基于SDP的发射方向图设计方法与稳健波束形成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了基于半正定规划(SDP)的发射方向图设计方法和稳健波束形成,SDP优化模型具有凸优化特性,具有SDP特性的波束形成方法优化模型可以求得全局最优解。传统的向量加权发射方向图设计方法和稳健波束形成方法并不能很好控制主瓣形状,而MIMO雷达发射方向图设计方法的优化变量是发射信号协方差矩阵,有效提高了方向图设计方法中可利用的自由度,自由度的提高为设计具有期望主瓣形状和低旁瓣特性的方向图提供了一个很好的先决条件。可以将发射信号协方差矩阵看作是加权向量的协方差矩阵,将加权向量的协方差矩阵作为阵列信号处理中波束形成方法的优化变量,设计具有期望特性的波束方向图。
     本文具体的研究内容:低旁瓣MIMO雷达发射方向图设计方法,基于阵列结构划分的MIMO雷达发射方向图设计方法,基于SDP的优化布阵方法,基于矩阵加权和半正定秩松弛(SDR)方法的稳健波束形成,基于时变向量加权的稳健波束形成。
     1.低旁瓣MIMO雷达发射方向图可以在保证主瓣发射能量的前提下,抑制旁瓣杂波和虚假目标能量,从而达到提升回波信噪比的目的。本文提出了两种低旁瓣MIMO雷达发射方向图设计方法。(1)通过对已有发射信号协方差矩阵的非对角线元素进行修正来实现低旁瓣方向图的优化设计。首先,利用方向图匹配设计方法得到具有期望主瓣形状的发射方向图,并以其作为初始值;其次,以最小化峰值旁瓣或积分旁瓣为目标函数,在约束修正后的信号协方差矩阵为半正定矩阵的前提下,利用修正矩阵的Frobenius范数为量度约束主瓣形状失真程度。(2)以最小化峰值旁瓣或积分旁瓣为目标函数,约束主瓣幅度波动范围、零点深度以及主波束间的互相关性(多波束方向图)建立优化模型;或者以最小化幅度波动范围为目标函数,约束峰值旁瓣电平、零点深度以及主波束间的互相关性(多波束方向图)建立优化模型。这两个方法都可以得到具有期望主瓣形状和低旁瓣特性的方向图,第二种方法得到的方向图还可有效设置零点深度和主波束间的互相关性。上述优化问题都是SDP凸优化问题,可以求得全局最优解。
     2.针对现有MIMO雷达发射方向图设计方法无法直接推广到大规模阵列MIMO雷达的问题,本文提出了基于阵列结构划分方法的MIMO雷达发射方向图设计方法。(1)将阵列划分为阵列结构相同的子阵,各个子阵的发射信号不同,子阵内阵元发射信号相同,以每个子阵的第一个阵元组成新的稀疏阵列MIMO雷达,子阵划分以后的发射方向图为稀疏阵列MIMO雷达的方向图与子阵方向图的乘积。该方法可以降低发射信号矩阵的维度以及方向图设计中的角度范围,这就有效降低了发射方向图设计方法的运算量。(2)基于平面阵方向图可以由水平和垂直方向的线阵方向图合成的思想,本文提出了应用基波束和概率选择方法设计平面阵MIMO雷达发射方向图的方法。该方法首先将期望方向图沿方位角累加,形成一维俯仰角方向图,建立垂直方向线阵的俯仰角基波束集合和该集合元素的概率选择优化模型;其次针对每个俯仰角对应的一维方位角期望方向图,建立水平方向线阵的方位角基波束集合和该集合元素的概率选择优化模型;最后合成两维基波束集合和集合中元素的选择概率,并求得平面阵MIMO雷达的发射方向图和发射信号。以上方法中的优化模型都是SDP优化模型,可以求得全局最优解。
     3.现有优化布阵方法的优化模型是以阵元位置为优化变量,通常以指数函数出现,该优化问题非凸。针对该问题,本文中提出了基于SDP的优化布阵方法,该方法的实现步骤:首先,将需要稀疏布阵的区域划分为很小的栅格,每个栅格点上有一个待选阵元;其次,以每个待选阵元的选择概率为优化变量,设计具有强指向性的发射方向图;最后,在最小阵元间距的约束下,以选择概率的大小以及重心准则将待选阵元进行聚合,得到满足最小阵元间距要求的稀疏布阵。该方法可以看作是基于概率选择加权向量的发射方向图设计方法,优化模型是一个SDP优化模型,可以求得全局最优解。相比传统的智能优化算法的优化布阵方法,本文方法只需进行单次求解,并且可以从单次求解结果中选择不同阵元数的稀疏布阵。
     4.本文提出了基于矩阵加权和半正定秩松弛(SDR)方法的稳健波束形成。(1)约束主瓣幅度波动范围的矩阵加权稳健波束形成方法,与已有方法相比该方法可以有效控制方向图的主瓣形状、旁瓣电平以及零点深度。存在噪声和系统误差时,该方法对于信号功率的估计具有更好的稳健性。通过约束主瓣幅度波动范围波束形成方法求得加权矩阵的协方差矩阵,对该协方差矩阵做特征值分解求得加权矩阵,通过划分特征值大小来确定最小维度的加权矩阵,该加权矩阵可以在不损失方向图形状和信号功率估计性能的条件下有效降低系统实现复杂度。(2)与向量加权稳健波束形成方法相比,矩阵加权稳健波束形成方法系统实现复杂度较大。针对该问题,本文中给出了基于SDR方法的稳健波束形成,该方法优化模型与矩阵加权方法优化模型的不同只是多了协方差矩阵的秩为1的约束。应用SDR方法求得加权向量的协方差矩阵,将该矩阵中的每一行(列)转化为加权向量,然后选择加权向量使方向图主瓣与0dB之间失真最大值最小。该方法的系统实现复杂度与传统向量加权方法一致,对信号功率的估计性能与矩阵加权方法相当。
     5.尽管矩阵加权稳健波束形成方法对于目标信号功率估计较为准确,对于误差也更稳健,但是该方法的系统实现复杂度较大。针对这个问题,我们提出了基于时变向量加权的稳健波束形成方法。已有的波束形成方法是对每次快拍信号加相同的权向量或权矩阵,这里我们借鉴MIMO雷达的思想,对不同时刻的快拍信号加不同的权向量,这些加权向量组成一个加权向量组,以加权向量组的协方差矩阵为优化变量,建立与矩阵加权稳健波束形成方法相同的优化模型。该方法的信号功率估计性能与矩阵加权方法一致,但是系统的匹配滤波输出会有信干噪比(SINR)损失。通过约束每次快拍的阵列向量加权幅度响应,可以有效降低SINR损失,并且可以显式求解加权向量组。
Transmit pattern Design and robust beamforming via semi-definite programming(SDP) were studied in this dissertation. SDP optimization model possesses convexoptimization features, and the optimization model of beamforming with SDP can obtainglobal optimal solution. The traditional vector weighted transmit pattern design methodand robust beamforming didn’t controlle the mainlobe shape effectively. The transmitsignal covariance matrix is the optimization variable of MIMO radar transmit patterndesign, and the more available degree of freedom can be used than traditional methods,the desired mainlobe shape and low sidelobe pattern can be designed under thecondition of more available degree of freedom. The transmit signal covariance matrixcan be regarded as a weighted vector covariance matrix, which is the optimizationvariable in beamforming methods, and the desired beam pattern can be designed byoptimizing the weighted vector covariance matrix.
     Specific contents of this dissertation: low sidelobe transmit pattern design forMIMO radar, MIMO radar transmit pattern design via array structure divided,optimization of array elements position via SDP, robust beamforming via matrixweighted and semi-definite rank relaxation (SDR), robust beamforming via time variableweighted vector.
     1. Low sidelobe transmit pattern of MIMO radar can concentrate majority energyin the mainlobe region to improve the target detection, and reduce the energy of clutterand false targets from sidelobe, so as to enhance the signal-to-noise ratio(SNR) of echo.(1) Two low sidelobe transmit pattern optimization algorithms for MIMO radar areproposed. Based on a modified non-diagonal elements of transmit signal covariancematrix, and a low sidelobe transmit pattern optimization algorithm for MIMO radar ispresented. Firstly, the pattern matching design method is implemented to obtain thedesired mainlobe shape of transmit pattern, and the results are set as the initial value.Secondly, the cost function can be formulated as the minimization of peak-sidelobe orintegrated-sideloble; the mainlobe shape distortion can be constrained by the Frobeniusnorm of modification matrix, and the modified transmit signal covariance matrix needsto be positive semi-definite.(2) The cost function can be formulated as theminimization of peak-sidelobe or integrated-sideloble, the amplitude ripple of mainlabe,null depth and cross correlation of mainlobes (multiple beam pattern) can be constrained;The cost function can be formulated as the minimization of the amplitude ripple ofmainlabe, the peak-sidelobe level, null depth and cross correlation of mainlobes (multiple beam pattern) can be constrained. The desired mainlobe shape and lowsidelobe pattern can be obtaibed with the proposed methods, the null depth and crosscorrelation of mainlobes can be controlled effectively in second method. The aboveoptimization problem is SDP convex optimization problem, we can get the globaloptimal solution.
     2. The transmit pattern methods available for the MIMO radar can not be extendedinto the large array of the MIMO radar. MIMO radar transmit pattern design viadividing array structure is presented on this dissertation.(1) The large array is dividedinto the same subarray, each subarray transmitted different signal, the same signal wastransmitted by each element in subarray, the first subarray element formed a new sparsearray of MIMO radar, and the sum transmit pattern is the pattern product of sparse arrayMIMO radar and subarray. The size of transmit signal covariance matrix and anglerange with pattern design, the amount of calculation of transmit pattern design methodcan be reduced effectively.(2) With the application of the base-beam and probabilityselection methods, an approach to design the transmit pattern for the planer arrayMIMO radar is presented in this dissertation, which is based on the idea that thepattern of planer array can be synthetised by the pattern of a horizontal and vertical linearray. First, the desired pattern is accumulated along the azimuth and consequently the1-D pattern along the elevation can be formed; the elevation base-beam collection of thevertical line array and the corresponding probability selecting optimization model areformulated. Then, the azimuth base-beam collection of the horizontal line array and thecorresponding probability selecting optimization model can also be formulated for thedesired azimuth pattern of a candidate elevation. Finally, the2-D base-beam collectionis synthetised and the corresponding selected probability of the collection elements canbe calculated. The above optimization problem is SDP convex optimization problem,we can obtain the global optimal solution.
     3. The elements position is the optimization variable in the proposed methods,usually expressed in exponential function, thus the optimization problem isn’t convex.To solve this problem, optimization of array elements position via SDP is proposed inthis dissertation, implementation steps of the proposed method are described asfollows: Firstly, the region of array elements position can be divided in to many smallgrid, there is an array element to be selected on each grid point; Secondly, set selectionprobability of each element as optimization variables, and the transmit pattern with thefeature of strong directivity can be designed; Finally, the array element position isaggregated with the selection probability and gravity method under the minimum array element distance constraint, the sparse array can be obtained by this method. Thismethod can be regarded as transmit pattern design method that optimization variable isthe weighted vector of selection probability. The optimization problem is SDP convexoptimization problem, we can obtain the global optimal solution, and the different sparsearray can be selected in the single result.
     4. The robust beamforming via matrix weighted and semi-definite rank relaxation(SDR) methods are proposed in this dissertation.(1) Compared with the availablemethods, matrix weighted beamforming method which constrains the magnitude ripplerange of the mainlobe can control the shape of the mainlobe, the sidelobe level and thenull depth of pattern more effectively, the estimation of signal power is robust to thenoise and systematic errors. The covariance matrix of the weighting matrix can beobtained by the matrix weighted beamforming method, and the weighting matrix can beobtained by the eigen-decomposition of the covariance matrix. And the minimum scaleof the weighting matrix dimension can be determined by the dominant eigenvalues. Withthe beampattern shape controlled, this method can be able to maintain the performanceof the signal power estimation and the system complexity can be reduced efficiently.(2)Because The system implementation complexity of matrix weighted beamformingmethod is more complex than vector weighted beamforming method. In order to solvethese problems, this dissertation presents new robust beamforming approach based onsemi-definite rank relaxation (SDR). Detailed description of the proposed method aregiven as: the optimal model has the same objective as that of the Capon algorithm; theoptimization variable is the covariance matrix of weighting vector with constraints posedon the ripple of mainlobe amplitude and sidelobe level, and the rank of covariancematrix is1; the covariance matrix of the weighting vector can be obtained by the SDRmethod, and each row or column of the matrix is translated into weight vector, then aweighting vector is chosen which allows it become minimal one in the maximumdistortions between the mainlobe of pattern and0dB. The system implementationcomplexity of the proposed method is the same as the vector weighted methods, and thesignal power estimation performance is similar to the matrix weighted method.
     5. Although matrix weighted robust beamforming method can estimate signalpower accurately, and more robust to errors, this method has a disadvantage that thesystem implementation complexity is more complex than vector weighted beamforming.In order to solve this problem, the time-varing vector weighted robust beamforming isproposed in this dissertation. Each snapshot signal multiplies the same weighted vectoror weighted matrix in the available beamforming methods, we use the idea of MIMO radar that the different moment snapshot signal multiplies different weighted vector,weighted vectors formed weighted vector group, the same optimization model can beformulated which is the same as matrix weighted robust beamforming method, and thecovariance matrix of weighted vector group is the optimization variable. The signalpower estimation performance is equal to the matrix weighted method, but the matchedfilter output of system would arise signal to interference noise ratio (SINR) loss. TheSINR loss can be reduced by constraining magnitude response of weighted vector group,which can be solved by explicitly.
引文
[1] G.C.Southworth. Forty Years of Radio Research[M]. Gordon and Breach, NewYork,1962.
    [2] Hansen R C. Phased array antennas[M]. John Wiley&Sons,2009.
    [3] Skolnik M I. Introduction to radar systems[M].3rd ed. New York: McGraw-Hill,2001.
    [4] Mailloux R J. Phased array antenna handbook[M]. Boston: Artech House,2005.
    [5]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006.
    [6] Wirth W D. Radar Techniques Using Array Antennas (FEE Radar, Sonar,Navigation&Avionics Series)[M]. IET,2001.
    [7] Godara L C. Applications of antenna arrays to mobile communications. I.Performance improvement, feasibility, and system considerations[J]. Proceedingsof the IEEE,1997,85(7):1031-1060.
    [8] Winters J H. Smart antennas for wireless systems[J]. Personal Communications,IEEE,1998,5(1):23-27.
    [9] Alexiou A, Haardt M. Smart antenna technologies for future wireless systems:trends and challenges[J]. Communications Magazine, IEEE,2004,42(9):90-97.
    [10]Rappaport T S. Smart Antennas: Adaptive Arrays, Algorithms[M],&WirelessPosition Location. IEEE,1998.
    [11]Dietrich Jr C B, Stutzman W L, Kim B K, et al. Smart antennas in wirelesscommunications: Base-station diversity and handset beamforming[J]. Antennas andPropagation Magazine, IEEE,2000,42(5):142-151.
    [12]A.V.Oppenheim, editor. Applications of Digital Signal Processing[M]. Pretice-Hall,Englewood Cliffs, New Jersey,1978.
    [13]Hassab J C. Underwater signal and data processing[M]. Boca Raton, FL: CRCPress,1989.
    [14]Spezio A E. Electronic warfare systems[J]. Microwave Theory and Techniques,IEEE Transactions on,2002,50(3):633-644.
    [15]Haykin S. Array signal processing[J]. Englewood Cliffs, NJ, Prentice-Hall, Inc.,1985
    [16]Shaulov A A. Biplane phased array for ultrasonic medical imaging: U.S. Patent4,671,293[P].1987-6-9.
    [17]Ritter T A, Shrout T R, Tutwiler R, et al. A30-MHz piezo-composite ultrasoundarray for medical imaging applications[J]. Ultrasonics, Ferroelectrics andFrequency Control, IEEE Transactions on,2002,49(2):217-230.
    [18]Michau, Stéphane, Pascal Mauchamp, and L. Dufait. Piezocomposite30MHz lineararray for medical imaging: design challenges and performances evaluation of a128elements array[J]. Ultrasonics Symposium,2004Vol.2.
    [19]Benesty J, Chen J, Huang Y. Microphone array signal processing[M]. Springer,2008.
    [20]Van Trees H L. Detection, Estimation, and Modulation Theory, Optimum ArrayProcessing[M]. John Wiley&Sons,2004.
    [21]Van Trees H L. Detection, Estimation, and Modulation Theory, Optimum ArrayProcessing[M].charpter2-4, John Wiley&Sons,2004.
    [22]Van Trees H L. Detection, Estimation, and Modulation Theory, Optimum ArrayProcessing[M].charpter6,7, John Wiley&Sons,2004.
    [23]王永良.空间谱估计理论与算法[M].清华大学出版社有限公司,2004.
    [24]Fowler C A. Old Radar Types Never Die; They just phased array or55years oftrying to avoid mechanical scan[J]. IEEE Aerospace and Electronic SystemsMagazine,1998,13(9):24A-24L.
    [25]Fenn A J, Temme D H, Delaney W P, et al. The development of phased-array radartechnology[J]. Lincoln Laboratory Journal,2000,12(2):321-340.
    [26]Dolph C L. A current distribution for broadside arrays which optimizes therelationship between beam width and side-lobe level[J]. Proceedings of the IRE,1946,34(6):335-348.
    [27]Kraus J D. Antennas[M].2rd ed. New York: McGraw-Hill,1988.
    [28]Taylor T T. Design of line-source antennas for narrow beamwidth and low sidelobes[J]. Antennas and Propagation, Transactions of the IRE Professional Group on,1955,3(1):16-28.
    [29]Steyskal H. Synthesis of antenna patterns with prescribed nulls[J]. IEEETransactions on Antennas and Propagation,1982,30(2):273-279.
    [30]Khodier M M, Christodoulou C G. Linear array geometry synthesis with minimumsidelobe level and null control using particle swarm optimization[J]. IEEETransactions on Antennas and Propagation,2005,53(8):2674-2679.
    [31]Shpak D J. A method for the optimal pattern synthesis of linear arrays withprescribed nulls[J]. IEEE Transactions on Antennas and Propagation,1996,44(3):286-294.
    [32]B lcskei H, Gesbert D, Papadias C B, et al. Space-time wireless system: Fromarray processing to MIMO communications[M]. New York: Cambridge UniversityPress,2006
    [33]Fishler E, Haimovich A, Blum R, et al. MIMO radar: an idea whose time hascome[C]. Radar Conference,2004. Proceedings of the IEEE.2004:71-78.
    [34]Fishler E, Haimovich A, Blum R, et al. Performance of MIMO radar systems:advantages of angular diversity[C]. Proceedings of the Conference Record of theThirty-Eighth Asilomar Conference on Signals, Systems and Computers,2004:305-309.
    [35]Fishler E, Haimovich A, Blum R S, et al. Spatial diversity in radars-models anddetection performance[J]. IEEE Transactions on Signal Processing,2006,54(3):823-838.
    [36]Lehmann, N. H., Fishler, E., Haimovich, A. M., Blum, R. S., Chizhik, D., Cimini, L.J.,&Valenzuela, R. A. Evaluation of transmit diversity in MIMO-radar directionfinding[J]. IEEE Transactions on Signal Processing,2007,55(5):2215-2225.
    [37]Haimovich, Alexander M., Rick S. Blum, and Leonard J. Cimini. MIMO radar withwidely separated antennas[J]. IEEE Signal Processing Magazine,25(1)(2008):116-129.
    [38]Fishler, E., Haimovich, A., Blum, R. S., Chizhik, D., Cimini, L.,&Valenzuela, R.Statistical MIMO radar[C]. In12th Conf. on Adaptive Sensor Array Processing.2004.3:53-59.
    [39]Godrich H, Haimovich A M, Blum R S. Cramer Rao bound on target localizationestimation in MIMO radar systems[C]. Information Sciences and Systems,2008.CISS2008.42nd Annual Conference on. IEEE,2008:134-139.
    [40]Yang, Yang, and Rick S. Blum. Minimax robust MIMO radar waveform design[J].IEEE Selected Topics in Signal Processing,2007,1(1):147-155.
    [41]Godrich H, Haimovich A M, Blum R S. Concepts and applications of a MIMOradar system with widely separated antennas[J]. MIMO Radar Signal Processing,2008:365.
    [42]Yang Y, and Rick S. Blum. Waveform design for MIMO radar based on mutualinformation and minimum mean-square error estimation[C]. Information Sciencesand Systems,200640th Annual Conference on. IEEE,2006.
    [43]He Q, Blum R S, Godrich H, et al. Cramer-Rao bound for target velocity estimationin MIMO radar with widely separated antennas[C]. Information Sciences andSystems,2008. CISS2008.42nd Annual Conference on. IEEE,2008:123-127.
    [44]He Q, Blum R S, Godrich H, et al. Target velocity estimation and antennaplacement for MIMO radar with widely separated antennas[J]. IEEE Journal ofSelected Topics in Signal Processing,2010,4(1):79-100.
    [45]Yang Y, Blum R S. Radar waveform design using minimum mean-square error andmutual information[C]. Sensor Array and Multichannel Processing,2006. FourthIEEE Workshop on. IEEE,2006:234-238.
    [46]Godrich H, Haimovich A M, Blum R S. Target localization accuracy gain in MIMOradar-based systems[J]. IEEE Transactions on Information Theory,2010,56(6):2783-2803.
    [47]He Q, Blum R S, Haimovich A M. Non-coherent MIMO radar for target estimation:More antennas means better performance[C]. Information Sciences and Systems,2009. CISS2009.43rd Annual Conference on. IEEE,2009:108-113.
    [48]Godrich H, Chiriac V M, Haimovich A M, et al. Target tracking in MIMO radarsystems: Techniques and performance analysis[C]. Radar Conference,2010IEEE.IEEE,2010:1111-1116.
    [49]He Q, Blum R S, Haimovich A M. Noncoherent MIMO radar for location andvelocity estimation: More antennas means better performance[J]. IEEETransactions on Signal Processing,2010,58(7):3661-3680.
    [50]Blum R S. Limiting case of a lack of rich scattering environment for MIMO radardiversity[J]. IEEE Signal Processing Letters,2009,16(10):901-904.
    [51]Godrich H, Haimovich A M, Blum R S. A comparative study of target localizationin MIMO radar systems[C]. Waveform Diversity and Design Conference,2009International. IEEE,2009:124-128.
    [52]Wei C, He Q, Blum R S. Cramer-Rao bound for joint location and velocityestimation in multi-target non-coherent MIMO radars[C]. Information Sciences andSystems (CISS),201044th Annual Conference on. IEEE,2010:1-6.
    [53]He Q, Blum R S. Noncoherent versus coherent MIMO radar: Performance andsimplicity analysis[J]. Signal Processing,2012,92(10):2454-2463.
    [54]Yang Y, Blum R S. Minimax robust waveform design for MIMO radar in thepresence of PSD uncertainties[C]. Information Sciences and Systems,2007.CISS'07.41st Annual Conference on. IEEE,2007:154-159.
    [55]Khomchuk P, Bilik I, Blum R S. MIMO radar target location accuracy usingmultiple widely separated antenna arrays[C]. Radar Conference (RADAR),2013IEEE.2013:1-6.
    [56]He Q, Blum R S, He Z. Noncoherent versus coherent MIMO radar for joint targetposition and velocity estimation[C]. Radar2011IEEE CIE InternationalConference on.2011,1:108-111.
    [57]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社,2006.
    [58]Li J and Stoica P. MIMO radar—diversity means superiority[C].14th AnnualWorkshop on Adaptive Sensor Array Processing, MIT Lincoln Lab, Lexington,MA,2006:1-6.
    [59]Li J, Stoica P, Xu L, et al.. On parameter identifiability of MIMO radar[J]. IEEESignal Processing Letters,2007,14(12):968–971.
    [60]Bliss D W and Forsythe K W. Multiple-input multiple-output(MIMO) radar andimaging: degrees of freedom and resolution[C]. Coference Record of the38thAsilomar Conference on Signals, System and Computers, Pacific Grove, CA,2003,vol.1:54–59.
    [61]Stoica P, Li J and Xie Yao. On probing signal design for MIMO radar[J]. IEEETransactions on Signal Processing,2007,55(8):4151-4161.
    [62]胡亮兵,刘宏伟,吴顺君,等.集中式MIMO雷达发射方向图快速设计方法[J].电子信息学报,2010.32(2):481-484.
    [63]罗涛,关永峰,刘宏伟,等.低旁瓣MIMO雷达发射方向图设计[J].电子信息学报,2013.35(12):2815-2822.
    [64]Fuhrmann D R and Antonio G S. Transmit beamforming for MIMO radar systemsusing signal cross-correlation[J]. IEEE Transactions on Aerospace and ElectronicSystems,2008,44(1):171-186.
    [65]Li J, Xu L Z, Stoica P, et al.. Range compression and waveform optimization forMIMO radar a Cramér–Rao bound based study[J]. IEEE Transactions on SignalProcessing,2008,56(1):218-232.
    [66]Hassanien A and Vorobyov S A. Transmit energy focusing for DOA estimation inMIMO radar with colocated antennas[J]. IEEE Transactions on Signal Processing,2011,59(6):2669-2682.
    [67]Ahmed S, Thompson J S, Petillot Y R, et al.. Unconstrained synthesis of covariancematrix for MIMO radar transmit beampattern[J]. IEEE Transactions on SignalProcessing,2011,59(8):3837-3849.
    [68]Shadi K and Behnia F. Transmit beampattern synthesis using eigenvaluedecomposition in MIMO radar[C].20118th International Conference onInformation Communications and Signal Processing, Singapore,2011:1-5.
    [69]Hong Z, Ma P, Huang Z R, et al.. Adaptive beamforming for MIMO radar withsidelobe control based on second order cone programming[C].2012InternationalConference on Information Science and Technology, Chongqing, China,2012:384-388.
    [70]Friedlander B. On transmit beamforming for MIMO radar[J]. IEEE Transactions onAerospace and Electronic Systems,2012,48(4):3376-3388.
    [71]Wang Y C, Wang X, Liu H, et al.. On the design of constant modulus probingsignals for MIMO radar[J]. IEEE Transactions on Signal Processing,2012,60(8):4432-4438.
    [72]Vandenberghe L, Boyd S. Semidefinite programming[J]. SIAM review,1996,38(1):49-95.
    [73]Kumar B P, Branner G R. Generalized analytical technique for the synthesis ofunequally spaced arrays with linear, planar, cylindrical or spherical geometry[J].Antennas and Propagation, IEEE Transactions on,2005,53(2):621-634.
    [74]Kumar B P, Branner G R. Design of unequally spaced arrays for performanceimprovement[J]. IEEE Transactions on Antennas and Propagation,1999,47(3):511-523.
    [75]Stephen Boyd. Convex Optimization. UK:Cambridge University Press.2004.
    [76]Haupt R L. Thinned arrays using genetic algorithms[J]. IEEE Transactions onAntennas and Propagation,1994,42(7):993-999.
    [77]陈客松,何子述,韩春林.利用GA实现非对称稀疏线阵旁瓣电平的优化[J].电子与信息学报,2007,29(4):987-990.
    [78]陈忠宽,傅文斌,刘捷,等.非均匀线阵遗传优化方案的比较研究[J].武汉理工大学学报,2003,25(9):73-76.
    [79]韩明华,袁乃昌.整体退火遗传算法在不等间距线天线阵的综合中的应用[J].电子科学学刊,1999,21(2):226-231.
    [80]刘燕;焦永昌;张亚明;王新宽,入侵杂草优化算法用于阵列天线方向图综合,西电学报,2014,41(1),29-33.
    [81]Capon J. High resolution frequency-wavenumber spectrum analysis[J]. Proceedingsof the IEEE,1969,57(8):1408–1418.
    [82]Van Trees H L. Detection, Estimation, and Modulation Theory, Optimum ArrayProcessing[M]. John Wiley&Sons,2004:440-443.
    [83]Van Trees H L. Detection, Estimation, and Modulation Theory, Optimum ArrayProcessing[M]. John Wiley&Sons,2004:446-447.
    [84]Van Trees H L. Detection, Estimation, and Modulation Theory, Optimum ArrayProcessing[M]. John Wiley&Sons,2004:449-450.
    [85]Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptivearrays[J]. IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):397-401.
    [86]Feldman D D, Griffiths L J. A projection approach for robust adaptivebeamforming[J]. IEEE Transactions on Signal Processing,1994,42(4):867-876.
    [87]Kim J W, Un C K. An adaptive array robust to beam pointing error[J]. IEEETransactions on Signal Processing,1992,40(6):1582-1584.
    [88]Jablon N K. Adaptive beamforming with the generalized sidelobe canceller in thepresence of array imperfections[J]. IEEE Transactions on Antennas andPropagation,1986,34(8):996-1012.
    [89]Goldberg J, Messer H. Inherent limitations in the localization of a coherentlyscattered source[J]. IEEE Transactions on Signal Processing,1998,46(12):3441-3444.
    [90]Besson O, Stoica P. Decoupled estimation of DOA and angular spread for aspatially distributed source[J]. IEEE Transactions on Signal Processing,2000,48(7):1872-1882.
    [91]Astély D, Ottersten B. The effects of local scattering on direction of arrivalestimation with MUSIC[J]. IEEE Transactions on Signal Processing,1999,47(12):3220-3234.
    [92]Gershman A B. Robust adaptive beamforming in sensor arrays[J]. AEUInternational Journal of Electronics and Communications,1999,53(6):305-314.
    [93]Cox H, Zeskind R M, Owen M M. Robust adaptive beamforming[J]. IEEETransactions on Acoustics, Speech and Signal Processing,1987,35(10):1365-1376.
    [94]Bell K L, Ephraim Y, Van Trees H L. A Bayesian approach to robust adaptivebeamforming[J]. IEEE Transactions on Signal Processing,2000,48(2):386-398.
    [95]Er M H, Cantoni A. An alternative formulation for an optimum beamformer withrobustness capability[C]. IEE Proceedings F (Communications, Radar and SignalProcessing). IET Digital Library,1985,132(6):447-460.
    [96]Chang L, Yeh C C. Performance of DMI and eigenspace-based beamformers[J].IEEE Transactions on Antennas and Propagation,1992,40(11):1336-1347.
    [97]Vorobyov S A, Gershman A B, Luo Z Q. Robust adaptive beamforming usingworst-case performance optimization: A solution to the signal mismatch problem[J].IEEE Transactions on Signal Processing,2003,51(2):313-324.
    [98]Lorenz R G, Boyd S P. Robust minimum variance beamforming[J]. IEEETransactions on Signal Processing,2005,53(5):1684-1696.
    [99]Li J, Stoica P, Wang Z. On robust Capon beamforming and diagonal loading[J].IEEE Transactions on Signal Processing,2003,51(7):1702-1715.
    [100] Robust adaptive beamforming[M]. Hoboken, New Jersey: John Wiley,2006.
    [101] Li J, Xie Y, Stoica P, et al.. Beampattern synthesis via a matrix approach forsignal power estimation[J]. IEEE Transactions on Signal Processing,2007,55(12):5643-5657.
    [102] Xu L, Li J, Stoica P. Adaptive techniques for MIMO radar[C]. Sensor Array andMultichannel Processing,2006. Fourth IEEE Workshop on. IEEE,2006:258-262.
    [103] Xu L, Li J, Stoica P. Target detection and parameter estimation for MIMO radarsystems[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):927-939.
    [104] Li J, Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal ProcessingMagazine,2007,24(5):106-114.
    [105] Deng H. Polyphase code design for orthogonal netted radar systems[J]. IEEETransactions on Signal Processing,2004,52(11):3126-3135.
    [106] Deng H. Discrete frequency-coding waveform design for netted radar systems[J].IEEE Signal Processing Letters,2004,11(2):179-182.
    [107] Liu B, He Z, Zeng J, et al. Polyphase orthogonal code design for MIMO radarsystems[C]. Proceedings of the International Conference on Radar,2006:1-4.
    [108] Liu B, He Z, He Q. Optimization of orthogonal discrete frequency-codingwaveform based on modified genetic algorithm for MIMO radar[C]. Proceedingsof the International Conference on Communications, Circuits and Systems,2007:966-970.
    [109] Khan H A, Edwards D J. Doppler problems in orthogonal MIMO radars[C].Proceedings of the IEEE Conference on Radar,2006:1-4.
    [110] Zhang Y, Wang J. Improved design of DFCW for MIMO radar[J]. ElectronicsLetters,2009,45(5):285-286.
    [111] San Antonio G, Fuhrmann D R. Beampattern synthesis for wideband MIMO radarsystems[C]. Proceedings of the1st IEEE International Workshop onComputational Advances in Multi-Sensor Adaptive Processing,2005:105-108.
    [112] Li H, Himed B. Transmit subaperturing for MIMO radars with co-locatedantennas[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(1):55-65.
    [113] Li J, Stoica P, Zheng X. Signal synthesis and receiver design for MIMO radarimaging[J]. IEEE Transactions on Signal Processing,2008,56(8):3959-3968.
    [114] Stoica P, Li J, Zhu X. Waveform synthesis for diversity-based transmitbeampattern design[J]. IEEE Transactions on Signal Processing,2008,56(6):2593-2598.
    [115] He H, Stoica P, Li J. Designing Unimodular sequence sets with good correlations-including an application to MIMO radar[J]. IEEE Transactions on SignalProcessing,2009,57(11):4391-4405.
    [116] Ahmed S, Thompson J S, Petillot Y R, et al. Finite alphabet constant-envelopewaveform design for MIMO radar[J]. IEEE Transactions on Signal Processing,2011,59(11):5326-5337.
    [117]陈客松.稀布天线阵列的优化布阵技术研究[D].电子科技大学,2006.
    [118]李东风,龚中麟.遗传算法应用于超低副瓣线阵天线方向图综合[J].电子学报,2003,31(1):82-84.
    [119]付云起,袁乃昌.基于遗传算法和模拟退火的不等间距稀布阵的设计[J].电子与信息学报,2001,23(7):700-704.
    [120]陈客松,何子述,韩春林.最佳稀疏直线阵列的分区穷举综合法[J].电子与信息学报,2006,28(11).
    [121]束咸荣,晏焕强.大型稀布相控阵天线设计及其旁瓣电平研究[J].微波学报,1996,12(3):169-174.
    [122] Sturm J. Using SeDuMi1.02, a MATLAB toolbox for optimization oversymmetric cones[J]. Optimization Methods and Software,1999,11(1):625-653.
    [123] Grant M, Boyd S. CVX: Matlab software for disciplined convexprogramming[OL]. http://stanford.edu/~boyd/cvx,2008.
    [124] Moffet A T. Minimum-redundancy linear arrays[J]. IEEE Transactions onAntennas and Propagation,1968,16(2):172-175.
    [125] Abramovich Y I, Gray D A, Gorokhov A Y, et al. Comparison of DOA estimationperformance for various types of sparse antenna array geometries[C]. Proc.EUSIPCO.1996,96:915-918.
    [126] Chambers C, Tozer T C, Sharman K C, et al. Temporal and spatial samplinginfluence on the estimates of superimposed narrowband signals: when less canmean more[J]. IEEE Transactions on Signal Processing,1996,44(12):3085-3098.
    [127] Abramovich Y I, Spencer N K, Gorokhov A Y. Positive-definite Toeplitzcompletion in DOA estimation for nonuniform linear antenna arrays. II. Partiallyaugmentable arrays[J]. IEEE Transactions on Signal Processing,1999,47(6):1502-1521.
    [128]雷万明,刘光炎.基于波束形成的分布式卫星SAR成像[J].电波科学学报,2002,17(1):64-68.
    [129]顾杰,龚耀寰,何芳.智能天线发射数字多波束形成方法研究[J].电波科学学报,2002,17(4):381-385.
    [130]杨坚,奚宏生,杨锋,等. CDMA系统智能天线盲自适应波束形成[J].电波科学学报,2004,19(1):
    [131]王丽娜,王兵,周贤伟.一种新的智能天线波束形成算法[J].电波科学学报,2007,22(2):351-354.
    [132] Aziz A, Zeng M, Zhou J, et al. Robust beamforming with channel uncertainty fortwo-way relay networks[C].2012IEEE International Conference on. IEEE,2012:3632-3636.
    [133] Cumanan K, Rahulamathavan Y, Lambotharan S, et al. MMSE basedbeamforming techniques for relay broadcast channels[J]. IEEE Transactions onVehicular Technology,2013.
    [134] Liao B, Chan S C. Robust recursive beamforming in the presence of impulsivenoise and steering vector mismatch[J]. Journal of Signal Processing Systems,2012:1-10.
    [135] Ma Shuai, Dechun Sun. Chance constrained robust beamforming in cognitiveradio networks[J]. IEEE Communications Letters,2013,17(1):67-70.
    [136] Suresh Kumar, N.Dibu John Philip, C. Bhattacharya. DoA estimation usingcompressive beamforming in shallow ocean using acoustic vector sensors[C].India Confere-nce (INDICON),2012Annual IEEE.
    [137] Wong C H, Siew Z W, Tan M K, et al. Optimization of Distributed andCollaborative Beamforming in Wireless Sensor Networks[C]. ComputationalIntelligence, Communication Systems and Networks (CICSyN),2012FourthInternational Conference on. IEEE,2012:84-89.
    [138] Alrabadi O N, Tsakalaki E, Huang H, et al. Beamforming via large and denseantenna arrays above a clutter[J]. IEEE Journal on Selected Areas inCommunications,2013,31(2):314-325.
    [139] Du H, Ratnarajah T, Pesavento M, et al. Joint transceiver beamforming in MIMOcognitive radio network via second-order cone programming[J]. IEEETransactions on Signal Processing,2012,60(2):781-792.
    [140] Frost O L III. An algorithm for linearly constrained adaptive array processing[J].Proceedings of the IEEE,1972,60(8):926-935
    [141] Lebret H and Boyd S. Antenna array pattern synthesis via convex optimization[J].IEEE Transactions on Signal Processing,1997,45(3):526-531.
    [142] Orsi R, Helmke U, and Moore J B. A Newton-like method for solving rankconstrained linear matrix inequalities[J]. Automatica,2006,42(11):3138–3144.