalsupports for the engineering application of HRRP recognition algorithms.
     Chapter1presents the background of this dissertation. We review the developmentof radar automatic target recognition and summarize some key techniques in HRRPrecognition, which are the azimuth sensitivity, shift sensitivity, preprocessing, featureextraction and classifier selection. We also point out the disadvantage of abovetechniques.
     Chapter2introduces the basic theory of HRRP. Based on the scattering centremodel, we investigate the acquiring processing and mathematical model. Then, wemake profound analysis about the azimuth sensitivity. Based on the mathematical modelof HRRP, we conclude the resolution ability of HRRP for two ideal point targets andconsummate the definition of functional resolution. The functional resolution isessentially induced by the limit bandwidth of radar transmit signal, which makes theideal point target spread as the sinc function in HRRP. Also, we demonstrate the speckleof HRRP and provide the theoretical basis for the work in next chapter.
     Chapter3focuses on the azimuth sensitivity of HRRP. Firstly, we announce thespeckle of HRRP and the “spurious dual peaks” feature of speckled HRRP. Weestablish the theoretical model of speckle and conclude the occurrence condition ofspeckle. Thereby, we obtain the relationship between the speckle probability in HRRPand the parameters of radar and the target. The experiment in an anechoic chamber isused to verify all the analyses about the speckle. Secondly, we conclude the matchingscore between speckled HRRP and average HRRP. Based on the conclusion, we studyexperimentally the influence of the speckle on the number of average HRRPs, which arerespectively obtained according to the constant angular production and the adaptiveangular production. The obtained results can provide some theoretical supports for thetemplate database forming. Thirdly, we do some research on the influences of thespeckle on the structural features, such as the predominant scatterers and the rangelength. And, the influences of the speckle on some spectral features are measured by thematching score. These works are meaningful for the selection of HRRP feature.
     Chapter4studies the application of the azimuth sensitivity of HRRP. Based on themathematical model of high resolution radar echo, we demonstrate that the fluctuationof echo power with the low time can be deemes as the summation of several sincfunctions. And, the “partial” cross-range length of the target can be extracted from thespectrum of the curve of echo power-low time. Then, making use of the range resolutionof HRRP, we propose a fast algorithm for estimating the cross-range length of radartarget using the fluctuation of HRRP. Compared with the conventional method based onISAR imaging, the proposed algorithm avoids some complicate steps and takes only oneFast Fourier Transform at the cross-range. The experimental results demonstrate theeffectiveness of the proposed algorithm and its low computational complexity.
     Chapter5studies the BOX-COX transformation of HRRP. Based on the statisticalcharacteristic of Gaussian distribution, we demonstrate a method to estimate theBOX-COX transformation parameter using the skewness and kurtosis normal test. Then,we make a deep insight into the BOX-COX transformation characteristics of three typesof typical echo. Considering with the high vector nature and azimuth sensitivity ofHRRP, we propose a new algorithm to perform the BOX-COX transformation forHRRP. The propose algorithm adaptively adjusts the parameter of BOX-COXtransformation for each angular frame of each target and each range cell of HRRP.Therefore, it can improve the normality performance of HRRP and inspire the ability ofthe classifier with the linear discriminant function. Experimental results for MSTARdata show that the proposed algorithm can improve the recognition performancesignificantly.
     Chapter6studies the feature extraction of HRRP. Based on the difference betweenrange cells, we propose a new weighted HRRP which is more immune from the azimuthof the target. Considering that HRRPs are located on the unit hypersphere withclustering only in some areas, we establish the template of center-affinity sphere. Then,we define a new distance according to the affinity sphere and propose an algorithmbased on the affinity among HRRP samples. The proposed algorithm utilizes the spatialcharacteristic of HRRPs and can improve the recognition performance significantly.Experimental results for MSTAR data show the validity of the proposed algorithm.
     Chapter7studies the classifier of HRRP. Based on the sparse characteristics andazimuth sensitivity of HRRP, we define the residual of the scattering center model.Then, we design the classifier called the scattering centre model and sparserepresentation-based classifier (SCM-SRC). SCM-SRC can avoid the overfittingphenomenon when the typical SRC are applied to HRRP recognition. Experimentalresults for MSTAR data show the validity of the proposed algorithm.
     Chapter8summarizes the dissertation and discusses the future work to beresearched.
引文
[1] Skolnik M I. Introduction to Radar Systems,2nd edition [M]. New York:Mcgraw-Hill,1980.
    [2] Skolnik M I主编,王军等译.雷达手册,第二版[M].北京:电子工业出版社,2003.
    [3] Yakov D S. Computer Simulation of Aerial Target Radar Scattering, Recognition,Detection, and Tracking[M]. Boston: Artech House,2002.
    [4]丁鹭飞.雷达原理[M].北京:国防工业出版社,1980.
    [5]向敬成,张明友.雷达系统[M].北京:电子工业出版社,2001.
    [6]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [7]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [8]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别[M].长沙:国防科技大学出版社,1996.
    [9]丁建江.防空雷达目标识别技术[M].北京:国防工业出版社,2008.
    [10]周万幸.弹道导弹雷达目标识别技术[M].北京:电子工业出版社,2011.
    [11]宋建社,郑永安,袁礼海.合成孔径雷达图像理解与应用[M].北京:科学出版社,2008.
    [12] Nebabin V G. Methods and Techniques of Radar Recognition[M]. Boston: ArtechHouse,1997.
    [13] Lewis G N and Postol T A. Future Challenges to Ballistic Missile Defense[J].IEEE Spectrum,1997(9):60-68.
    [14] William P D and William W W. Radar Deve1opment at Lincoln Laboratory: AnOverview of the First Fifty Years[J]. Lincoln Laboratory Journal,2000,12(2):147-166.
    [15] Lemnios W Z and Grometestein A. Overview of the Lincoln Laboratory BallisticMissile Defense Program[J]. Lincoln Laboratory Journal,2002,13(1):9-32.
    [16]张汉华.低分辨雷达目标架次判别特征描述与识别方法研究[D].长沙:国防科技大学,2004.
    [17]胡卫东,郁文贤.空间目标的雷达特征信号识别技术[R].长沙:国防科技大学ATR重点实验室,2001:1-8.
    [18] Lambour R, Rajan N, Morgan T. Assessment of Orbital Debris Size Estimationfrom Radar Cross Section Measurements[J]. Advanced Space Research,2004,34:1-6.
    [19] Settecerri Thomas J and Stansbery Eugene G. An Introduction to ProcessingOrbital Debris Radar Data[C].38th Aerospace Sciences Meeting and Exhibit, Reno,United States,2000:10-13.
    [20]黄小红,马云,陈曾平.基于RCS序列估计空间目标尺寸的方法研究[J].信号处理,2005,21(6):639-643.
    [21]黄小红.基于RCS序列的空间目标形状估计[J].航天电子对抗,2005,21(4):44-48.
    [22]王涛,周颖,王雪松.雷达目标的章动特性与章动频率估计[J].自然科学进展,2006,16(3):344-353.
    [23]金文彬,刘永祥,任双桥.锥体目标空间进动特性分析及其参数提取[J].宇航学报,2004,25(4):418-422.
    [24]刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展,2004,14(11):1329-1333.
    [25]杜兰.基于高分辨距离像的雷达目标识别方法研究[D],西安:西安电子科技大学,2007.
    [26]袁莉.基于高分辨距离像的雷达目标识别方法研究[D],西安:西安电子科技大学,2007.
    [27]裴炳南.高分辨雷达自动目标识别方法研究[D].西安:西安电子科技大学.2002.
    [28]杜兰,刘宏伟,保铮等.一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法[J].电子学报,2005,33(3):411-415.
    [29] Du L, Liu H, Bao Z, et al. A Two-Distribution Compounded Statistical Model forRadar HRRP Target Recognition[J]. IEEE Transactions on Signal Processing,2006,54(6):2226-2238.
    [30]袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别[J].电子学报,2004,32(12):2078-2081.
    [31]柴晶,刘宏伟,保铮.提高雷达HRRP目标识别和拒判性能的核学习算法[J].西安电子科技大学学报(自然科学版),2009,36(5):793-800.
    [32]廖学军.基于高分辨距离像的雷达目标识别[D].西安:西安电子科技大学1999.
    [33]邢孟道.基于实测数据的雷达成像方法研究[D].西安:西安电子科技大学,2002.
    [34]曹向海.雷达高分辨距离像特征提取及识别算法研究[D].西安:西安电子科技大学,2008.
    [35] Carrara W G,Goodman R S,Majewski R M. Spotlight Synthetic ApertureRadar-Signal Processing Algorithms[M]. Norwood, MA: Arthech House,1995.
    [36] Sullivan R J. Microwave Radar Imaging and Advanced Concepts[M], Boston:Artech House,2000.
    [37]杜小勇,韩兴斌,胡卫东.一种复杂运动目标的ISAR成像算法[J].电子学报,2007,35(6):1160-1166.
    [38]王国玉,冯德军,王雪松.弹道中段雷达仿真研究[J].系统仿真学报,2004,16(11):2511-2515.
    [39] Sparr T, Hamran S, Korsbakken E. Estimation and Correction of Complex TargetMotion Effects in Inverse Synthetic Aperture Imaging of Aircraft[C]. IEEEInternational Radar Conference, Alexandria, VA,2000:1154-1160.
    [40] Bao Z, Sun G Y, Xing M D. Time-Frequency Approaches to ISAR Imaging ofManeuvering Targets and their Limitations[J]. IEEE Transactions on Aerospaceand Electronic Systems,2001,37(3):1092-1099.
    [41] Berizzi F, Mese E D, Diani M, et al. High-resolution ISAR Imaging ofManeuvering Targets by Means of the Range Instantaneous Doppler Technique:Modeling and Performance Analysis[J]. IEEE Transactions on Imaging Processing,2001,10(12):1880-1890.
    [42]张群,马长征,张涛等.干涉式逆合成孔径雷达三维成像技术研究[J].电子与信息学报,2001,23(9):890-898.
    [43] Graham L C. Synthetic Interferometer Radar for Topographic Mapping[J]. Proc.of IEEE,1974,62(6):763-768.
    [44] Goldstein R M, Zebker H A, Werner C L. Satellite Radar Interferometry:Two-Dimensional Phase Unwrapping[J]. Radio Science.1988,23(4):713-720.
    [45] Li F K and Goldstein R M. Studies of Multibaseline Spaceborne InterferometricSynthetic Aperture Radars[J]. IEEE Transactions on Geoscience and RemoteSensing,1990,28(1):88-97.
    [46] Xing M D, Bao Z, Pei B N. The Properties of High Resolution Range Profiles[J].Optical Engineering,2002,41(2):493-504.
    [47]刘敬,张军英,杜兰.基于相关系数的雷达高分辨距离像分帧方法[J].电子与信息学报,2008,30(9):2060-2064.
    [48] J W Hyde and C M Alabaster. Correlation of Target Transfer Function and RangeProfiles as a Function of Aspect Angle and Resolution[C]. IET Waveform Diversityand Digital Radar Conference, London.2008:1-5.
    [49]陈凤,侯庆禹,刘宏伟等.一种新的雷达HRRP自适应划分角域建模方法[J].西安电子科技大学学报(自然科学版),2009,36(3):410-417.
    [50] Chen B, Liu H W, Chai J, et al. Large Margin Feature Weighting Method viaLinear Programming[J]. IEEE Transactions on Knowledge and Data Engineering.2009,21(10):1475-1488.
    [51]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报,1998,26(6):5-8.
    [52]陈渤.基于核方法的雷达高分辨距离像目标识别技术研究[D].西安:西安电子科技大学,2008.
    [53]廖东平.支持向量机方法及其在机载毫米波雷达目标识别中的应用研究[D].长沙:国防科技大学,2006.
    [54] Ausherman D A, Kozma A, Walker J L, et al. Developments in Radar Imaging[J],IEEE Transactions on Aerospace and Electronic Systems,1984,20(4):363-399.
    [55]朱玉鹏.复杂运动目标ISAR及MIMO雷达成像技术研究[D].长沙:国防科技大学,2009.
    [56]曹敏.空间目标ISAR成像技术研究[D].长沙:国防科技大学,2008.
    [57] Camp W W, Mayhan J T, O’Donnell R M. Wideband Radar for Ballistic MissileDefense and Range-Doppler Imaging of Satellites[J]. Lincoln Laboratory Journal,2000,12(2):267-280.
    [58]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].长沙:国防科技大学,2009.
    [59] Mitchell R A and Dewall R. Overview of High Range Resolution Radar TargetIdentification[C]. In Proceedings of Automatic Target Recognition Working Group,Monterey, CA,1994.
    [60] Research and Technology Organization and North Atlantic Treaty Organization.Non-Cooperation Air Target Identification Using Radar[C]. The Symposium of theRTO Systems Concepts and Integraion Panel, Mannheim, Germany,1998.
    [61] Linde G. Use of Wide-Band Waveforms for Target Recognition with SurveillanceRadar[C]. Proceedings of IEEE International Conference on Radar, Washington DC,2000,128-133.
    [62] Eesterkamp J. A Framework for1D HRR ATR Evaluation[R]. AFRL TechnicalReport.1998.
    [63] Moving and Stationary Target Acquisition and Recognition (MSTAR)[R].Program technology review, Denver, Co,1996.
    [64] Rihaczek A W. Theory and Practice of Radar Target Identification[M]. Boston:Artech House,2000.
    [65] Li H, Wang Y, Wang L. Matching Score Properties between Range Profiles ofHigh Resolution Radar Targets[J]. IEEE Transactions Antenna and Propogation,1996,44(4):444-452.
    [66] Li H and Yang S. Using Range Profiles as the Feature Vectors to IdentifyAerospace Objects[J]. IEEE Transactions on Antenna and Propogation,1993,41(3):261-268.
    [67]杜兰,刘宏伟,保铮.利用目标方位信息改善雷达距离像识别性能[J].系统工程与电子技术,2004,26(8):1040-1043.
    [68] Li H J, Farhat N H, Shen Y, et al. Image Understanding and Prediction inMicrowave Diversity Imaging[J]. IEEE Transactions on Antenna and Propogation,1989,37(8):1048-1057.
    [69] Hudson S and Psaltis D. Correlation Filters for Aircraft Identification from RadarRange Profiles[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(3):741-748.
    [70]袁莉,刘宏伟,保铮.雷达高分辨距离像分类器的参数自适应学习算法[J].电子与信息学报,2008,30(1):198-202.
    [71]杜兰,保铮,刘宏伟.高分辨距离像雷达自动目标识别的模板匹配问题[C].第九届全国雷达学术年会论文集.烟台,2004,509-512.
    [72]许人灿,姜卫东,陈曾平.目标一维距离像特征提取方法研究[J].系统工程与电子技术,2005,27(7):1173-1175.
    [73]刘敬,张军英,赵峰.一种新的雷达高分辨距离像平移不变特征[J].电子与信息学报,2008,30(8):1949-1953.
    [74] Zyweck A and Bogner R E. Radar Target Classification of CommercialAircraft[J]. IEEE Transactions on Aerospace and Electronic Systems,1996,32(2):598-606.
    [75] Wang P, Dai F, Pan M, et al. Radar HRRP Target Recognition in FrequencyDomain Based on Autoregressive Model[C]. IEEE Radar Conference, Kansas City,MO,2011:714-717.
    [76]杜兰,刘宏伟,保铮等.一种用于雷达HRRP功率谱的加权特征压缩方法[J].西安电子科技大学学报(自然科学版),2006,33(2):173-177.
    [77] Guo Z and Li S. One-Dimensional Frequency-Domain Features for AircraftRecognition from Radar Range Profiles[J]. IEEE Transactions on Aerospace andElectronic Systems,2010,46(4):1880-1892.
    [78] Du L, Liu H W, Bao Z, et al. Radar HRRP Target Recognition Based on HigherOrder Spectra[J]. IEEE Transactions On Signal Processing,2005,53(7):2359-2368.
    [79] Chandran V and Elgar S L. Pattern Recognition Using Invariants Defined fromHigher Order Spectra-One Dimensional Inputs[J]. IEEE Transactions on SignalProcessing,1993,41(1):205-212.
    [80]裴炳南,保铮.用对数平均双谱识别飞机的原理和方法[J].电子学报,2002,30(3):354-358.
    [81] Zhang X, Shi Y, Bao Z. A New Feature Vector Using Selected Bispectra forSignal Classification with Application in Radar Target Recognition[J]. IEEETransactions on Signal Processing,2001,49(9):1875–1885.
    [82] Liu H and Bao Z. Radar HRR Profiles Recognition Based On SVM withPower-Transformed-Correlation Kernel[J]. Lecture Notes in Computer Science,2004,3173(1):531-536.
    [83] Chen B, Liu H, Bao Z. Optimizing the Data-Dependent Kernel under a UnifiedKernel Optimization Framework[J]. Pattern Recognition,2008,6(41):2107-2119.
    [84]刘宏伟,马建华,保铮. Box-Cox变换提高雷达高分辨距离像识别性能的物理机理分析[C].第九届全国雷达学术年会论文集,烟台,2004:354-357.
    [85]高倩,吴仁彪,刘家学.一种基于自适应幂变换的HRRP-ATR方法[J].信号处理,2003,19:363-365.
    [86] Heiden R and Groen F C A. The Box-Cox Metric for Nearest NeighbourClassification Improvement[J]. Pattern Recognition,1997,30(2):273-279.
    [87] Duda R O and Hart P E. Pattern Classification and Scene Analysis[M]. New York:Wiley,1973.
    [88] Qu P and Loh W Y. Application of Box-Cox Transformations to Discriminationfor the Two-Class Problem[J]. Communications in Statistics-Theory and Methods,1992,21(10):2757-2774.
    [89] Sakia R M. The Box-Cox Transformation Technique: a Review[J]. TheStatistician,1992(41):169-178.
    [90] Ujiie H, Omachi S, Aso H. A Discriminant Function Considering NormalityImprovement of the Distribution[J]. Proceedings of the16th InternationalConference on Pattern Recognition, Quebec, Canada,2002:224-227.
    [91]刘宏伟,杜兰,袁莉等.雷达高分辨距离像目标识别研究进展[J].电子与信息学报,2005,27(8):1328-1334.
    [92] Pastina D, Spina C. Multi-Feature Based Automatic Recognition of Ship Targetsin ISAR[J]. IET Radar, Sonar&Navigation,2009,3(4):406-423.
    [93]毕莉,赵锋,高勋章等.基于一维像序列的进动目标尺寸估计研究[J].电子与信息学报,2010,32(08):1825-1830.
    [94]毕莉,赵锋,高勋章等.基于高分辨距离像的弹道目标尺寸综合估计方法[J].现代雷达,2009,31(10):42-46.
    [95]裴炳南,保铮,刑孟道.用微分复倒谱方法实现雷达高分辨距离像对齐[J].电波科学学刊,2002,17(2):103-108.
    [96]马林.高分辨雷达目标识别系统技术研究[J].电子学报,2009,37(12):2633-2638.
    [97] Liao X, Paul R, Lawrence C. Identification of Ground Targets From Sequentialof High Range Resolution Radar Signatures[J]. IEEE Transactions on Aerospaceand Electronic Systems,2002,38(4):1230-1242.
    [98]裴炳南,保铮.基于目标散射中心和HMM分类的多视角雷达目标识别方法[J].电子学报,2003,31(5):786-789.
    [99] Masahiko N, Xuejun L, Lawrence C. Target Identification from Multi-PerspectiveHigh Range Resoltion Radar Signatures Using a Hidden Markov Model[J]. IEICETransactions on Electronics,2004,87-C (10):1706-1714.
    [100] Vespe M, Baker C J, Griffiths H D. Radar Target Classification Using MultiplePerspectives[J]. IET Radar Sonar Navigation,2007,1(4):300-307.
    [101] Jacobs S P and O'Sullivan J A. Automatic Target Recognition Using Sequences ofHigh Resolution Radar Range-Profiles[J]. IEEE Transactions on Aerospace andElectronic Systems,2000,36(2):364-382.
    [102] Yu X. Neural Network Directed Bayes Decision Rule for Moving Target Class[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(1):176-188.
    [103] Inggs M R and Robinson A D. Ship Target Recognition Using Low ResolutionRadar and Neural Network[J]. IEEE Transactions on Aerospace and ElectronicSystems1999,35(2):386-392.
    [104] Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998(2):121-167.
    [105] Zhao Q and Principe J C. Support Vector Machines for SAR Automatic TargetRecognition[J]. IEEE Transactions on Aerospace and Electronic Systems,2001,37(2):643-654.
    [106] Jacobs S P. Automatic Target Recognition Using High-Resolution Radar RangeProfiles[D]. Washington: Washington University,1999.
    [107]杜兰,刘宏伟,保铮等.一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法[J].电子学报,2005,33(3):411-415.
    [108] Du L, Liu H, Bao Z, et al. A Two-Distribution Compounded Statistical Model forRadar HRRP Target Recognition[J]. IEEE Transactions on Signal Processing,2006,54(6):2226-2238.
    [109]高倩.基于高分辨率雷达距离像的自动目标识别研究[D].南京:南京航空航天大学,2002.
    [110] Douville P L. Measured and Predicted Synthetic Aperture Radar TargetComparison[J]. IEEE Transactions on Aerospace and Electronic Systems,2002,38(1):25-37.
    [111] Williams Robert L, Westerkamp John J, Gross David C, et al. Analysis of a1-DHRR moving target ATR[C]. Proceedings of SPIE, Florida,1999,3721:413-424
    [112] Jingjing Cui, Jon Gudnason J, Brookes M. Radar Shadow and SuperresolutionFeatures for Automatic Recognition of MSTAR Targets[C]. IEEE InternationalRadar Conference, Virginia, USA,2005:534-539.
    [113]彭勃,魏玺章,黎湘.雷达高分辨距离像模板生成算法[J].信号处理,2010,26(6):819-823.
    [114]彭勃.一维距离像模板自动生成算法研究[D].长沙:国防科学技术大学,2008.
    [115] Rihaczek A W. Radar Resolution of Ideal Point Scatterers[J]. IEEE Transactionson Aerospace and Electronic Systems,1996,32(2):842-845.
    [116] Zhang R, Wei X, Li X, et al. Analysis about the Speckle of Radar HighResolution Range Profile[J]. Sci China Tech Sci,2011,54(1):226-236.
    [117]张瑞,魏玺章,黎湘等.雷达高分辨距离像闪烁现象机理分析[J].中国科学:技术科学,2011,41(1):77-87.
    [118]陈行勇,魏玺章,黎湘等.调频步进雷达扩展目标高分辨距离像分析[J].电子学报,2005,33(9):1599-1602.
    [119]倪友平,姜卫东,陈曾平.步进频信号散射中心的提取及目标识别[J].现代雷达,2005,27(9):1-3.
    [120]龙腾,李眈,吴琼之.频率步进雷达参数设计与目标抽取算法[J].系统工程与电子技术,2001,23(6):26-31.
    [121]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社,2002.
    [122] Xing M and Bao Z. The Properties of Range Profile of Aircraft[C].2001CIEInternational Conference on Radar, Beijing,2001:1050-1054.
    [123]陈凤,杜兰,刘宏伟等.一种利用强度信息的雷达HRRP自动目标识别方法[J].电子学报,2009,37(3):459-463.
    [124] Chen F, Yu W, Liu X, et al. Combinational Matching Method of Amplitude-Scaleand Time-Shift for Radar HRRP Recognition[C].2011IGARSS, Vancouver, B C,Canada,2011:1311-1314.
    [125] IEEE Std686-2008, IEEE Standard Radar Definitions[S].
    [126] Mir H S and Wilkinson J D. Radar Target Resolution Probability in aNoise-Limited Environment[J]. IEEE Transactions on Aerospace and ElectronicSystems,2008,44(3):1234-1239.
    [127] Jerome F. Resolution in Radar Systems[J]. Proceedings of the I.R.E.,1951:813-818.
    [128] Hasan S M and Blair D C. On the Definition of Radar Range Resolution forTargets of Greatly Differing RCS[J]. IEEE Transactions on Instrumentation andMeasurement,2012,61(3):655-663.
    [129] Mark A Richards著,邢孟道,王彤,李真芳等译.雷达信号处理基础[M].北京:电子工业出版社,2008.
    [130] Zhang R, Wei X, Li X. The Resolution of High Resolution Range Profile for TwoIdeal Point Targets[C]. International Conference on Information Science andTechnology, Wuhan, China,2012:397-400.
    [131] Donald R Wehner. High Resolution Radar-2Rev.ed[M]. Boston: Artech House,1995:34-36.
    [132]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2005.
    [133] David Iny and Martin Monoi. Quantative Analysis of HRR NCTR PerformanceDrives[J]. SPIE,1996(2747):14-152
    [134] M A Hussain. HRR Length and Velocity Decision Regions for Rapid TargetIdentification[J]. SPIE,1999(3810):40-52
    [135]袁仕继.基于宽带信息的中段弹道目标特征提取方法研究[D].长沙:国防科学技术大学,2009.
    [136]冯德军.弹道中段目标雷达识别与评估研究[D].长沙:国防科学技术大学,2006
    [137]毕莉.基于一维距离像的中段弹道目标尺寸特性反演研究[D].长沙:国防科学技术大学,2007
    [138]张瑞,魏玺章,黎湘.基于匹配度的闪烁HRRP谱特征分析[J].电子与信息学报,2012,34(4):891-897.
    [139]曹向海,刘宏伟,吴顺君.双谱VS零相位谱[J].系统工程与电子技术,2009,31(3):503-506.
    [140] Harris E J.On the Use of Windows for Harmonic Analysis with the DiscreteFourier Transform[J].Proceedings of IEEE,1978,66(1):51-83.
    [141] Vlad P and Jean-Philippe T. Pattern Recognition Using Higher-Order LocalAutocorrelation Coefficients[C].12th IEEE Workshop on Neural Networks forSignal Processing,2002:229-238.
    [142] D Zhu, L Wang, Y Yu, et al. Robust ISAR Range Alignment via Minimizing theEntropy of the Average Range Profile[J]. IEEE Geoscience and Remote SensingLetters,2009,6(2):204-208.
    [143] M Zhu, J Wang, X Liu. An Improved Time-Frequency Phase AdjustmentTechnique for ISAR[C]. IEEE International Symposium on Geoscience andRemote Sensing, Barcelona, Spain,2007:5170-5173.
    [144] Y Wang and Y Jiang. A Novel Algorithm for Estimating the Rotation Angle inISAR Imaging[J]. IEEE Geoscience and Remote Sensing Letters,2008,5(4):608-609.
    [145] Copsey K and Webb A. Bayesian Gamma Mixture Model Approach to RadarTarget Recognition[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1201-1217.
    [146] Webb A R. Gamma Mixture Models for Target Recognition[J]. PatternRecognition,2000,33:2045-2954.
    [147]赵峰,张军英,刘敬等.基于非参数化概率密度估计的雷达目标识别[J].电子与信息学报,2008,30(7):1740-1743.
    [148] Evans M, Hastings N, Peacock B. Statistical Distributions[M]. New York: Johnwiley and Sons,1993.
    [149] Box G E P and Cox D R. An Analysis of Transformations[J]. Journal of the RoyalStatistical Society, Series B,1964,26:211-252.
    [150] Chung S H, Pearn W L, Yang Y S. A Comparison of Two Methods forTransforming Non-Normal Manufacturing Data[J]. Int J Adv Manuf Technol,2007,31:957-968.
    [151] Jason W O. Improving Your Data Transformations-Applying the Box-CoxTransformation[J]. Practical Assessment, Research and Evaluation,2010,15(12):1-9.
    [152] GB/T4882-2001.数据的统计处理和解释正态性检验[S].
    [153]陈广雷.基于投影偏度和投影峰度的投影寻踪自助法的正态性检验[J].数学杂志,2006,26(2):147-154.
    [154]崔恒建,陈广雷.带有误差变量的偏度和峰度正态性检验[J].北京师范大学学报(自然科学版),2000,36(1):9-13.
    [155]姚惠林,方安平,魏巍.船舶吃水深度检测误差正态性检验与分析[J].软件时空,2008,24(9):199-200.
    [156]叶仁玉.正态性检验在教学质量监控中的应用[J].安庆师范学院学报(自然科学版),2005,11(3):103-105.
    [157] http://en.wikipedia.org/wiki/Normal_distribution.
    [158]汪政红,周清志.两种多元正态性检验方法的应用和比较[J].中南民族大学学报(自然科学版),2009,28(3):99-103.
    [159]赵相伟,靳奉祥,王健等.基于K-L变换的多维空间数据正态性检验方法及其应用[J].山东科技大学(自然科学版),2011,30(2):41-47.
    [160] Du L, Liu H W, Bao Z. Radar HRRP Statistical Recognition Based OnHypersphere Model[J]. Signal Processing,2008,88(5):1176-1190.
    [161]艾青,秦玉平,方辉等.一种扩展的紧密度模糊支持向量机及其在文本分类中的应用[J].计算机应用与软件,2010,27(4):45-47.
    [162]张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958.
    [163]刘记红,徐少坤,高勋章等.压缩感知雷达成像技术综述[J],信号处理,2011,27(2):251-260.
    [164] Valiollahzadeh S,Firouzi H,Babaie-Zadeh M,et a1. Imgage Denoising usingSparse Representations[J]. Lecture Notes in Computer Science,2009(5441):557-564.
    [165] Vo N,Vo D,Challa S,et a1.Compressed Sensing for Face Recognition[C].IEEESymposium on Computational Intelligence for Image Processing, Nashville, T N,2009:104-109.
    [166] Duarte M F, Davenport M, Takhar D, et a1. Single-pixel Imaging viaCompressive Sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91.
    [167] Ma J.Single-pixel Remote Sensing[J].IEEE Geoscienee and Remote SensingLetters,2009,6(2):199-203.
    [168] John W, Allen Y Y, Arvind G, et al. Robust Face Recognition via SparseRepresentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
    [169] John W, Yi M, Julien M, et al. Sparse Representation for Computer Vision andPattern Recognition[J]. Proceedings of the IEEE,2010,98(6):1031-1044.
    [170] Kirk L K. Face-Recognition-Breakthrough[J]. Communications of the ACM,2009,52(8):18-19.
    [171]浦剑,张军平.基于词典学习和稀疏表示的超分辨率方法[J].模式识别与人工智能,2010,23(3):335-340.
    [172] Zhounuo and Chenwei. High Range Resolution Profile Automatic TargetRecognition Using Sparse Representation[J]. Chinese Journal of Aeronautics,2010,23(5):556-562.
    [173]胡卫东,杜小勇.高分辨雷达一维距离像稀疏表示技术[J].系统工程与电子技术,2005,27(6):968-970.