MIMO雷达混沌波形设计及性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受多输入多输出(MIMO)通信和综合脉冲孔径雷达(SIAR)的启发,MIMO雷达作为一种新体制雷达,得到了雷达界的广泛关注和研究。MIMO雷达使用多个发射天线分别发射不同的信号,同时使用多个接收天线接收并处理目标回波信号。与传统雷达相比,正是这种波形分集能力使得MIMO雷达具有更多的优势。波形分集是MIMO雷达的重要特征,波形设计是实现波形分集的重要手段。基于混沌信号的新体制雷达是混沌应用于雷达的一个主要方面。代入不同初值,在短时间内能够产生数量众多的混沌信号。混沌信号具有对初始值敏感、类似噪声的宽频谱、图钉型的模糊函数、尖锐的自相关和近似正交的互相关等特性。
     本论文围绕MIMO雷达混沌波形设计展开相关研究,主要包括以下几个方面:
     1)提出了混沌离散频率编码、混沌二相编码和混沌四相编码的MIMO雷达波形设计方法以及选取依据。对常用的四种离散混沌序列(Tent序列、Logistic序列、Quadratic序列和Bernoulli序列)的自相关和互相关特性进行了研究,给出了混沌序列的相关性与序列长度、自由参数之间的关系;对使用四种混沌序列调制所产生的离散频率编码波形、二相编码波形和四相编码波形的自相关和互相关特性进行了研究,给出了混沌波形的相关性与波形长度、自由参数之间的关系。以下结论作为选取MIMO雷达混沌波形的依据:Tent和Bernoulli离散频率编码波形的相关性较好,是较为理想的MIMO雷达发射波形;四种混沌二相编码波形的相关性相似,都是较为理想的MIMO雷达发射波形;Tent、Logistic和Quadratic四相编码波形的相关性较好,且相关性好于二相编码波形,是较为理想的MIMO雷达发射波形。
     2)建立了基于混沌离散频率编码波形和混沌相位编码波形的MIMO雷达多脉冲压缩累积信号处理模型。对混沌波形的自相关旁瓣和互相关的统计功率峰值进行推导:取不同的波形长度N时,自相关旁瓣和互相关的统计功率峰值近似为1N;对不同初始值所产生的混沌波形的自相关旁瓣之间的相关性、互相关之间的相关性进行了研究并得到以下结论:不同初始值所产生的混沌波形的自相关旁瓣之间是不相关的,同时,不同初始值所产生的混沌波形的互相关之间也是不相关的;基于上述相关性结论,建立了基于混沌离散频率编码波形和混沌相位编码波形的MIMO雷达多脉冲压缩累积信号处理模型。使用多脉冲压缩累积能够有效降低混沌波形的自相关旁瓣和互相关。
     3)提出了用混沌离散频率编码波形提高MIMO雷达目标检测性能的方法。根据混沌离散频率编码波形的相关性与波形长度、自由参数之间的关系,设计并选取较长的且具有较好自相关和互相关特性的Tent离散频率编码波形。在杂波和噪声背景下,脉压输出具有较低的旁瓣峰值,从而提高MIMO雷达对点目标的检测性能,但相同方法却不能提高MIMO雷达对相邻弱小目标的检测性能。通过多脉冲压缩累积的方法,基于Tent离散频率编码波形的MIMO雷达信号处理模型,降低混沌波形的自相关旁瓣和互相关,使输出结果具有较低的旁瓣峰值,从而提高MIMO雷达对点目标的检测性能。特别在相邻弱小目标场景中,由于采用了多脉冲压缩累积的处理方法,强目标回波的旁瓣并不会掩盖弱目标回波的主瓣,从而提高了系统对相邻弱小目标的检测能力。
     4)提出了用混沌相位编码波形提高MIMO雷达目标检测性能的方法。在杂波和噪声背景下,根据混沌相位编码波形的相关性与波形长度、自由参数之间的关系,设计并选取Tent相位编码波形。由于较长的混沌相位编码波形具有较好的相关性,此时脉压输出具有较低的旁瓣峰值,从而提高MIMO雷达对点目标的检测性能。同时,此方法对相邻弱小目标检测也是有效的。基于混沌相位编码波形的MIMO雷达信号处理模型,使用多脉冲压缩累积降低混沌波形的自相关旁瓣和互相关,从而提高MIMO雷达对点目标和相邻弱小目标的检测性能。
Inspired by multiple-input multiple-output (MIMO) communication technique andsynthetic impulse and aperture radar (SIAR), as a new radar, MIMO radar is proposedand becomes the research focus concerned by scholars from many countries. MIMOradar systems transmit different signals via multiple antennas, receive and process targetechoes with multiple receiving antennas. Compared with traditional radar, MIMO radarhas more advantages with waveform diversity. Waveform diversity is an importantfeature of MIMO radar, and waveform design is a mean to achieve the waveformdiversity. New radar systems based on chaotic signal is a main field of radar applyingchaos. With different initial values, a large number of chaotic signals can be produced ina short time. The chaotic signal is sensitive to initial values, with a noise like broadbandspectrum, thumbtacked ambiguity function and sharp auto-correlation andapproximately orthogonal cross-correlation properties.
     In this dissertation, chaotic waveform design for MIMO radar is investigated, andthe main research focus on the following issues:
     1) The waveform design and choosing method for MIMO radar are proposed forchaotic discrete frequency coding, chaotic binary phase coding and chaotic four phasecoding. The auto-correlation and cross-correlation properties of four kinds of discretechaotic sequences (Tent sequence, Logistic sequence, Quadratic sequence and Bernoullisequence) are studied and the connections between correlation properties of chaoticsequences and sequence length, free parameter are given. The auto-correlation andcross-correlation properties of discrete frequency coding waveforms, binary phasecoding waveforms and four phase coding waveform from four kinds of chaoticsequences are analyzed and the connections between correlation property of chaoticwaveforms and waveform length, free parameter are given. Chaotic waveform choosingfor MIMO radar accords to the following results, the correlation properties of Tent andBernoulli discrete frequency coding waveforms are good, they are relatively idealtransmitting waveforms for MIMO radar. The correlation properties of four kinds ofchaotic binary phase coding waveforms are the same, all of them are relatively idealtransmitting waveforms for MIMO radar. The correlation properties of Tent, Logisticand Quadratic four phase coding waveforms are good, and better than the binary phasecoding waveforms, they are relatively ideal transmitting waveforms for MIMO radar.
     2) Signal processing model of multiple pulse compression accumulation for MIMOradar based on chaotic waveforms is established, including chaotic discrete frequency coding waveforms and chaotic phase coding waveforms. Auto-correlation sidelobes andcross-correlation statistical power peak of chaotic waveforms were deduced. Withdifferent waveform length N, auto-correlation sidelobes and cross-correlation statisticalpower peak are approximately1N. From different initial values, the correlationproperties of auto-correlation sidelobes and cross-correlation of chaotic waveforms arestudied, the following results are given: From different initial values, it is uncorrelatedbetween auto-correlation sidelobes of different chaotic waveforms; meanwhile, it isuncorrelated between cross-correlation of different chaotic waveforms too. According tothe results about correlation properties, signal processing model of multiple pulsecompression accumulation for MIMO radar based on chaotic waveforms is established,including chaotic discrete frequency coding waveforms and chaotic phase codingwaveforms. Using multiple pulse compression accumulation can reduce auto-correlationsidelobes and cross-correlation of chaotic waveforms effectively.
     3) With chaotic discrete frequency coding waveforms, an improvement method onperformance of MIMO radar for target detection is proposed. According to connectionsbetween correlation properties of chaotic discrete frequency coding waveforms andwaveform length, free parameter, longer Tent discrete frequency coding waveforms withgood auto-correlation and cross-correlation are designed and chose. In the clutter andnoise background, output of pulse compression has low peak sidelobe level, and thenthe performance of MIMO radar for point target detection is improved. But, the samemethod can not improve the performance of close small target detection for MIMOradar. Based on the signal processing model for MIMO radar with Tent discretefrequency coding waveforms, multiple pulse compression accumulation can reduceauto-correlation sidelobes and cross-correlation of chaotic waveforms, the output haslow peak sidelobe level, and then the performance of MIMO radar for point targetdetection is improved. Especially in close small target scene, due to multiple pulsecompression accumulation for processing, the sidelobes level from the strong targetecho does not cover up the mainlobe level from the weak target echo, so the detectionperformance of close small target is improved.
     4) With chaotic phase coding waveforms, an improvement method on performanceof MIMO radar for target detection is proposed. In the clutter and noise background,according to connections between correlation properties of chaotic phase codingwaveforms and waveform length, free parameter, Tent phase coding waveforms aredesigned and chose. Because of good correlation properties for longer Tent phasecoding waveforms, the output of pulse compression has low peak sidelobe level, and then the performance of MIMO radar for point target is improved. This method is validfor close small target detection too.Based on the signal processing model for MIMOradar with chaotic phase coding waveforms, multiple pulse compression accumulationcan reduce auto-correlation sidelobes and cross-correlation of chaotic waveforms, andthen the detection performance of MIMO radar for point target and close small targetare improved.
引文
[1]Skolnik M I. Introduction to radar systems[M],3rd ed. New York: McGraw,2001.
    [2]Haykin S, Litva J and Shepherd T J. Radar array processing[M]. NewYork:Springer-Verlag,1993.
    [3]Buderi R. The invention that changed the world: the story of radar from war topeace[M]. London, U.K.: Abacus,1999.
    [4]丁鹭飞,耿富录.雷达原理[M],第三版.西安:西安电子科技大学出版社,2002.
    [5]李军. MIMO雷达中的数字波束形成与信号处理技术研究[D].电子科技大学博士论文,2009.
    [6]刘波. MIMO雷达正交波形设计及信号处理研究[D].电子科技大学博士论文,2008.
    [7]Proakis J G. Digital communications [M],4th ed. New York: McGraw,2001.
    [8]Tse D. and Viswanath P. Fundamentals of wireless communication[M]. CambridgeUniversity Press,2005.
    [9]Paulraj A J and Papadis C B. Space-time processing for wireless communications[J].IEEE Signal Processing Magzine,1997,14(6):49-83.
    [10]Sayeed A M. Deconstructing multi-antenna fading channels[J]. IEEE Trans. onSignal Processing,2002,50(12):1926-1934.
    [11]Jensen M A. and Wallace J W. A review of antennas and propagation for MIMOwireless communications[J]. IEEE Trans. on Antennas Propagation,2004,52(11):2810-2824.
    [12]Rabideau D J and Parker P. Ubiquitous MIMO multifunction digital array radar[C]//Conference Record of the37th Asilomar Conference on Signals, Systems andComputers,2003:1057-1064.
    [13]Fishier E, Haimovich A and Blum R, et a1. MIMO radar: an idea whose time hascome[C]//IEEE Radar Conference, April,2004:71-78.
    [14]Fishier E, Haimovich A and Blum R, et a1. Performance of MIMO radar systems:advantages of angular diversity[C]//Conference Record of the38th AsilomarConference on Signals, Systems and Computers,2004:305-309.
    [15]胡亮兵,刘宏伟,吴顺君,等.基于约束非线性规划的MIMO雷达正交波形设计[J].系统工程与电子技术,2011,33(1):64-68.
    [16]Bliss D W and Forsythe K W. Multiple-input multiple-output (MIMO) radar andimaging: degrees of freedom and resolution[C]//in Proc.37th Asilomar Conf.Signals, Systems, Computers, Pacific Grove, CA, Nov.2003:54-59.
    [17]Li J and Stoica P. MIMO radar with colocated antennas: review of some recentwork[J]. IEEE Signal Process Mag., Sep.2007,24(5):106-114.
    [18]Haimovich A H, Blum R S and Cimini L J. MIMO radar with widely separatedantennas[J]. IEEE Signal Process Mag., Jan.2008,25(1):116-129.
    [19]Rabideau D J and Parker P. Ubiquitous MIMO multifunction digital array radar[C].In Proc.37th Asilomar Conference on Signals, Systems and Computers, PacificGrove, CA, Nov.2003, vol.2:1057-1064.
    [20]Robey F C, Coutts S and Weikle D. MIMO radar theory and experimentalresults[C]//In Proc.38th Asilomar Conference on Signals, Systems and Computers,Pacific Grove, CA, Nov.2004, vol.1:300-304.
    [21]Bekkerman I and Tabrikian J. Target detection and localization using MIMO radarsand sonars[J]. IEEE Trans. Signal Process., Oct.2006,54(10):3873-3883.
    [22]Fishler E, Haimovich A, Blum R S, et al. Spatial diversity in radars-models anddetection performance[J]. IEEE Trans. Signal Process., Mar.2006,54(3):823-838.
    [23]Li J, Stoica P, Xu L, et al. On parameter identifiability of MIMO radar[J]. IEEESignal Process. Lett., Dec.2007,14(12):968-971.
    [24]Lehmann N, Fishler E, Haimovich A M, et al. Evaluation of transmit diversity inMIMO radar direction finding[J]. IEEE Trans. Signal Process., May.2007,55(5):2215-2225.
    [25]Chen C Y and Vaidyanathan P P. MIMO radar space time adaptive processing usingprolate spheroidal wave functions[J]. IEEE Trans. Signal Process., Feb.2008,56(2):623-635.
    [26]Xu L, Li J and Stoica P. Target detection and parameter estimation for MIMO radarsystems[J]. IEEE Trans. Aerosp. Electron. Syst., Jul.2008,44(3):927-939.
    [27]Bell M R. Information theory and radar waveform design[J]. IEEE Trans. onInformation Theory, Sept.1993,39(5):1578-1597.
    [28]Leshem A and Nehorai A. Information theoretic radar waveform design for multipletargets[C]//40th Annual Conference on Information Sciences and Systems,2006.
    [29]Yang Y and Blum R S. MIMO radar waveform design based on MI and MMSE[J].IEEE Trans. on Aerospace and Electronic Systems, Jan.2007,43(1):330-342.
    [30]Yang Y and Blum R S. Minimax robust MIMO radar waveform design[J]. IEEEJournal of Selected Topics in Signal Processing, June.2007,1(1):147-155.
    [31]Maio D A and Lops M. Design principles of MIMO radar detectors[J]. IEEE Trans.on Aerospace and Electronic Systems,2007,43(3):886-898.
    [32]Shannon C E. A mathematical theory of communication[J]. The Bell SystemTechnical Journal, vol.27, July, Oct.1948,379-423,623-656.
    [33]Woodward P M. and Davies I L. A theory of radar information[J]. PhilosophicalMagazine, vol.41, Oct.1951:1001-1017.
    [34]Woodward P M. Information theory and the design of radar receivers[J].Proceedings of the IRE, Dec.1951,39(12):1521-1524.
    [35]Woodward P M, Davies I L and Graduate M A. Information theory and inverseprobability in telecommunication[J]. Proceedings of the IEE-PartⅢ: Radio andCommunication Engineering, Mar.1952,99(58):37-44.
    [36]Woodward P M. Probability and information theory with application to radar[M].Norwood, MA: Artech House,1953.
    [37]Fuhrmann D and Antonio G S. Transmit beamforming for MIMO radar systemsusing partial signal correlation[C]//In Proceedings of the38th Asilomar Conferenceon Signals, Systems and Computers, vol.1, Pacific Grove, CA, Nov.2004:295-299.
    [38]Aittomaki T and Koivunen V. Low-complexity method for transmit beamforming inMIMO radars[C]. Proc. of IEEE International Conference on Acoustics, Speech andSignal Processing,2007:305-308.
    [39]Stoica P, Li J and Xie Y. On probing signal design for MIMO radar[J]. IEEE Trans.on Signal Processing, Aug.2007,55(8):4151-4161.
    [40]Fuhrmann D R and Antonio G S. Transmit beamforming for MIMO radar systemsusing signal cross-correlation[J]. IEEE Trans. Aerosp. Electron. Syst., Jan.2008,44(1):171-186.
    [41]Li J, Xu L and Stoica P, et al. Range compression and waveform optimization forMIMO radar: a Cramer-Rao bound based study[J]. IEEE Trans. on SignalProcessing, Jan.2008,56(1):218-232.
    [42]Stoica P, Li J and Zhu X. Waveform synthesis for diversity-based transmitbeampattern design[J]. IEEE Trans. on Signal Processing,2008,56(6):2593-2598.
    [43]Luca A. Experimental results on SIAR digital beamforming radar[C]//Proceedingsof the IEEE International Radar Conference, Brighton, UK,1992,505-510.
    [44]Antonio G S and Fuhrmann D R. Beampattern synthesis for wideband MIMO radarsystems[C]//2005Proc.1stIEEE International Workshop on ComputationalAdvances in Multi-Sensor Adaptive, vol.1:105-108.
    [45]Farnett E C and Stevens G H. Pulse compression radar[M]. In Radar Handbook,2nd ed. New York: McGraw-Hill,1990: ch10.
    [46]Schleher D C. Introduction to electronic warfare[M]. Norwood, MA: Artech House,1986: ch4.
    [47]Khan H A, Zhang Y and Ji C, et al. Optimizing polyphase sequences for orthogonalnetted radar[J]. IEEE Signal Processing Lett., Oct.2006,13(10):589-592.
    [48]Deng H. Synthesis of binary sequences with good autocorrelation andcross-correlation properties by simulated annealing[J]. IEEE Trans Aerosp LectronSyst,1996,32(1):98-107.
    [49]Deng H. Polyphase code design for orthogonal netted radar systems[J]. IEEETransactions on Signal Processing,2004,52(11):3126-3135.
    [50]Liu B, He Z S and Zeng J K, et al. Polyphase orthogonal code design for MIMOradar systems[C]//Proceedings of CIE International Conference of Radar, Shanghai,2006:113-116.
    [51]Deng H. Discrete frequency-coding waveform design for netted radar systems[J].IEEE Signal Processing Letters,11(2), Feb,2004:179-182.
    [52]刘波,何子述,王海江. MIMO雷达中的DFCW设计及性能分析[J].电子科技大学学报,39(5), Sep2010:688-691.
    [53]Chen C Y and Vaidyanathan P P. Properties of the MIMO radar ambiguityfunction[C]//Proc. of IEEE International Conference on Acoustics, Speech andSignal Processing,2008:2309-2312.
    [54]Chen C Y and Vaidyanathan P P. Joint MIMO radar waveform and receiving filteroptimization[C]//Proc. of IEEE International Conference on Acoustics, Speech andSignal Processing,2009:2073-2076.
    [55]Chen C Y, Vaidyanathan P. P. MIMO radar waveform optimization with priorinformation of the extended target and clutter[J]. IEEE Trans. on Signal Processing,2009,57(9):3533-3544.
    [56]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.
    [57]杨莘元,王光,谷学涛. Logistic混沌序列性能分析及应用仿真[J].邮电设计技术,2003,12:19-22.
    [58]李长庚,周家令,孙克辉,盛利元.四种数字混沌扩频序列的平衡性分析[J].计算机应用,2008,28(1):68-70.
    [59]谭伟文,刘重明,谢智刚.数字混沌通信-多址方式及性能评估[M].科学出版社,2007.
    [60]Sunee M. Chaotic sequences for secure CDMA[C]. National Conference onNonlinear Systems&Dynamics,2006:1-4.
    [61]Pecora L M. and Carrol T L. Synchronization in chaotic systems[J]. PhysicalReview Letters,1990,64(8):821-824.
    [62]陈宇环,张小红,易称福.基于耦合映像格子的时空混沌同步保密通信研究[J].计算机应用与软件,2008,25(5):74-76.
    [63]Pisarchika A N and Zanin M. Image encryption with chaotically coupled chaoticmaps[J]. Physica D: Nonlinear Phenomena,2008,237(20):2638-2648.
    [64]陈宇环,易称福.时空混沌理论及其在保密通信中的应用[J].信息技术与信息化,2008,2:20-23.
    [65]张晓伟,王玫.一种基于Tent映射量化的二值混沌序列的设计[J].桂林电子工业学院学报,2006,4:2-3.
    [66]Heidar B G. and AMeGillem C D. Chaotic direct-sequence spread spectrumcommunication system. IEEE Communications,1994,42(234):1524-1527.
    [67]张剑,邵玉斌,徐正福,等. Logistic混沌扩频序列及其在DS-CDMA系统中的性能分析[J].昆明理工大学学报(理工版),2006,31(2):62-65.
    [68]王亥,胡健栋. Logistic-Map混沌扩频序列[J].电子学报,1997,25(1):19-23.
    [69]Liu X X. Through the wall imaging using chaotic modulated ultra widebandsynthetic aperture radar[C]//2007IEEE International Conference on Acoustics,Speech, and Signal Processing,2007:1257-1260.
    [70]Venkatasubramanian V. Chaos based UWB imaging radar for homelandsecurity[C]//2004IEEE Conference on Cybernetics and Intelligent Systems,2005:351-355.
    [71]朱丽莉,张永顺,王冲.混沌理论与雷达技术发展[J].现代雷达,2007,29(1):16-19.
    [72]Qiao S. Ultra-wide band random-signal radar utilizing microwave chaos[C]//IEEE2007International Symposium on Microwave, Antenna, Propagation and EMCTechnologies for Wireless Communications,2007:482-485.
    [73]耿丹.混沌雷达关键技术研究[D].哈尔滨:哈尔滨工业大学,2005.
    [74]Liu X X. Clutter suppression in GPR using chaos Modulation[C]//ProceedingsInternational Radar Symposium. Poland,2007:307-310.
    [75]Flores B C, Solis E A and Thomas G. Assessment of chaos-based FM signals forrange-Doppler imaging[J]. IEE Proc. Radar Sonar Navig.,2003,150(4):313-322.
    [76]Sergio Callegari, Riccardo Rovatti and Gianluca Setti. Spectral properties ofchaos-based FM signals: theory and simulation results[J]. IEEE Trans. on Circuitsand Systems,2003,50(1):3-15.
    [77]Ding K and Yang R L. Point target imaging simulation using chaotic signals[C]//IEEE International Radar Conference, Virginia, USA,2005:847-850.
    [78]丁凯.混沌信号合成孔径雷达研究[D].北京:中国科学院电子学研究所,2006:109-114.
    [79]Sergio Callegari, Riccardo Rovatti and Gianluca Setti. Chaos-based FM signals:application and implementation issues[J]. IEEE Trans. on Circuits and Systems,2003,50(8):1141-1147.
    [80]胡文.混沌在雷达中的应用[D].南京理工大学,2004:5-9.
    [81]Lau F and Tse C. Chaos-based digital communicaion systems[M]. Berlin, Germany:Springer,2004.
    [82]丁凯,杨汝良.混沌调频雷达信号仿真[J].电子与信息学报,2006,28(2):354-357.
    [83]张先义,苏卫民,史记,等.切趾滤波旁瓣抑制技术在合成孔径雷达中的应用[J].电子与信号学报,2008,30(4):902-905.
    [84]Tan Q Y and Song Y L. Sidelobe suppression algorithm for chaotic FM signal basedon neural network[C]//ICSP2008proceedings,2008:2429-2433.
    [85]Ashtar A, Thomas i G and Kinsner W. Sufficient condition for chaotic maps to yieldchaotic behavior after FM[J]. IEEE trans. on aerospace and electronic system,2008,44(3):1240-1248.
    [86]汪安明,陈良福.非均匀采样信号的频谱分析及信号处理系统[J].电子技术应用,2006,11:118-120.
    [87]Ashtari A, Thomas G and Kinsner W. Sufficient condition for chaotic maps to yieldchaotic behavior after FM[J]. IEEE Trans on Aerospace and Electronic System,2008,44(3):1240-1248.
    [88]陈滨,刘光祜,唐军,等.相空间法对混沌序列的自相关特性研究[J].电子科技大学学报,2010,39(6):859-863.
    [89]俞杰,郝永刚,任勇,等.一种新的混沌编码脉压雷达信号[J].电子学报,2001,29(12):1705-1706.
    [90]林云生,武文,王晓军,等.一类混沌二相编码脉冲压缩的性能分析[J].系统工程与电子技术,2003,25(4):489-491.
    [91]蒋飞,刘中,胡文,等.任意频谱结构的连续混沌跳频雷达波形设计[J].电子学报,2010,38(9):2195-2198.
    [92]蒋飞,刘中,胡文,等.连续混沌调频雷达信号分析[J].电子与信息学报,2010,32(3):559-563.
    [93]Zeng J K. The application of chaotic signal in MIMO radar[C]//20102ndInternational Conference on Industrial Mechatronics and Automation,2010:214-216.
    [94]Willsey M S, Cuomo K M and Oppenheim A V. Quasi-orthogonal wideband radarwaveforms based on chaotic systems[J]. IEEE Trans. on Aerospace and ElectronicSystems,2011,47(3):1974-1984.
    [95]何子述,韩春林,刘波. MIMO雷达概念及其技术特点分析[J].电子学报,2005,33(12A):2441-2445.
    [96] Kuschel H. VHF/UHF radar part1: Characteristics[J]. Electronics&Communication Engineering Journal,2002,14(2):61-72.
    [97]徐海洲,吴曼青. MIMO雷达信号模型[J].现代电子技术,2007,30(23):28-30.
    [98]He Q, Blum R S and Godrich H, et a1. Cramer-Rao bound for target velocityestimation in MIMO radar with widely separated antennas[C]//The42nd AnnualConference on Information Sciences and Systems,2008:123-127.
    [99]成芳.正交波形MIMO雷达中信号处理与仿真实验研究[D].成都:电子科技大学,2008:5.
    [100]方锦清.驾驭混沌与发展高新技术[M].北京:原子能出版社,2002:1-180.
    [101]陈滨.混沌在时变参数保密通信及雷达波形设计中的应用基础研究[D].成都:电子科技大学,2002.
    [102]陈滨,刘光祜,张勇等.混沌同步的充分条件及应用[J].物理学报,2005,54(11):5038-5047.
    [103]Chen B. Assessment and improvement of autocorrelation performance of chaoticsequences using a phase space method[J]. Science China Inf. Sci., Dec,2011.
    [104]陈滨,刘光祜,唐军等.相空间法对混沌序列的自相关特性研究[J].电子科技大学学报,2010,39(6):859-863.
    [105]陈滨,刘光祜,张勇等.高保密性的时变参数混沌同步通信方法[J].电子科技大学学报,2007,36(2):193-195.
    [106]陈滨,周正欧,刘光祜等.混沌噪声源在噪声雷达的应用[J].现代雷达,2008,30(5):24-28.
    [107]Chen B, Tang J and Zhang Y, et al. Chaotic signals with weak-structure used forhigh resolution radar imaging[C]//2009WRI International Conference onCommunications and Mobile Computing, Kumming, Yunnan, China,2009,1, vol.1:325-330.
    [108]Chen B. Improving autocorrelation performance of Bernoulli sequence based onAPAS theorem[C]//The2ndInternational Conference on Information Science andEngineering, Hangzhou, China,2010,12, vol.3:2143-2146.
    [109]Chen B. Improving autocorrelation performance of hyperhenon sequence based onAPAS theorem[C]//The13thIEEE Joint International Computer Science andInformation Technology Confernece, Chongqing, China,2011,8, vol.3:106-109.
    [110]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-196.
    [111]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(一)[J].物理学进展,1996,16(1):1-70.
    [112]Boccaletti S, Grebogi C and Lai Y C, et al. The control of chaos: theory andapplication[J]. Physics Reports,2000,329(3):103-197.
    [113]Grebogi C, Lai Y C. Controlling chaotic dynamical systems[J]. Systems&ControlLetters,1997,3(5):307-312.
    [114]Grebogi C, Lai Y C and Heyes S. Control and applications of Chaos. Journal of theFranklin Institute,1997,334(5-6):1115-1146.
    [115]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安:西安交通大学出版社,2001:73-83.
    [116]方锦清.非线性控制与混沌控制论:略谈与现代控制论的结合[J].自然杂志,1998,20(3):147-152.
    [117]Pecora L M and Carroll T L. Synchronization of chaotic systems. Physical ReviewLetters,1990, A(64):821-824.
    [118]Boccaletti S, Kurthsc J and Osipovd G, et al. The synchronization of chaoticsystems[J]. Physics Reports,2002(336):1-101.
    [119] KanZ H and Schreiber T. Nonlinear time series analysis.北京:清华大学出版社,2000:1-237.
    [120]吴祥兴,陈忠等.混沌学导论[M].上海:科技文献出版社,1996:120-143.
    [121]方锦清.超混沌、混沌的控制与同步[J].科技导报(北京),1996(4):6-8.
    [122]Lorenz E N. Deterministic nonperiodic flow[J]. J. Atmos. Sci.,1963,20:130-141.
    [123]张学义.混沌同步及其在通信中的应用研究[D].哈尔滨:哈尔滨工程大学,2001:1-10,57-60.
    [124]Ling C and Li S Q. Chaotic spreading sequences with multiple access performancebetter than the random sequences[J]. IEEE Trans on Circuit and System2:Fundamental Theory and Application,2000,47(3):394-397.
    [125]MA KO TO I. Spread spectrum communication via chaos[J]. International Journalof Bifurcation and Chaos,1999,9(1):210-213.
    [126]凌聪,孙松庚. Logistic序列扩频序列的相关分布[J].电子学报,1999,27(1):139-141.
    [127]胡文立,王玫. Logistic数字混沌序列的性能分析[J].桂林电子工业学院学报,2001,21(1):26-29.
    [128]王亥,胡健栋. Logistic-Map混沌扩频序列[J].通信学报,1997,18(8):71-77.
    [129]蔡国权,宋国文,于大鹏. Logistic序列混沌扩频序列的性能分析[J].通信学报,2000,21(1):60-63.
    [130]孙云山,赵东风,余江,等.混沌序列码实方法及应用[J].电路与系统学报,2003,8(3):50-53.
    [131]郜社荣,赵东风,丁洪伟.基于混沌序列的视频流部分加密[J].云南大学学报自然科学版,2006,28(3):211-215.
    [132]Zhang H T, Wang H Y and Ding R T. Security analysis based on oversampledchaotic binary sequences[J]. Transactions of Tianjin University,2001,7(2):123-126.
    [133]盛昭瀚,马军海.非线性动力系统分析引论[M].北京:科学出版社,2001.
    [134]Sang T, Wang R L and Yan Y X. Constructing chaotic discrete sequences fordigital communications based on correlation analysis[J]. IEEE Trans. on SignalProcessing, September,2000,48(9):2557-2565.
    [135]李辉.混沌数字通信[M].北京:清华大学出版社,2006.
    [136]Song X F, Zhou S L and Willett P. Reducing the Waveform Cross-correlation ofMIMO Radar with Space Time Coding[J]. IEEE Trans. on Signal Processing,2010,58(8):4213-4224.
    [137]Somaini U. Binary sequences with good autocorrelation and crosscorrelationproperties[J]. IEEE Trans. Aerosp. Electron. Syst, Nov.1975, AES-11(6):1226-1231.