3T3-L1脂肪细胞胰岛素抵抗相关miRNAs的筛选及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分miRNAs在3T3-L1脂肪细胞和胰岛素抵抗脂肪细胞中的差异表达
     目的:
     1.探讨正常3T3-L1脂肪细胞和胰岛素抵抗(insulin resistance,IR)脂肪细胞中微小RNA(miRNAs)的表达是否存在差异。
     2.筛选几个可能与IR相关的miRNAs,寻找其靶基因,以进一步研究miRNAs在IR中的作用。
     方法:
     1.IR脂肪细胞模型的建立
     采用高糖/高胰岛素处理3T3-L1脂肪细胞24小时,通过葡萄糖消耗实验和[~3H]葡萄糖摄取实验判断模型是否建立。
     2.miRNAs的差异表达
     运用miRNAs芯片技术检测3T3-L1脂肪细胞和IR脂肪细胞中差异表达的miRNAs。
     3.IR相关的几个miRNAs及其靶基因的筛选
     根据基因芯片结果,借助生物信息学方法,对显著变化的某些miRNAs进行分析,筛选几个可能与IR相关的miRNAs及其调控的靶基因。
     结果:
     1.IR脂肪细胞模型的建立
     高糖/高胰岛素分别使3T3-L1脂肪细胞葡萄糖消耗量和[~3H]葡萄糖摄取率下降75%和161%,与脂肪细胞组相比差异有显著性,结果表明IR脂肪细胞模型成立。
     2.miRNAs芯片分析
     miRNAs芯片结果显示:miRNAs在IR脂肪细胞中比在脂肪细胞中表达水平升高2倍以上者有50个,表达水平降低至1/2以下者有29个;且miR-320上调最明显,miR-21下调最明显。
     3.IR相关的几个miRNAs及其靶基因
     应用生物信息学方法,我们选取了3个可能与IR相关的miRNAs(miR-320,298和miR-21)进行下一步的功能实验,Pik3r1可能是他们的靶基因。
     结论:
     1.高糖和高胰岛素可诱导3T3-L1脂肪细胞产生IR。
     2.脂肪细胞和IR脂肪细胞中存在miRNAs的差异表达。
     第二部分miRNAs对3T3-L1脂肪细胞胰岛素抵抗的调节作用及其分子机制
     目的:
     1.针对miR-320和miR-298设计相应的反义寡核苷酸(AMO-miR-320,AMO-miR-298),同时构建含miR-21前体的重组质粒(pSilencer 3.1-miR-21)。以脂质体为载体介导,观察AMO-miR-320,AMO-miR-298及pSilencer 3.1-miR-21对3T3-L1脂肪细胞和IR脂肪细胞糖代谢的影响。了解这3个miRNAs在正常和病理状况下有无促进葡萄糖摄取和改善IR的作用。
     2.对能改善脂肪细胞IR的miRNAs,进一步探讨其作用机制。
     方法:
     1.miRNAs对正常及IR脂肪细胞葡萄糖消耗的影响
     实验分7组:脂肪细胞组、脂质体组、AMO-miR-298组、AMO-miR-320组、miRNA无关对照组(control oligo组)、pSilencer3.1-miR-21组和空质粒组。脂肪细胞转染4-6h小时后,用含0.2%BSA的正常糖/正常胰岛素或高糖/高胰岛素培养液培养24小时,以葡萄糖氧化酶法检测每孔培养液中葡萄糖的含量,与未接种细胞的空白孔的糖含量均值相减,计算葡萄糖的消耗量。
     2.miRNAs对正常及IR脂肪细胞葡萄糖摄取的影响
     实验分组及细胞处理同上,24小时后,通过葡萄糖摄取实验检测各组脂肪细胞对葡萄糖摄取的影响。
     3.miRNAs对IR脂肪细胞PI-3K、Akt、GLUT4的表达和GLUT4转位的影响
     实验分7组:脂肪细胞组、IR脂肪细胞组(IR组)、AMO-miR-320+IR组、脂质体+IR组、miRNA无关对照+IR组、pSilencer 3.1-miR-21+IR组和空质粒+IR组。实验结束时,通过western-blot检测各组细胞(P1-3K,Akt和GLUT4)的蛋白表达及细胞外膜蛋白中GLUT4蛋白的含量;荧光定量PCR检测P1-3K,Akt和GLUT4基因表达水平。
     结果:
     1.miRNAs对正常3T3-L1脂肪细胞葡萄糖消耗和摄取的影响
     基础状态下,3种miRNAs对3T3-L1脂肪细胞葡萄糖消耗和摄取无显著性影响;在100nmol/L胰岛素存在的条件下,各组脂肪细胞对葡萄糖的消耗和摄取都显著增加,分别是基础状态下的2.2-2.3倍和4.2-4.4倍,但组间无显著性差异。
     2.miRNAs对IR脂肪细胞葡萄糖消耗和摄取的影响
     基础状态下,IR组和脂肪细胞组葡萄糖消耗量和摄取率无显著性差异。在100nmol/L胰岛素存在下,与脂肪细胞组相比,IR组葡萄糖消耗量和摄取率显著下降;与IR组比较,AMO-miR-320+IR组和pSilencer 3.1-miR-21+IR组葡萄糖消耗量分别增加了18.5%和14.9%(P<0.05),葡萄糖摄取率分别增加了57.3%和46.2%(P<0.05);其他各组与IR组相比,葡萄糖消耗量和摄取率无显著性差异。
     3.miRNAs对IR脂肪细胞PI-3K、Akt、GLUT4的表达和GLUT4转位的影响
     Western-blot显示:与脂肪细胞组相比,IR组PI3K p85蛋白表达和Akt丝氨酸磷酸化水平分别下降了42.7%和54.8%;AMO-miR-320和miR-21可完全恢复IR脂肪细胞PI3K p85表达;同时使IR脂肪细胞Akt丝氨酸磷酸化水平分别提高28.5%和33.9%。此外,IR组较脂肪细胞组GLUT4蛋白表达显著下降51.1%,AMO-miR-320可使IR脂肪细胞GLUT4蛋白水平提高29.6%;pSilencer 3.1-miR-21+IR组GLUT4蛋白表达水平轻微提高,但与IR组相比无显著性差异。葡萄糖转位分析表明:IR脂肪细胞GLUT4蛋白转位显著降低,仅为正常脂肪细胞的33.7%。我们以IR组GLUT4蛋白转位量作为基值,各组与之相比计算GLUT4蛋白转位的相对定量。AMO-miR-320和miR-21分别使IR脂肪细胞GLUT4蛋白转位增加168.7%和149.4%。荧光定量PCR结果表明:脂肪细胞组PI3K、Akt和GLUT4 mRNA的表达分别是IR组的8.57,16和18.4倍;AMO-miR-320可使IR组Akt和GLUT4 mRNA表达升高4.29和12.1倍,但不影响PI3K mRNA表达水平;miR-21可使IR组PI3K、Akt和GLUT4 mRNA的表达分别提高4.92,6.06和6.96倍。其余各组与IR组相比,上述指标无显著性差异。
     结论:
     1.AMO-miR-320和miR-21可促进IR脂肪细胞糖代谢、改善IR。
     2.AMO-miR-320和miR-21可能是通过作用PI3K P85和PI3KP85上游基因,提高Akt丝氨酸磷酸化水平,促进GLUT4的转位来发挥改善IR的作用。
     第三部分脂肪细胞分化过程中miRNAs差异表达及功能研究
     目的:
     1.探讨3T3-L1前脂肪细胞和间质干细胞(MSC)分化成脂肪细胞过程中差异表达的miRNAs。
     2.观察miR-320、miR-21和miR-375对3T3-L1脂肪细胞分化的影响;对能影响脂肪细胞分化的miRNAs,进一步探讨其作用机制。
     方法:
     1.脂肪细胞分化过程中miRNAs的差异表达
     分别将3T3-L1前脂肪细胞和分离培养的MSC诱导分化,通过油红O染色检测细胞内脂质蓄积情况、RT-PCR方法检测过氧化物酶体增殖物激活受体γ2(PPARγ2)和脂肪性脂肪酸结合蛋白(aP2)的表达,判断3T3-L1前脂肪细胞和MSC分化情况。运用miRNAs芯片技术检测3T3-L1前脂肪细胞和3T3-L1脂肪细胞;MSC和MSC-脂肪细胞中差异表达的miRNAs。
     2.脂肪细胞分化相关的miRNAs的筛选及其靶基因的预测
     根据基因芯片结果,借助生物信息学方法,对3T3-L1前脂肪细胞分化过程中显著变化的1个miRNA及前面已经证明对脂肪细胞IR有作用的2个miRNAs(miR-320和miR-21)进行靶基因预测。
     3.miR-21和miR-375对3T3-L1前脂肪细胞分化的影响
     构建含miR-21和miR-375前体的重组质粒(pSilencer 3.1-miR-21和pSilencer 3.1-miR-375),通过脂质体转染法将重组质粒稳定转染3T3-L1细胞。随后将正常和稳定转染的3T3-L1前脂肪细胞诱导分化,实验结束时进行油红O染色,判断脂肪细胞的分化情况。
     4.AMO-miR-320对3T3-L1前脂肪细胞分化的影响
     实验共分4组:分别为3T3-L1对照组、3T3-L1脂肪细胞组、AMO-miR-320组和miRNAs无关对照组。3T3-L1前脂肪细胞常规培养,在诱导分化前分别将AMO-miR-320和无关对照序列转入细胞。转染3天后当细胞生长融合时开始诱导,实验结束时进行油红O染色,判断脂肪细胞的分化情况。
     5.miR-375促进3T3-L1前脂肪细胞的分化及可能机制
     为进一步观察miR-375是否促进3T3-L1前脂肪细胞的分化及其可能机制,我们将3T3-L1前脂肪细胞(对照组)和pSilencer3.1-miR-375稳定转染3T3-L1前脂肪细胞(miR-375组)诱导分化,通过RT-PCR实验检测在分化的不同时间(0,3,5,7,9天)aP2和PPARγ2基因表达;高效液相色谱检测脂肪细胞内甘油三酯含量;Western-blot检测分析各实验组ERK1/2、PPARγ2和aP2蛋白的表达。
     结果:
     1.miRNAs芯片分析
     诱导分化结束时,两种脂肪细胞内均含许多脂滴,90%以上的细胞能被油红O染色;且PPARγ2和aP2的基因表达显著增加,这些结果表明3T3-L1前脂肪细胞和MSC分化成成熟的脂肪细胞。芯片结果显示:3T3-L1前脂肪细胞分化成脂肪细胞上调的miRNAs有26个,下调的miRNAs有2个;小鼠MSC分化成脂肪细胞上调的miRNAs有20个,下调的miRNAs有55个。
     2.脂肪细胞分化相关的miRNAs及其靶基因
     应用生物信息学方法,我们选择了3个可能与脂肪细胞分化相关的miRNAs(miR-320,21和miR-375),且MAPK1(ERK2)可能是这3个miRNAs的靶基因。
     3.miRNAs对3T3-L1前脂肪细胞分化的影响
     油红O染色结果表明:miR-375显著增加脂肪细胞的OD值,而miR-21和AMO-miR-320对脂肪细胞的OD值无显著影响,提示miR-375能促进3T3-L1前脂肪细胞分化。
     4.miR-375促进3T3-L1前脂肪细胞的分化及可能机制
     RT-PCR结果表明:对照组和miR375组在分化过程中PPARγ2和aP2表达逐日增加;但miR375组从分化的第5天起PPARγ2和aP2表达显著高于对照组。高效液相色谱分析发现:miR375使脂肪细胞内甘油三酯含量显著增加(12.1±0.46 vs 10.8±0.34 mg/mg prot,p<0.01)。Western-blot结果显示:miR-375使3T3-L1脂肪细胞ERK1和ERK2蛋白分别下降了27.4%和28.2%,PPARγ2和aP2蛋白表达分别提高了49.6%和52.8%(P<0.01);空质粒对上述指标无显著影响。
     结论:
     1.3T3-L1前脂肪细胞和MSC分化成脂肪细胞过程中存在差异表达的miRNAs。
     2.miR-375可促进3T3-L1前脂肪细胞分化,其机制可能是通过抑制ERK1/2蛋白的表达、提高PPARγ2和aP2蛋白的表达。
Part one Differential expression of miRNAs in the 3T3-L1 adipocytes and insulin-resistant adipocytes
     Objective:
     1.To investigate the differentially expressed miRNAs in 3T3-L1 adipocytes and insulin-resistant adipocytes(IR- adipocytes).
     2.To screen several possible miRNAs related with insulin resistance (IR) and find their potential target genes,which contributes to further explore the role of miRNAs in IR.
     Methods:
     1.The establishment of IR- adipocyte model
     IR- adipocyte model was induced with high glucose(25mmol/L) and high insulin(1μmol/L) in combination(high glucose/ insulin) for 24 hours.To identify the sucession of IR- adipocyte model,the glucose consumption and[~3H]-glucose uptake were detected.
     2.The identification of differentially expressed miRNAs
     MiRNA microarray was used to investigate the differentially expressed miRNAs of up-regulated or down-regulated expressed by more than two folds in 3T3-L1 adipocytes and IR-adipocytes.
     3.The screening of several miRNAs related with IR and their target genes
     According to the results of miRNA microarray and by means of bio-informatic methods,we assayed some miRNAs of significant change and screened several possible miRNAs related with IR and their potential target genes.
     Results:
     1.The establishment of IR- adipocyte model
     Insulin-induced glucose consumption and glucose uptake were significantly inhibited by as much as 75%and 161%in 3T3-L1 adipocytes after incubation with high glucose/insulin for 24 h,which demonstrated the establishment of IR- adipocyte model.
     2.MiRNA microarray analysis
     MiRNA microarray analysis showed that 50 miRNAs were up-regulated while 29 miRNAs were down-regulated in IR-adipocytes compared to 3T3-L1 adipocytes,and miR-320 was remarkly upregulated, while miR-21 down-regulated.
     3.Several miRNAs related with IR and their target genes
     To further functional study,we selected three miRNAs(miR-320, 298 and miR-21) related with IR by bio-informatic methods,and predicted Pik3r1[phosphoinositide-3-kinase,regulatory subunit 1(p85 alpha)]may be a potential target mRNA of the three miRNAs.
     Conclusion:
     1.IR- adipocyte model was established by adding high glucose and high insulin for 24 hours.
     2.There were differential expression of miRNAs in 3T3-L1 adipocytes and IR- adipocytes.
     Part Two The effect of miRNAs on insulin resistance in 3T3-L1 adipocytes
     Objective:
     1.We designed the specific antisense oligonucleotides against miR-320 and miR-298,and constructed miR-21 recombinant plasmid inculding pre-miR-21(pSilencer 3.1-miR -21).To investigate the effects of the three Lipofectamine~(TM)2000 mediated antisense-miRNAs-oligonucleotides (AMO,AMO-miR-298 and AMO-miR-320) and pSilencer 3.1-miR-21 on glucose metabolism of 3T3-L1 adipocytes and IR-adipocytes.To clarify whether the three miRNAs could promote glucose uptake and ameliorate IR in normal and IR-adipocytes.
     2.We selected miRNAs which could ameliorate IR and further explored the mechanism.
     Methods:
     1.The effect of miRNAs on glucose consumption in normal and IR- adipocytes
     We set up seven groups,the adipocyte group,the lipofectamine group,the AMO-miR-298 group,the AMO-miR-320 group,the scramble control group(control oligo group),the pSilencer 3.1-miR -21 group and the empty plasmid group.After mature adipocytes were transfected in triplicate with different oligo or pasmid using Lipofectamine~(TM)2000 for 4 -6 hours,then cells were treated with or without DMEM/high glucose and high insulin media cultured for 24 hours.After 24 hours,the glucose concentration in medium were detected by glucoseoxidase method,be subtracted by the glucose concentration of blank apertures in which there were no cells,then we obtained the glucose consumption quantity.
     2.The effect of miRNAs on[~3H]-glucose uptake in normal and IR- adipocytes
     Cells were divided into seven groups and treated as described in the above.After 24 hours,the glucose uptake rates were detected by glucose uptake test.
     3.The effect of miRNAs on the expression of PI-3K,Akt and GLUT4 and translocation of GLUT4 in IR-adipocytes
     We set up seven groups,the adipocyte group,the IR- adipocyte group,the lipofectamine + IR group,the AMO-miR-320+ IR group,the scramble control + IR group,the pSilencer 3.1-miR -21+ IR group and the empty plasmid+ IR group.24 hours after the treatment,the whole cellular protein and outer-membrane protein were extracted.Then,the quantity of P1-3K,Akt and GLUT4 in the whole cellular protein and the quantity of GLUT4 in the outer - membrane protein were detected by western-blot.In addition,total RNAs were extracted and mRNA expression levels of PI-3K,Akt and GLUT4 were examined by quantitative real-time RT-PCR(qPCR).
     Results:
     1.The effect of miRNAs on glucose consumption and uptake in normal 3T3-L1 adipocytes
     The three miRNAs had no significant effect on glucose consumption and uptake in basal state.However,insulin induced glucose consumption and uptake significantly increased by 2.2-2.3 folds and 4.2-4.4 folds respectively in 3T3-L1 adipocytes in all groups.
     2.The effect of miRNAs on glucose consumption and uptake in IR-adipocytes
     Glucose consumption and uptake tests showed that there was no significant difference in basal state between IR group and adipocyte group.In the presence of 100nmol/L insulin,Compared with adipocyte group,glucose consumption and uptake rate displayed a remarkable reduction in IR group.Compared with IR group,glucose consumption of AMO-miR-320+ IR group and pSilencer 3.1-miR-21 + IR group increased 18.5%and 14.9%respectively(P<0.05),and the glucose uptake rate increased 57.3%and 46.2%respectively(P<0.05).There was no significant difference in the other groups compared to IR group.
     3.The effect of miRNAs on the expression of PI-3K,Akt and GLUT4 and translocation of GLUT4 in IR- adipocytes
     Western-blot assay showed that the level of PI-3K p85 protein expression and phosphorylation of Akt exhibited a significant 42.7% and 54.8%decrement in IR group compared with adipocyte group.The decrement of PI-3K p85 protein expression was fully recovered by the treatment of AMO-miR-320 and miR-21 in IR-adipocytes.While AMO-miR-320 and miR-21 significantly increased the level of phosphorylation of Ak by 28.5%and 33.9%in IR-adipocytes, respectively.GLUT4 protein level of the IR group presented a significant 51.1%reduction compared with adipocyte group,this decrement was significantly recovered(29.6%recovery) by the treatment of AMO-miR-320.However,GLUT4 protein level slightly increased in the pSilencer 3.1-miR-21+ IR group.
     GLUT4 translocation assay showed the translocation of GLUT4 was significantly suppressed in the IR group,only 33.7%as the adipocyte group.The mount of GLUT4 translocation in IR group was acted as the base value(100%),and the relative quantity of GLUT4 translocation was caculated.AMO-miR-320 and miR-21 significantly increased the translocation of GLUT4 by 168.7%and 149.4%in IR-adipocytes.
     QPCR assay showed the mRNA expression levels of PI3K,Akt and GLUT4 remarkably increased by 8.57,16 and 18.4-fold in the adipocyte group compared with IR group,respectively.Compared with IR group, the Akt and GLUT4 mRNA expression levels significantly increased by 4.29 and 12.1-fold;but PI3K mRNA expression had no significant change in the AMO-miR-320+ IR group.MiR-21 increased significantly the mRNA expression levels of PI3K,Akt and GLUT4 of the IR group by 4.92,6.06 and 6.96-fold,respectively.All the above-mentioned indexes had no significant difference in the other groups as comparing to IR group.
     Conclusion:
     1.AMO-miR-320 and miR-21 could promote glucose metabolism and improve insulin resistance in IR-adipocytes.
     2.AMO-miR-320 and miR-21 might improve IR by targeting PI-3K p85 and PI-3K p85 upstream genes,respectively;increasing the level of Akt phosphorylation,and promoting the translocation of GLUT4 in IR-adipocyes.
     Part Three Differential expression of miRNAs during adipocyte differentiation
     Objective:
     1.To investigate the differentially expressed miRNAs in the procession of adipocyte differentiation of 3T3-L1 preadipocytes and mesechymal stem cells(MSC).
     2.To explore the effects of miR-320,miR-21 and miR-375 on 3T3-L1 preadipocyte differentiation.We selected miRNAs which could affect adipocyte differentiation and further clarify the mechanism.
     Methods:
     1.The identification of differentially expressed miRNAs during adipocyte differentiation
     3T3-L1 preadipocytes and MSC were cultured and induced to differentiate,the extent of adipocyte differentiation were assessed by Oil Red O staining and reverse trancription PCR(RT-PCR) methods. MiRNA microarray was used to investigate the differentially expressed miRNAs in 3T3-L1 adipocytes and adipocytes,MSC and MSC derived adipocytes.
     2.The screening of several miRNAs related with adipocyte differentiation and their target genes
     According to the results of miRNA microarray,we selected the miRNA of significant change and two miRNAs(miR-320 and miR-21) which had been proved to regulate insulin resistance.Subsequently,we predicted their potential target genes by means of bio-informatic methods.
     3.The effect of miR-21 and miR-375 on 3T3-L1 preadipocyte differentiation
     We constructed miR-21 and miR-375 recombinant plasmid inculding pre-miR-21 and pre-miR-375(pSilencer 3.1-miR-21 and pSilencer 3.1-miR-375).The pSilencer 3.1-miR-21,pSilencer 3.1-miR -375 and empty plasmid were transfected into 3T3-L1 preadipocyte with Lipofectamine~(TM)2000,and the positive clones were screened by G418. Subsequently,cells were induced to differentiate,nine days later, differentiation was assessed by Oil Red O staining.
     4.The effect of AMO-miR-320 on 3T3-L1 preadipocyte differentiation
     We set up four groups,the 3T3-L1 control group,the 3T3-L1 adipocyte group,the AMO-miR-320 group and the scramble control group(control oligo group).3T3-L1 preadipocytes were transfected prior to induction of differentiation with AMO-miR-320 oligo or scramble control oligo using Lipofectamine~(TM)2000.Three days after ASO transfection,when the cells reached confluence,cells were induced to differentiate.At the end of experiment,the extent of adipocyte differentiation were assessed by Oil Red O staining.
     5.MiR-375 promote 3T3-L1 preadipocyte differentiation and its possible mechanisms
     To further observe whether miR-375 promote 3T3-L1 preadipocyte differentiation and its possible mechanisms.3T3-L1 preadipocytes of normal and stable expressed miR-375 were induced to differentiate.The mRNA expression of aP2 and PPARγ2 were examined by RT-PCR methods at the different time(the 0,3,5,7,9 days of differentiation);the content of triglyceride(TG) were detected by high performance liquid chromatography(HPLC);the protein expression levels of extracellular signal-regulated protein kinase(ERK1/2),aP2 and PPARγ2 were detected respectively by western -blot.
     Results:
     1.MiRNA microarray analysis
     At the end of experiment,cytoplasmic accumulation of lipid droplets was observed and confirmed in about 90%of the cells by positive reddish color in Oil Red O staining.The mRNA expression levels of peroxisome proliferator activated receptorγ2(PPARγ2) and adipocyte fatty acid binding protein(aP2) were remarkably increased.These results confirmed 3T3-L1 pre-adipocytes and MSC differentiated into mature adipocytes. MiRNA microarray showed that 26 miRNAs were up- regulated and 2 miRNAs were down-regulated in 3T3-L1 adipocytes compared with 3T3-L1 preadipocytes,while 20 miRNAs were up- regulated and 55 miRNAs were down-regulated in MSC derived adipocytes compared with MSC.
     2.Several miRNAs related with adipocyte differentiation and their target genes
     We selected three miRNAs(miR-320,21 and miR-375) related with adipocyte differentiation,and predicted MAPK1(ERK2) may be a potential target mRNA of the three miRNAs by bio-informatic methods.
     3.The effect of miRNAs on 3T3-L1 preadipocyte differentiation
     Oil Red O staining test showed that miR-375 increased significantly the value of OD,while miR-21 and AMO-miR-320 had no significant effect on the value of OD in 3T3-L1 adipocytes.These results indicated that miR-375 might promote 3 T3-L1 preadipocyte differentiation.
     4.miR-375 promote 3T3-L1 preadipocyte differentiation and its possible mechanisms
     RT-PCR assay showed the mRNA expression levels of PPARγ2 and aP2 gradually increased during 3T3-L1 preadipocyte differentiation. However,at the beginning of the 5 day,PPARγ2 and aP2 mRNA expression remarkably increased in the miR-375 group compared with 3T3-L1 preadipocyte group.At the 9 day,the content of triglyceride(TG) also significantly increased(12.1±0.46 vs 10.8±0.34 mg/mg protein, p<0.01) in the stable expressed miR-375 adipocyte compared with normal 3T3-L1 adipocyte.Western-blot assay showed that miR-375 significantly decreased the levels of ERK1 and ERK2 protein expression by 27.4%and 28.2%,increased PPARγ2 and aP2 by 49.6%and 52.8%in 3T3-L1 adipocytes,respectively(P<0.01) Empty plasmid had no significant effect on the ERK1/2,aP2 and PPARγ2 protein expression in 3T3-L1 adipocytes.
     Conclusion:
     1.There were differentially expressed miRNAs during 3T3-L1 preadipocytes and MSC differentiation.
     2.miR-375 can promote 3T3-L1 preadipocyte differentiation by inhibiting ERK1/2 protein expression and increasing PPARγ2 and aP2 protein expression.
引文
[1] Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for he year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-1053.
    [2] Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001; 414 (6865):782-787.
    [3] Das SK, Elbein SC. The genetic basis of type 2 diabetes. Cellscience. 2006;2(4):100-131.
    [4] Cederberg A, Enerback S. Insulin resistance and type 2 diabetes - an adipocentric view. Curr Mol Med. 2003; 3 (2): 107 -125.
    [5] Reaven GM. Role of insulin resistance in human disease. Diabetes. 1998; 37 (12):1595-607.
    [6] Ribon V, Johnson JH, Camp HS,et al. Thiazolidinediones and insulin resistance: Peroxisome proliferatoractivated receptor γ activation stimulates expression of the CAP gene. PNAS.1998; 95(95):14751-14756.
    [7] Gross B, Staels B. PPAR agonists: multimodal drugs for the treatment of type-2 diabetes. Best Pract Res Clin Endocrinol Metab. 2007; 21(4): 687-710.
    [8] Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type 2 diabetes. Diabetes. 1996;45 (12): 1661-1669.
    [9] Singh S, Loke YK. The safety of rosiglitazone in the treatment of type 2 diabetes. Expert Opin Drug Saf. 2008; 7(5): 579-585.
    [10] Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006; 444(7121): 840-846.
    [11] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116(2):281-297.
    [12] Pasquinelli AE, Reinhart BJ, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86-89.
    [13] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;5(5):843-854.
    [14] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene Lin-14 by Lin-4 mediates temporal pattern-formation in C. elegans. Cell.1993; 75(5):855-862.
    [15] Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol.2003;5(1):Rl.
    [16] Griffiths-Jones S, Grocock RJ, Dongen SV, et al. miRBase: micro RNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006 (supple 1);34:D140-D144.
    [17] Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005; 37(7):766-770.
    [18] Berezikov E, Guryev V, van de B J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005; 120(1 ):21-24.
    [19] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1):15-20.
    [20] Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Letters. 2005; 579 (26) 5911-5922.
    [21] Esau C, Davis S, Murray SF, et al. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006; 3(2): 87-98.
    [22] Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Current Biology. 2003;13(9): 790-795.
    [23] Teleman AA, Cohen SM. Drosophila lacking microRNA miR-278 are defective in energy homeostasis.Genes & Dev.2006; 20(4): AM-All.
    [24] Cheng AM, Byrom MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005; 33(4): 1290-1297.
    [25] Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004; 432(7041): 226-230.
    [26] Plaisance V, Abderrahmani A, Perret-Menoud V, et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006; 281(37): 26932-26942.
    [27] Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic P-Cell Lines. J Biol Chem. 2007;282(27):19575-19588.
    [28]Kr(u|¨)zfeldt J,Stoffel M.MicroRNAs:a new class of regulatory genes affecting Metabolism.Cell Metab.2006;4(1):9-12.
    [29]余佳,王芳,张俊武.基因调控中的新星-miRNAs.医学分子生物学杂志.2006;3(2):108-111.
    [30]Wang XH,Qian EZ,Zhang W,et al.MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats.Clin Exp Pharmacol Physiol.2009;36(2):181-188.
    [31]He A,Zhu L,Guptal N,et al.Over-expression of miR-29,highly upregulated in diabetic rats,leads to insulin resistance in 3T3-L1 adipocytes.Mol.Endocrinol.2007;21(11):2785-2794.
    [32]Wilcox G.Insulin and insulin resistance.Clin Biochem Rev.2005;26(2):19-39.
    [33]Chakraborty C.Biochemical and molecular basis of insulin resistance.Curr Protein Pept Sci.2006;7(2):113-121.
    [34]Shulman GI.Cellular mechanisms of insulin resistance.J Clin Invest.2000;106(2):171-176.
    [35]Shi B,Sepp-Lorenzino L,Prisco M,et al.MicroRNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells.J Biol Chem.2007;282(45):32582-32590.
    [36]Meng F,Henson R,Lang M,et al.Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines.Gastroenterology.2006;130(7):2113-2129.
    [37]Boehm M,Slack F.A Developmental Timing MicroRNA and Its Target Regulate Life Span in C.elegans.Science.2005;310:1954-1957
    [38]Alaniz MH F,Takada J,ValeMI A,et al.The adipose tissue as a regulatory center of the metabolism.Arq Bras Endocrinol Metabol.2006;50(2):216-229.
    [39]Kather H.Adipose tissue and obesity.Ther Umsch.2000;57(8):488-492.
    [40]Guilherme A,Virbasius JV,Puff V,Czech MP.Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes.Nat Rev Mol Cell Biol.2008;9(5):367-377.
    [41]Shuldiner AR,Yang R,Gong DW.Resistin,obesity,and insulin resistance-the emerging role of the adipocyte as an endocrine organ.New Engl J Med.2001; 345 (18):1345-1346.
    [42] Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem.2004; 279(50):52361-52365.
    [43] Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA. 2006; 12:1626-1632.
    [44] Takanabe R, Ono K, Abe Y, et al.Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun. 2008; 376(4): 728-732.
    [45] Wang Q, Li YC, Wang JH, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. PNAS. 2008; 105(2): 2889-2894.
    [46] Kido Y, Nakae J, Accili D. The insulin receptor and its cellular targets. J Clin Endocrinol Metab. 2001; 86(3):972-979.
    [47] Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand. 2005;183(l):13-30.
    [48] Grundy SM. Metabolic syndrome: A multiplex cardiovascular risk factor. J.Clin. Endocrinol. Metab. 2007; 92(2): 399 - 404.
    [49] Sakoda H, Ogihara T, Anai M. Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes. 2000; 49(10): 1700-1708.
    [50] Nelson BA, Robinson KA, Buse MG High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes. 2000; 49(6): 981-991.
    [51] Ross SA, Chen X, Hope HR. Development and comparison of two 3T3-L1 adipocyte models of insulin resistance: increased glucose flux vs glucosamine treatmentBiochem Biophys Res Commun. 2000; 273(3): 1033-1041.
    [52] Buren J, Liu HX, Lauritz J, et al. High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur. J. Endocrinol. 2003; 148(1): 157-167.
    [53] Thomson MJ, Williams MG, Frost SC. Development of insulin resistance in 3T3-L1 adipocytes. J Biol Chem. 1997; 272(12): 7759-7764.
    [54] Andrea P, Xue G, Souad B.Tumor Necrosis Factor-(?) Induces Endothelial Dysfunction in the Prediabetic Metabolic Syndrome. Circ. Res.2006; 99(1): 69 -77.
    [55] Chavez JA ,Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes.Arch Biochem Biophys. 2003; 419(2): 101-109.
    [56] Nugent C, Prins JB, Whitehead JP, et al. Potentiation of glucose uptake in 3T3-L1 adipocytes by PPAR gamma agonists is maintained in cells expressing a PPAR gamma dominant-negative mutant: evidence for selectivity in the downstream responses to PPAR gamma activation. Mol Endocrinol. 2001; 15(10): 1729-1738.
    [57] Yoshikazu T, Jiro M, Naonobu N. Role of peroxisome proliferator-activated receptor-T in maintenance of the characteristics of mature 3T3-L1 adipocytes.Diabetes. 2002; 51(7): 2045- 2055.
    [58] Gimeno RE, Klaman LD. Adipose tissue as an active endocrine organ: recent advances. Curr Opin Pharmacol.2005; 5(2): 122-128.
    [59] Havel, PJ. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr. Opin. Lipidol. 2002.13(1): 51-59.
    [60] Wu LG, Fan JH, JG Belasco. MicroRNAs direct rapid deadenylation of mRNA. PNAS. 2006; 103(11): 4034- 4039.
    [61] Gauthier BR, Wollheim CB. MicroRNAs: 'ribo-regulators' of glucose homeostasis. Nat Med. 2006; 12(10): 36-38.
    [62] Poy MN, Spranger M, Stoffel M. MicroRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 2007; 9(Suppl 2): 67-73.
    [63] Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell. 2003; 115(7): 787-798.
    [64] Griffiths-Jones, S. The microRNA registry. Nucleic Acids Res. 2004; 32 (Supplement 1): D109 - D111.
    [65] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403(6772):901-906.
    [66] Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005; 37(5): 495-500.
    [67] Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027): 769-773.
    [68] Hauner H. The new concept of adipose tissue function. Physiol Behav. 2004;83(4):653-658.
    [69] Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 2008; 283(2): 1026-1033.
    [70] Huang GL, Zhang XH, Guo GL, et al. Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep. 2009; 21(3): 673-679.
    [71] Fei J, Lan F, Guo M, et al. Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. J Drug Target. 2008; 16(9): 688-693.
    [72] Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.Gastroenterology. 2007; 133(2): 647-658.
    [73] LinY, Liu XY, Cheng YH, et al. Involvement of microRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J. Biol. Chem. 2009; 284: 7903-7913.
    [74] Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis . Cardiovasc Res. 2008; 79(4):581-588.
    [75] Ji R, Cheng YH, Yue JM, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ. Res. 2007; 100(11): 1579-1588.
    [76] Paula CP, Alessandra MV, Jos S, et al. GLUT4 protein is differently modulated during development of obesity in monosodium glutamate-treated mice. Life Sciences.2002; 71(16):1917-1928.
    [77] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)] method. Methods. 2001;25(4): 402-408.
    [78] Taniguchi CM, Aleman J O, Ueki K, et al. The p85a regulatory subunit of phosphoinositide 3-Kinase potentiates c-Jun N-terminal kinase-mediated insulin resistance. Mol. Cell. Biol. 2007; 27(8): 2830-2840.
    [79] Taniguchi CM, Tran TT, Kondo T, et al. Phosphoinositide 3-kinase regulatory subunit p85a suppresses insulin action via positive regulation of PTEN. PNAS. 2006; 103(32): 12093-2097.
    [80] Schaar DG, Medina DJ, Moore DF, et al. miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation.Exp Hematol. 2009; 37(2):245-55.
    [81] Van DE, Govers R, James DE. Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane. Mol Endocrinol. 2005; 19(4): 1067-1077.
    [82] Wang QH, Somwar R, Bilan PJ, et al. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol. Cell. Biol.1999; 19(6): 4008-4018.
    [83] Foran PG, Fletcher LM, Oatey PB, et al. Protein kinase B stimulates the translocation of GLUT4 but Not GLUT1 or transferrin receptors in 3T3-L1 adipocytes by a pathway involving SNAP-23, Synaptobrevin-2, and/or cellubrevin. J. Biol. Chem. 1999; 274(40): 28087-28095.
    [84] Hill MM, Clark SF, Tucker DF, et al. A role for protein kinase B beta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol. Cell. Biol. 1999; 19(11): 7771-7781.
    [85] Kohn AD, Summers SA, Birnbaum MJ, et al. Expression of a constitutively active Akt Ser/Thr Kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 1996; 271(49): 31372-31372.
    [86] Flores-Riveros JR, McLenithan JC, Ezaki O, et al. Insulin down-regulates expression of the insulin-responsive glucose transporter (GLUT4) gene: effects on transcription and mRNA turnover. PNAS. 1993; 90(2): 512 -516
    [87] Garvey WT, Maianu L, Huecksteadt TP, et al. Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J Clin Invest. 1991;87(3): 1072-1081.
    [88] Wei YZ, Sowers JR, Clark SE, et al. Angiotensin Ⅱ-induced skeletal muscle insulin resistance mediated by NF-B activation via NADPH oxidase. Am J Physiol Endocrinol Metab. 2008; 294(2): E345 - E351.
    [89] Berger J, Biswas C, Vicario PP, et al. Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature. 1989; 340(6228):70-72.
    [90] Marsh B J, Aim R A, Mclntosh S R, et al. Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes.J Cell Biol.1995;130(5):1081-1091.
    [91]Lienhard GE,Slot JW,James DE,et al.How cells absorb glucose.Sci Am.1992;266(1):86-91.
    [92]Somwar R,Koterski S,Sweeney G,et al.A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation.J.Biol.Chem.2002;277(52):50386-50395.
    [93]Huang C,Somwar R,Patel N,et al.Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 tra nslocation but upregulates GLUT4 activity.Diabetes.2002,51(7):2090-2098.
    [94]Wickramasinghe NS,Manavalan TT,Dougherty SM,et al.Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells.Nucleic Acids Res.2009;37(8):2584-2595
    [95]杨凌辉,邹大进.肥胖致胰岛素抵抗的机制中华内分泌代谢杂志.2002;18(3):244-246.
    [96]Bloomgarden ZT.Obesity hypertension and insulin resistance.Diabetes Care.2002;25(11):2088-2097.
    [97]Prins JB,O'Rahilly S.Regulation of adipose cell number in man.Clin Sci.1997;92(1):3-11.
    [98]Spiegelman BM,Flier JS.Obesity and the regulation of energy balance.Cell.2001;104(4):531-543.
    [99]Rosen ED,Walkey C J,Puigserver P,et al.Transcriptional regulation of adipogenesis.Genes & Dev.2000;14:1293-1307.
    [100]Gregoie FM,Smas CM,Sul HS.Understanding adipocyte differentiation.Physiol Rev.1998;78(3):783-809.
    [101]Marceau P,Biron S,Hould FS,et al.Liver pathology and the metabolic syndrome X in severe obesity.J Clin Endocrinol Metab.1999;84(5):1513-1517.
    [102]Zhang Y,Proenca R,Mafei M,et al.Positional cloning of the mouse obese gene and its human homologue.Nature.1994;372(6505):425-431.
    [103]Alan J,Lee H,Kim S,Park J,et al.The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways.Biochem Biophys Res Commun.2008;373(4):545-549.
    [104]Auld CA,Caccia CD,Morrison RF.Hormonal induction of adipogenesis induces Skp2 expression through PI3K and MAPK pathways. J Cell Biochem. 2007; 100(1): 204-216.
    [105]Liao QC, Li YL, Qin YF, et al. Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal-regulated kinases 1/2 activity. J Cell Biochem. 2008; 104(5): 1853-1864.
    [106]Tanabe Y, Koga M, Saito M, et al. Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPART2. J Cell Sci. 2004; 117(16): 3605-3614.
    [107] Tang QQ, Jiang MS, Lane MD. Repressive effect of Spl on the C/ EBP alpha gene promoter: Role in adipocyte differentiation. Mol Cell Biol. 1999; 19(7):4855-4865.
    [108]Klemm DJ , Roesler WJ , Boras T, et al. Insulin stimulates cAMP reponse element binding protein activity in HepG2 and 3T3-L1 cell line. J Biol Chem.1998; 273 (2):917-923.
    [109]Reusch J E, Hsieh BP, Klemm D, et al. Insulin inhibits nuclear phosphatase activity: requirement for the C-terminal domain of the insulin receptor. Endocrinology. 1995; 136(6):2464 -2469.
    [110]Gagnon A, Dods P, Delatour N, et al. Phosphatidylinositol 3,4,5 trisphosphate is required for insulin like growth factor 1 mediated survival of 3T3-L1 preadipocytes. Endocrinology. 2001;142(1) :205-212.
    [111]Zeng Y, Wagner EJ, Cullen BR. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 2002; 9 (6): 1327-1333.
    [112] Wang X, Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 2006; 34(5):1646-1652.
    [113]Engelman JA, Lisanti M, Scherer P. Specific inhibitors of p38 mitogen activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem.1998;273(48):32111-32120.
    [114] Font de Mora J, Porras A, Ahn N, et al. Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. Mol. Cell. Biol. 1997; 17(10): 6068 - 6075.
    [115] Kim KA, Kim JH, Wang Y, et al. Pref-1 (Preadipocyte Factor 1) activates the MEK/Extracellular signal-regulated kinase pathway to inhibit adipocyte differentiation. Mol. Cell. Biol. 2007; 27(6): 2294 - 2308.
    [116]Liao QC, Li YL, Qin YF, et al. Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal-regulated kinases 1/2 activity. J Cell Biochem. 2008; 104(5): 1853-1864.
    [117]Prusty D, Park BH, Davis KE, et al. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ(PPARγ) and C/EBPk. gene expression during the differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 2002; 277(48): 46226 - 46232.
    [118]Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276(5309): 71-74.
    [119]Pittenger F, Mackay A, Beck S, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143-147.
    [120] Jiang Y H, Jahagirdar B N, Reinhardt R L, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002; 418(6893): 41-49.
    [121] Murchison EP, Partridge JF, Tarn OH, et al. Characterization of Dicer-deficient murine embryonic stem cells. PNAS. 2005;102(34): 12135-12140.
    [122] Naguibneva I, Ameyar-Zazoua M, Polesskaya A et al. The microRNA miR-181 targets the homeobox protein Hox-All during mammalian myoblast differentiation. Nat Cell Biol. 2006; 8(3): 278-284.
    [123] Yang WJ, Yang DD, Na S, et al. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 2005; 280(10):9330-9335.
    [124] Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development.Nature. 2006; 439(7074):283-289.
    [125] Dani C. Embryonic stem cell derived adipogenesis. Cells Tissues Organs. 1999; 165(3-4):173-180.
    [126] Otto TC and Lane MD. Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 2005; 40(4): 229 - 242.
    [127] Dani C, Smith AG, Dessolin S, et al. Differentiation of embryonic stem cell into adipocyte in vitro. J Cell Sci.1997; 110(11):1279-1285.
    1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function.Cell. 2004; 116(2):281-297.
    2.Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.Nature.2000; 408 (6808):86-89.
    3.Zhang BH, Pan XP, Cannon CH, et al. Conservation and divergence of plant microRNA genes. Plant.2006;46(2):243-259.
    4. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell. 1993; 75 (5):843-854.
    5. Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J.B.C. 2004:279(50):52361-52365.
    6. Hatfield SD, Shcherbata HR, Fischer KA, et al. Stem cell division is regulated by the microRNA pathway .Nature. 2005; 435(7044): 974-978.
    7. Zhang BH, Pan XP, Anderson TA. MicroRNA: A new player in stem cells. J Cell Physiol. 2006; 209(2):266-269.
    8. Kwon C, Han Z, Olson EN, et al. MicroRNA 1 influences cardiac differentiation in Drosophila and regulates notch signaling.PNAS. 2005; 102 (52): 18986-18991.
    9. Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion.Nature. 2004; 432(701):226-230.
    10.Peizhang X, Vernooy SY, Hay BA.The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism.Current Biology. 2003:13(9): 790-795.
    11. Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.2006; 3(2):87-98.
    12. Aurelio A, Cohen S M. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes & Dev. 2006; 20(4):417- 422.
    13. Berezikov E, Guryev V, Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell.2005:120(l):21-24.
    14. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene Lin-14 by Lin-4 mediates temporal pattern-formation in C. elegans.Cell. 1993; 75(5):855-862.
    15. Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev. 2002; 16(13): 1616-1626.
    16. Griffiths-Jones S, Grocock RJ, Dongen SV, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.2006;34(supple1):D140-D144. 17.Ambros V, Bartel B, Bartel D P, et al. A uniform system for microRNA annotation.RNA. 2003; 9(3): 277-279.
    18. Wienholds E, Plasterk RH. MicroRNA function in animal development.FEBS Letters.2005; 579 (26): 5911-5922.
    19. Li J, Yang Z, Yu B, Liu J, et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr.Biol. 2005; 15(16): 1501-1507.
    20. Park, MY, Wu G, Gonzalez-Sulser A, et al.Nuclear processing and export of microRNA in Arabidopsis .PN AS. 2005; 102(10): 3691-3696.
    21. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.Cell. 2005; 120(1):15-20.
    22. Chen XM. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004; 303(3):2022-2025.
    23. Yekta S, Shih IH, Bartel DP.MicroRNA-directed cleavage of HOXB8 mRNA. Science.2004; 304(4):594-596.
    24. Mansfield JH, Harfe BD, Nissen R, et al. MicroRNA-responsive 'sensor' transgenes uncover Hoxlike and other developmentally regulated patterns of vertebrate microRNA expression.Nature Genet. 2004; 36(10):1079-1083.
    25. Coller J, Parker R. Eukaryotic mRNA decapping. Annu Rev Biochem.2004; 73(1):861-890.
    26. Kurihara Y, Takshi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.RNA.2006; 12(2):206 - 212.
    27. Juarez MT, Kui JS, Thomas J, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity.Nature.2004; 428(6978): 84-88.
    28. Guo HS, Xie Q, Fei JF, et al. MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development.Plant Cell. 2005; 17(5): 1376 -1386
    29. Rhoades MJ, Bartel DP .Computational identification of plant microRNAs and their targets, including a stress-induced miRNA.Mol Cell.2004;14(6): 787-799.
    30. Sunkar R, Zhu JK.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell. 2004; 16(8): 2001-2019
    31. Sayed D, Hong C, Chen IY, et al. MicroRNAs Play an Essential Role in the Development of Cardiac Hypertrophy. Circ. Res. 2007; 100(3): 416 - 424.
    32. Care A, Catalucci D, FelicettF i, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med.2007; 13(5): 613-618.
    33. Yang B, Lin H, Xiao J, et al.The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med.2007; 13(4): 486-491.
    34. Rooij E, Sutherland LB, Qi X, et al. Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA.Science. 2007; 16(4): 575- 579.
    35. Rooij E, Lillian S, Liu N, et al.A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure.PNAS. 2006;103(48): 18255-18260.
    36. Gauthier BR, Wollheim CB. MicroRNAs: 'ribo-regulators' of glucose homeostasis. Nat Med.2006; 12 (1):36-38
    37. He A, Zhu L, Guptal N, et al. Over-expression of miR-29, highly upregulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes .Mol. Endocrinol. 2007; 21(11):2785-2794.
    38. Takamizawa J, Konishi H, Yan K, et al. Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival.Cancer Res. 2004; 64(11): 3753 - 3756.
    39. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family.Cell.2005;120(5): 635-647.
    40. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.PNAS.2002;99(24): 15524-15529.
    41.Sullivan CS, Grundhoff AT, Tevethia S, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells.Nature.2005;435(7042):682-686.
    42. Lecellier CH, Dunoyer P, Arar K, et al. A Cellular MicroRNA Mediates Antiviral Defense in Human Cells.Science. 2005; 308(4): 557 -560.