米根霉半连续高强度发酵生产L-乳酸研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-乳酸是一种重要的有机酸,广泛应用于食品、医药、农业和化工中,利用L-乳酸制备的聚L-乳酸是一种新型的可生物降解材料。细菌发酵和真菌发酵是发酵生产L-乳酸的主要方法,其中米根霉具有营养要求简单、可进行同步糖化发酵、产酸光学纯度高等优点,是工业化生产最有潜力的菌株之一。但是,目前米根霉发酵生产L-乳酸仍然存在发酵强度低、原料利用率不高、菌体形态难以控制等问题。
     本文以米根霉AS3.819为生产菌株,以提高L-乳酸产率及发酵强度为主要目标,研究米根霉半连续高强度发酵产L-乳酸的关键技术。通过优化摇瓶发酵条件,进行米根霉菌丝球半连续发酵生产L-乳酸和罐发酵试验,建立其动力学模型,分析发酵中菌丝球的生长过程,并采用计算流体动力学(CFD)模拟技术对其发酵条件进行模拟优化。主要研究结论如下:
     (1)通过对种子培养条件及半连续发酵条件的优化,获得摇瓶中米根霉菌丝球半连续高强度发酵生产L-乳酸的控制模式:首批发酵中250 mL三角瓶装50 mL培养基,接种量10%,种子液32℃培养24 h,摇床转速200 r/min,发酵前期(0~36 h)温度为28~30℃,发酵后期(36~72 h)温度为32~34℃;重复批次发酵中每批发酵24 h。该发酵条件下,半连续稳定发酵30批,首批发酵菌丝球直径稳定控制为0.8~1.0 mm,其产酸能力较高,发酵强度为1.58g/(L·h),重复批次发酵强度2.67~3.00 g/(L·h)。
     (2)研究3L发酵罐中发酵温度、搅拌转速及通气量对米根霉首批发酵产L-乳酸的影响,建立了米根霉菌丝球高强度发酵产L-乳酸的控制模式:发酵0~30h温度32~34℃、搅拌转速400 r/min、通气量1.5 L/(L·min),30~60 h温度34~36℃、搅拌转速300 r/min、通气量0.5 L/(L·min);该条件下,菌丝球直径稳定控制为0.9~1.2 mm,其产酸能力较高,发酵强度为2.51g/(L·h)。对重复批次发酵中葡萄糖质量浓度、温度、搅拌转速及通气量对发酵强度的影响进行研究,得到3L发酵罐中重复批次发酵生产L-乳酸的控制模式:补料培养基中葡萄糖质量浓度100 g/L,温度34~36℃、搅拌转速300 r/min、通气量0.5 L/(L·min),半连续发酵5批,每批发酵周期为20 h,发酵强度大于3.80g/(L·h)。
     (3)补料培养基中N源及无机盐质量浓度对半连续发酵过程影响的研究表明,N源和无机盐是半连续发酵稳定进行不可缺少的因素:生物量在一定范围内增加,不能提高其发酵强度,在半连续发酵中间歇取出部分菌体保持DCW为10 g/L左右,可以维持高强度发酵。采用以上优化发酵条件,7 L发酵罐中米根霉半连续发酵生产L-乳酸25批,首批发酵强度为2.47 g/(L·h),第2~20批发酵强度3.40~3.85 g/(L·h),实现了米根霉半连续高强度稳定发酵生产L-乳酸。
     (4)对米根霉半连续发酵产L-乳酸菌体生长、产物生成及底物消耗的动力学进行研究,发现重复批次发酵中每批产物生成及底物消耗曲线接近于直线。选择Logistic及Luedeking-Piret方程作为米根霉发酵产L-乳酸的动力学方程,运用Matlab软件将试验数据进行拟合,对方程中关键参数求解,建立米根霉半连续发酵动力学模型,并对模型进行验证。其中首批发酵动力学模型中X_m为7.6164 g/L、μ_m为0.1802 h~(-1)、α为3.2631、β为0.5980、p为1.9875、q为1.0232;重复批次发酵过程中,对初始菌体量及L-乳酸产量采用“零处理”方法,进行动力学方程求解,其中第2批发酵动力学模型中X_m为8.246 g/L、μ_m为0.0087h~(-1)、α为0.9610、β为0.4929、p为3.2438、q为1.0326,δ为98.63%;半连续发酵第2批到第10批,每批的生物量逐渐增加,菌体最大比生长速率逐渐减小,菌体重复利用效率逐渐降低但仍大于90%,最大比产物合成速率逐渐减小。验证试验表明建立的动力学模型能够很好的描述发酵过程(R~2≥0.98)。
     (5)对摇瓶及发酵罐中菌体生长过程进行分析,菌丝球的形成过程为:孢子萌发成菌丝,菌丝凝聚在一起形成菌丝元,菌丝元生成具有致密菌核的菌丝球;发酵后期菌丝球内部逐渐形成中空核,且该中空核及菌丝球直径越来越大;重复利用多次的菌丝球逐渐破裂成菌片,菌片表面菌丝生长,大部分形成具有菌毛层的菌片,极少部分形成游离菌丝;菌片中心菌丝自溶衰亡形成具有中空核的菌囊;随着发酵的进行,菌囊由于其内部菌丝衰亡及流体剪切作用破碎成菌片。半连续发酵液中规则菌丝球、菌片、菌囊3种不同形态的菌丝球相互转变,其中规则菌丝球百分比逐渐降低,菌片及菌囊百分比逐渐增加;它们都具有较高的L-乳酸脱氢酶(LDH)活性,共同维持了半连续高强度发酵的进行。通过石蜡切片观察发现,具有致密菌核的菌丝球菌体代谢产酸能力较强;具有中空核的菌丝球壁外缘菌体细胞代谢活力旺盛。
     (6)菌丝球大小对发酵强度影响比较明显,直径过大或过小的菌丝球产酸能力较低,直径为0.9~1.2 mm的菌丝球,产酸能力较高,有利于高强度发酵生产L-乳酸。
     (7)采用CFD模拟技术对3 L发酵罐内不同转速的流体动力学进行模拟,建立3 L发酵罐中发酵工艺的CFD调控模式:首批发酵中剪切速度范围为0.009~1.582 m/s,重复批次发酵中剪切速度范围为0.009~1.192 m/s;根据该控制模式,优化7 L发酵罐中发酵条件,采用该优化发酵条件米根霉半连续高强度发酵生产L-乳酸20批,其中首批发酵强度为2.51g/(L·h),重复批次发酵强度为3.58~4.01g/(L·h);对50 L放大发酵罐的CFD模拟,确定了放大发酵条件,实际50 L放大发酵罐发酵试验中发酵产酸为94.56 g/L。
     利用米根霉菌丝球半连续高强度发酵生产L-乳酸,增加了菌体利用率,节约了原材料、缩短了重复批次发酵周期、提高了发酵强度,为实现米根霉半连续高强度发酵生产L-乳酸的工业化奠定了良好的基础。
L-lactic acid is a commonly occurring organic acid,which is valuable due to its wide use in food,medicare,agticulture,chemical and other fields.There is also an increasing interest in its application in the synthesis of polylactic acid,which can be used for biodegradable plastic manufacturing.L-lactic acid can be produced by bacteria and fungi.Compared to the bacteria, Rhizopus oryzae has advantages including its low nutrient requirements,amylolytic characteristics and high optical purity product.It has been recognized as promising candidate for L-lactic acid production.However,there are also some problems in L-lactic acid production by Rhizopus oryzae, such as lower productivity of L-lactic acid,lower utilization ratio of raw material,difficulty to control morphorlogy and so on.
     In this work,a semi-continuous fermentation of Rhizopus oryzae AS 3.819 for L-lactic acid has been developed with L-lactic acid yield and a high volumetric productivity.Research mainly includes:(1) Effects of culture condition on L-lactic acid production and morphology of Rhizopus oryzae were studied in flask and bioreactor.(2) Kinetics models of semi-continuous fermentation by Rhizopus oryzae were studied in bioreactor.(3) Growth of pellets during the semi-continuous fermentation was described in detail.(4) Fluid dynamics of the semi-continuous fermentation in bioreactor was investigated.The main results and conclusions obtained are as follows.
     (1) In flask culture,culture conditions for semi-continuous fermentation were optimized,the results showed that good pellets and high L-lactic acid yield were gained when the culture conditions were as the following:using optimal medium,50 mL production medium in 250 mL flask,inoculation size 10%of seed culture broth which cultured for 24 h at 32℃,fermentation temperature at 28~30℃from 0 h to 36 h and at 34~36℃from 36 h to 72 h,agitation speed 200 r/min in cycle 1 fermentation and cultured for 24 h in each repeated cycle fermentation.Under the optimal culture conditions,semi-continuous fermentation lasted for 30 cycles,size of pellets were 0.8~1.0 mm,and they had an good ability to produce L-lactic acid,the volumetric productivity were 1.58 g/(L·h) in cycle 1 fermentation,and 2.67~3.00 g/(L·h) in the repeated cycles fermentation.
     (2) In 3 L bioreactor,the effects of temperature,agitation speed and aeration on L-lactic acid production and morphology of Rhizopus oryzae in cycle 1 fermentation were investigated,the results showed that the volumetric productivity was 2.51 g/(L·h) when the control conditions were as the following:at 28~32℃from 0 h to 30 h,agitation speed 400 r/min,aeration 1.5 L/(L·min), and at 34~36℃from 30 h to 60 h,agitation speed 300 r/min,aeration 0.5 L/(L·min).The effects of glucose concentration,temperature,agitation speed and aeration on productivity in repeated cycles fermentation were studied,the results showed that the volumetric productivity was above 3.80 g/(L·h) in 3 L bioreactor when the control conditions were as the following:glucose concentration 100 g/L,agitation speed 300 r/min,aeration 0.5 L/(L·min),culture temperature 34~36℃,and fermentation period was 20 h for each cycle.
     (3) The effects of nitrogen source and inorganic salts in feeding medium on the L-lactic acid production in semi-continuous fermentation were studied.The results showed that the nitrogen source and inorganic salts were indispensable for cell growth and L-lactic acid synthesis in repeated Cycles fermentation,accumulating biomass in the bioreactor did not increase the volumetric productivity,some biomass could be removed periodically to keep DCW about 10 g/L,and the semi-continuous fermentation with a high volumetric productivity would be going on.Under the optimal conditions,25 cycles for L-lactic acid production were carried out in 7 L bioreactor,the final productivity was 2.47 g/(L·h) for cycle 1 and above 3.40 g/(L·h) for other 19 cycles.The process of L-lactic acid production by Rhizopus oryzae in semi-continuous fermentation with a high volumetric productivity was fulfilled.
     (4) The kinetic equations for describing microbial growth,substrate consumption and L-lactic acid production had been presented.In repeated cycles fermentation the curves of L-lactic acid production and substrate consumption are nearly linear relation.Logistic equation and Luedeking-Piret equation were chosen as the kinetics models,and the key parameters were calculated by Matlab.X_m,μ_m,α,β,p and q was 7.6164 g/L,0.1802 h~(-1),3.2631,0.5980,1.9875 and 1.0232 respectively in cycle 1 fermentation.In repeated cycles fermentation the L-lactic acid and biomass were initialized as zero,and the key parameters were found in cycle 2,X_m,μ_m,α,β,p and q was 8.246 g/L,0.0087 h~(-1),0.9610,0.4929,3.2438 and 1.0326 respectively.From cycle 2 to cycle 10,biomass increased,whileμ_m,the largest specific production and the reutilize efficiency decreased,but the reutilize efficiency still above 90%.The models were found to represent the fermentation process fairly well with R~2≥0.98.
     (5) The growth of pellets filamentous Rhizopus oryzae in flask and bioreactor were surveyed. The results showed the growth process of pellets in submerge culture was as the following:spores germinated into mycelia,mycelia aggregated into loose packed hypha,in the earlier stage "fluffy" pellets with a tightly packed core were formed,then the pellets with a center contains no recognizable mycelia were occurred and become bigger,the center size of the pellets also increased during the semi-continuous fermentation.These pellets reutilized for many times were broken up into pieces and most of the pieces become "fluffy" pieces with the growth of outer mycelia.The vesicles with a center contains no recognizable mycelia were formed because of the cell lyses inside the pieces.And the vesicles were broken up into pieces later because of cell lyses and shearing force of the broth.Uniform pellets,pieces and vesicles were named pellets,and they changed to each other in the broth.Percent of uniform pellets decreased,while percents of pieces and vesicles increased in the semi-continuous fermentation.And all the pellets with a good activity of LDH actualized L-lactic acid production in the semi-continuous fermentation.The inner structure of pellets was investigated with microscope by the paraffin section technology,the results showed that "fluffy" pellets with a tightly packed core gained in earlier stage had a higher activity to produce L-lactic acid,while the outer mycelia had more vitality to produce L-lactic acid than the inner mycelia for pellets with no recognizable mycelia core.
     (6) Effects of pellets size on the volumetric productivity were investigated,only uniform pellets with size of 0.9~1.2 mm had advantages for L-lactic acid production with a high volumetric productivity in fermentation.
     (7) Fluid dynamics in a 3 L bioreactor was studied at different agitation speed,with the method of computational fluid dynamics(CFD).The simulation analysis showed that the good conditions for high L-lactic acid yield and pellets forming were as the following:the shearing velocity 0.009~1.582 m/s for cycle 1 fermentation,0.009~1.192 m/s for repeated cycles fermentation.In terms of the results above,the optimal agitation speed was also obtained by the simulation analysis in 7 L bioreactor.Under the optimal condition in 7 L bioreactor the semi-continuous fermentation was carried out,the productivity was 2.51 g/(L·h) for cycle 1 and 3.58~4.01 g/(L·h) for other 19 cycles.The L-lactic acid production by Rhizopus oryzae was carried out with the optimal agitation speed basing on the results simulated by CFD in 50 L bioreactor,and the L-lactic acid concentration was 94.56 g/L.Those results above proved that the CFD simulated method offers a technological means to optimize the operating system in scaled-up fermentation.
     Mycelia could be repeatedly used for many times,utilization ratio of fungi was increased, fermentation time in each circle was shortened,and the volumetric productivity was improved during the semi-continuous fermentation.The above results can provide some theoretical basis for commercial process of L-lactic acid production using Rhizopus oryzae with a high volumetric productivity in semi-continuous fermentation.
引文
[1]金其荣,张继民,徐勤.有机酸发酵工艺学[J].中国轻工业出版社,北京:1989.
    [2]凌关庭.食品添加剂手册,第二版[M].化学工业出版社,北京:2000.
    [3]穆杂文.国内外乳酸及其衍生品的应用和市场前景[J].化工技术经济,2001,3:107-114.
    [4]钱志良.乳酸的工业化生产、应用和市场[J].食品发酵工业,2001,16:90-95.
    [5]徐忠,汪群慈,姜兆华.L-乳酸的制备及其应用的研究进展[J].化学与粘合,2004,4:214-217.
    [6]钱志良,胡军,雷策祖.乳酸的工业化生产、应用和市场[J].工业微生物,2001,31:49-53.
    [7]洪安安,刘灿明,刘德华.L-乳酸的微生物发酵[J].化学工程与装备,2008,2:56-63.
    [8]赵鑫,赵良启,谢红.发酵生产L-乳酸的现状与展望[J].山西化工,2005,1:15-19.
    [9]乔长晟,汤凤霞.L-乳酸高产菌株的诱变选育[J].食品工业科技,2002,2:35-38.
    [10]郑志.米根霉发酵产L-乳酸的代谢调控研究[D].合肥工业大学,合肥:2006.
    [11]杨萍.L-乳酸的生产及其应用研究[J].科技信息,2008,17:31.
    [12]沈萍.微生物学[M].高等教育出版社,北京:2002.
    [13]Weight B E,Longacre A,Reimers J.Models of metabolism in Rhizopus oryzae[J].Journal of Theoretical Biology,1996,182:453-457.
    [14]李兴江,潘丽军,姜绍通等.米根霉发酵甘薯淀粉制备L-乳酸的最适条件[J].合肥工业大学学报:自然科学版.2004,2:127-130.
    [15]白冬梅.L-乳酸高产菌株的诱变及其代谢通量分析[D].天津大学,天津:2001.
    [16]Wang P,Li J,Wang L et al.L(+)-Lactic acid production by co-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beam irradiation[J].Journal of Industrial Microbiology and Biotechnology,2009.
    [17]古绍彬,葛春梅,周秀红等.高产L-乳酸米根霉re3303菌株特性研究[J].高技术通讯,2004,9:49-53.
    [18]古绍彬.离子注入L(+)-乳酸产生菌菌种选育的研究[D].中国科学院等离子体物理研究所离子束生物工程重点试验室,合肥:2002.
    [19]李文,王陶,余增亮.离子注入选育L(+)-乳酸耐酸菌及去中和剂发酵研究[J].食品与发酵工业,2008,12:13-17.
    [20]王冬梅,苏彩欣,李文等.利用天然纤维废弃物发酵生产L-乳酸的研究[J].激光生物学报,2007,6:763-767.
    [21]Ge C M,Gu S B,Zhou X H et al.Breeding of L(+)-lactic acid producing strain by low-energy ion implantation[J].Journal of Microbiology and Biotechnology,2004,14:363-366.
    [22]Miura S,Dwiarti L,Arimura T et al.Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp MK-96-1196[J].Journal of Bioscience and Bioengineering,2004,97:19-23.
    [23]肖小发.米根霉产L-乳酸优良菌株的同步辐射诱变选育及发酵特性研究[D].合肥工业大学,合肥:2007.
    [24]胡燕红.米根霉产L-乳酸耐高温菌株的选育及发酵条件优化[D].合肥工业大学,合肥:2009.
    [25]罗水忠,姜绍通,郑志等.同步辐射软x射线nκ对产L-乳酸米根霉的诱变效应[J].核农学报,2006,5:375-3711.
    [26]郑志,姜绍通,罗水忠等.限氧与通氧条件下米根霉ADH突变株的碳代谢特性[J].中国 农业科学,2006,6:1228-1232.
    [27]郑志,姜绍通,罗水忠等.米根霉丙烯醇抗性突变株的筛选及其发酵特性[J].核农学报,2007,3:242-245,255.
    [28]郑志,姜绍通,罗水忠等.米根霉乙醇脱氢酶(ADH)突变菌株的诱变选育[J].微生物学通报,2007,1:24-27.
    [29]郑志,姜绍通,罗水忠等.不同通气条件下米根霉发酵产L-乳酸的代谢调控[J].农业机械学报,2008,8:79-83,134.
    [30]吴清林,李学梅.米根霉直接发酵玉米粉生产L-(+)乳酸的新工艺[J].广州食品工业科技,2001,3:16-18,85.
    [31]Yin P M,Yahiro K,Ishigaki T et al.L(+)-lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor[J].Journal of Bioscience and Bioengineering,1998,85:96-100.
    [32]Wee Y J,Reddy L V A,Ryu H W.Fermentative production of L(+)-lactic acid from starch hydrolyzate and corn steep liquor as inexpensive nutrients by batch culture of Enterococcus faecalis RKY1[J].Journal of Chemical Technology and Biotechnology,2008,83:1387-1393.
    [33]Bai D M,Li S Z,Liu Z L et al.Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate[J].Applied Biochemistry and Biotechnology,2008,144:79-85.
    [34]Miura S,Arimura T,Itoda N et al.Production of L-lactic acid from corncob[J].Journal of Bioscience and Bioengineering,2004,97:153-157.
    [35]Hang Y D.Direct fermentation of corn to L(+)-lactic acid by Rhizopus oryzae[J].Biotechnology Letters,1989,11:299-300.
    [36]潘丽军,李兴江,潘利华等.米根霉发酵甘薯淀粉制备L-乳酸研究[J].食品科学,2005,2:105-108.
    [37]李兴江.米根霉深层发酵甘薯淀粉制备L-乳酸工艺研究[D].合肥工业大学,合肥:2004.
    [38]余赟.适于甘薯淀粉高产L-乳酸米根霉菌株的选育[D].合肥工业大学,合肥:2004.
    [39]Zhang Z Y,Jin B,Kelly J M.Production of lactic acid and byproducts from waste potato starch by Rhizopus arrhizus:role of nitrogen sources[J].World Journal of Microbiology &Biotechnology,2007,23:229-236.
    [40]Okine A,Aibibula Y,Hanada M et al.The use of fungal inoculants in the ensiling of potato pulp:Effect of temperature and duration of storage on silage fermentation characteristics[J].Asian-Australasian Journal of Animal Sciences,2007,20:214-219.
    [41]Liu Y,Wen Z,Liao W et al.Optimization of the process for the production of L(+)-lactic acid from cull potato by Rhizopus oryzae[J].Engineering in Life Sciences,2005,5:343-349.
    [42]Huang L P,Jin B,Lant P et al.Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus[J].Biochemical Engineering Journal,2005,23:265-276.
    [43]Huang L P,Jin B,Lant P.Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus[J].Bioprocess and Biosystems Engineering,2005,27:229-238.
    [44]Saito K,Abe A,Sujaya I N et al.Comparison of Amylomyces rouxii and Rhizopus oryzae in lactic acid fermentation of potato pulp[J].Food Science and Technology Research,2004,10:224-226.
    [45]Ruengruglikit C,Hang Y D.L(+)-lactic acid production from corncobs by Rhizopus oryzae NRRL-395[J].Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,2003,36:573-575.
    [46]Moldes A B,Alonso J L,Parajo J C.Multi-step feeding systems for lactic acid production by simultaneous saccharification and fermentation of processed wood[J].Bioprocess Engineering,2000,22:175-180.
    [47]陈育如,岑沛霖.利用固定化米根霉在三相流化床中发酵生成L-乳酸[J].微生物学报,2000,4:415-419.
    [48]陈育如.植物纤维原料预处理及酶水解和乳酸发酵的研究[D].浙江大学,杭州:2000.
    [49]Jin B,Yin P H,Ma Y H et al.Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams[J].Journal of Industrial Microbiology & Biotechnology,2005,32:678-686.
    [50]Yamauchi H,Noda T,Matsuura Endo C et al.Improving the utility of potato pulp for bread-making by fermentation with Rhizopus oryzae[J].Food Science and Technology Research,2004,10:314-319.
    [51]Huang L P,Jin B,Lant P et al.Direct fermentation of potato starch in wastewater to lactic acid by Rhizopus oryzae[J].Biotechnology and Bioprocess Engineering,2004,9:245-251.
    [52]Kim K,Kim W K,Seo D K et al.Production of lactic acid from food wastes[J].Applied Biochemistry and Biotechnology,2003,105:637-647.
    [53]陈育如,夏黎明.纤维废渣酶水解及L-乳酸发酵的研究[J].高校化学工程学报,2000,5:437-441.
    [54]陈育如,夏黎明.纤维素酶和米根霉同时糖化发酵纤维素为L-乳酸[J].食品与发酵工业,2000,3:6-9.
    [55]陈育如,夏黎明,岑沛霖.聚氨酯吸附固定米根霉发酵L-乳酸的优化[J].南京师范大学学报:工程技术版,2002,1:52-55.
    [56]陈育如,夏黎明,岑沛霖.聚氨酯固定化米根霉发酵乳酸动力学研究[J].南京师大学报:自然科学版,2002,1:83-88.
    [57]张定丰,林建平,金志华等.用于固定化米根霉发酵生产L-乳酸的转盘反应器及其放大[J].化学工程,2004,1:34-37.
    [58]Xia L M,Luo J,Lin J P et al.Kinetics of simultaneous saccharification and lactic acid fermentation processes[J].Biotechnology Progress,1997,13:762-767.
    [59]Yu R,Hang Y D.Kinetics of direct fermentation of agricultural commodities to L(+)-lactic acid by Rhizopus oryzae[J]Biotechnology Letters,1989,11:597-600.
    [60]Zhang Z Y,Jin B,Kelly J M.Effects of cultivation parameters on the morphology of Rhizopus arrhizus and the lactic acid production in a bubble column reactor[J].Engineering in Life Sciences,2007,7:490-496.
    [61]Zhang Z Y,Jin B,Kelly J M.Production of lactic acid from renewable materials by Rhizopus fungi[J].Biochemical Engineering Journal,2007,35:251-263.
    [62]Zhang Z Y,Jin B,Kelly J M.Production of L(+)-lactic acid using acid-adapted precultures of Rhizopus arrhizus in a stirred tank reactor[J].Applied Biochemistry and Biotechnology,2008,149:265-276.
    [63]Huang L P,Dong T,Chen J W et al.Biotechnological production of lactic acid integrated with fishmeal wastewater treatment by Rhizopus oryzae[J].Bioprocess and Biosystems Engineering,2007,30:135-140.
    [64]Huang L P,Jin B,Lant P et al.Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus[J].Journal of Chemical Technology and Biotechnology,2003,78:899-906.
    [65]Jin B,Huang L P,Lant P.Rhizopus arrhizus-a producer for simultaneous saccharification and fermentation of starch waste materials to L(+)-lactic acid[J].Biotechnology Letters,2003,25:1983-1987.
    [66]Woiciechowski A L,Soccol C R,Ramos L P et al.Experimental design to enhance the production of L-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation[J].Process Biochemistry,1999,34:949-955.
    [67]Bulut S,Elibol M,Ozer D.Effect of different carbon sources on L(+)-lactic acid production by Rhizopus oryzae[J].Biochemical Engineering Journal,2004,21:33-37.
    [68]Martak J,Schlosser S,Sabolova E et al.Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation[J].Process Biochemistry,2003,38:1573-1583.
    [69]Bai D M,Jia M Z,Zhao X M et al.L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor[J].Chemical Engineering Science,2003,58:785-791.
    [70]Du J X,Cao N J,Gong C S et al.Production of L-lactic acid by Rhizopus oryzae in a bubble column fermentor[J].Applied Biochemistry and Biotechnology,1998,70-72:323-329.
    [71]Fan Y H,Yang Y G,Zheng Z M et al.Enhancement of L(+)-lactic acid production of immobilized Rhizopus oryzae implanted by ion beams[J].Plasma Science & Technology,2008,10:136-140.
    [72]Ganguly R,Dwivedi P,Singh R P.Production of lactic acid with loofa sponge immobilized Rhizopus oryzae RBU2-10[J].Bioresource Technology,2007,98:1246-1251.
    [73]Sun Y,Li Y L,Bai S.Modeling of continous L(+)-lactic acid production with immobilized R.oryzae in an airlift bioreactor[J].Biochemical Engineering Journal,1999,3:87-90.
    [74]Spiricheva O V,Sen'ko O V,Veremeenko D V et al.Lactic acid production by immobilized cells of the fungus Rhizopus oryzae with simultaneous product extraction[J].Theoretical Foundations of Chemical Engineering,2007,41:150-153.
    [75]林建平.生物转盘反应器固定化米根霉发酵与离子交换分离耦合生产L-乳酸的研究[D].浙江大学,杭州:1996.
    [76]李玉龙.利用固定化米根霉的L-乳酸发酵和原位分离过程研究[D].天津大学,天津:1997.
    [77]白姝.利用游离和固定化米根霉发酵生产L(+)-乳酸的动力学研究[J].天津大学学报,1998,3:341-345.
    [78]白姝,董晓燕.固定化米根霉生产L-乳酸的研究[J].微生物学通报,1996,3:140-143.
    [79]Liu Y,Liao W,Liu C B et al.Optimization of L-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395[J].Applied Biochemistry and Biotechnology,2006,131:844-853.
    [80]Liao W,Liu Y,Chen S L.Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production[J].Applied Biochemistry and Biotechnology,2007,137:689-701.
    [81]Liao W,Liu Y,Frear C et al.A new approach of pellet formation of a filamentous fungus-Rhizopus oryzae[J].Bioresource Technology,2007,98:3415-3423.
    [82]Liao W,Liu Y,Frear C et al.Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material - dairy manure - using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344[J].Bioresource Technology,2008,99:5859-5866.
    [83]Liu Y,Liao W,Chen S.Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose[J].Journal of Applied Microbiology,2008,105:1521-1528.
    [84]Liu Y,Liao W,Chen S L.Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model[J].Biotechnology and Bioengineering,2008,99:117-128.
    [85]Zhou Y,Dominguez J M,Cao N J et al.Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311[J].Applied Biochemistry and Biotechnology,1999,77-79:401-407.
    [86]Yang C W,Lu Z J,Tsao G T.Lactic acid production by pellet-form Rhizopus oryzae in a submerged system[J].Applied Biochemistry and Biotechnology,1995,51-52:57-70.
    [87]Yu M C,Wang R C,Wang C Y et al.Enhanced production of L(+)-lactic acid by floc-form culture of Rhizopus oryzae[J].Journal of the Chinese Institute of Chemical Engineers,2007,38:223-228.
    [88]朱羽.无载体固定化米根霉发酵L-乳酸研究[D].合肥工业大学,合肥:2006.
    [89]姜绍通,郑志,朱羽等.无载体固定化米根霉重复间歇发酵生产L-乳酸[J].生物工程学报,2008,10:1729-1733.
    [90]于雷.L-乳酸生产菌分批发酵动力学模型[J].食品工业科技,2008,5:100-102.
    [91]陆香庆.固定化米根霉发酵生产L-乳酸的研究[D].合肥工业大学,合肥:2006.
    [92]邵伟,仇敏,熊泽.米根霉液体发酵L-乳酸动力学模型的构建[J].江苏调味副食品,2006,2:30-33.
    [93]Hamamci H,Ryu D D.Production of L(+)-lactic acid using immobilized Rhizopus oryzae[J].Applied Biochemistry Biotechnology,1994,44:125.
    [94]李学梅,刘茉娥.固定化米根霉在三相流化床中间歇发酵生产L-乳酸的研究[J].化学反应工程与工艺,1996,3:301-307.
    [95]Papagianni M,Murray M Y.Protease secretion in glucoamylase producer Aspergillus niger cultures:fungal morphology and inoculum effects[J].Process Biochemistry,2002,37:1271-1278.
    [96]郑美英.Streptoverticillium mobaraense生物合成谷氨酰胺转胺酶的过程优化及工业化条件研究[D].江南大学,无锡:2000.
    [97]雷德柱,于淑娟.灰树花深层发酵过程中菌丝球形态结构的研究[J].食用菌学报,2003,1:6-11.
    [98]Cui Y Q,Vanderlans J M,Luyben M.Effects of dissolved oxygen tension[J].Biotechnology and Bioengineering,1998,57:409-419.
    [99]Wittler R,Schugerl K,Lorenz T.The use of molds in pellet form[J].Trends in Biotechnology,1983,1:120-123.
    [100]张一竹,王清祺.真菌菌丝球形成的自组织机理[J].生物技术,2002,6:27-28.
    [101]Papagianni M.Fungal morphology and metabolite production in submerged mycelial processes[J].Biotechnology Advances,2004,22:189-259.
    [102]王福军.计算流体动力学分析-CFD软件原理及应用[M].清华大学出版社,北京:2004.
    [103]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].清华大学出版社,北京:2007.
    [104]宁建根,叶旭初,张林进.柠檬酸发酵罐内气泡流的数值模拟分析[J].南京工业大学学报:自然科学版,2007,5:70-73.
    [105]徐健,刘孝光,潘培道.机械搅拌通风发酵罐内气液两相流的仿真模拟[J].包装与食品机械,2006,6:10-13.
    [106]刘孝光,潘培道,徐健.基于CFD技术的机械搅拌通风发酵罐溶氧性能预测[J].轻工机械,2008,2:21-24.
    [107]赵卫宁,潘家祯,陈双喜等.生物搅拌反应器的CFD模拟及在肌苷发酵中的应用[J].华东理工大学学报:社会科学版,2006,5:548-551.
    [108]赵卫宁.搅拌生物反应器的CFD模拟研究[D].华东理工大学,上海:2005.
    [109]蒋啸靖,夏建业,赵劼等.生物搅拌反应器内混合情况的CFD模拟及在发酵中的应用[J].化学与生物工程,2008,7:54-57.
    [1]Bulut S,Elibol M,Ozer D.Effect of different carbon sources on L(+)-lactic acid production by Rhizopus oryzae[J].Biochemical Engineering Journal,2004,21:33-37.
    [2]Ruengruglikit C,Hang Y D.L(+)-lactic acid production from corncobs by Rhizopus oryzae NRRL-395[J].Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,2003,36:573-575.
    [3]白冬梅.L-乳酸高产菌株的诱变及其代谢通量分析[D].天津大学,天津:2001.
    [4]朱羽.无载体固定化米根霉发酵L-乳酸研究[D].合肥工业大学,合肥:2006.
    [5]陆香庆.固定化米根霉发酵生产L-乳酸的研究[D].合肥工业大学,合肥:2006.
    [6]林建平.生物转盘反应器固定化米根霉发酵与离子交换分离耦合生产L-乳酸的研究[D].浙江大学,杭州:1996.
    [7]Chen C C,Ju L K.Coupled lactic acid fermentation and adsorption[J].Applied Microbiology and Biotechnology,2002,170-174.
    [8]Yin P M,Yahiro K,Ishigaki T et al.L(+)-lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor[J].Journal of Bioscience and Bioengineering,1998,85:96-100.
    [9]Yu M C,Wang R C,Wang C Y et al.Enhanced production of L(+)-lactic acid by floc-form culture of Rhizopus oryzae[J].Journal of the Chinese Institute of Chemical Engineers,2007,38:223-228.
    [10]Bai D M,Jia M Z,Zhao X M et al.L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor[J].Chemical Engineering Science,2003,58:785-791.
    [11]Liu Y,Liao W,Chen S.Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose[J].Journal of Applied Microbiology,2008,105:1521-1528.
    [12]Du J X,Cao N J,Gong C S et al.Production of L-lactic acid by Rhizopus oryzae in a bubble column fermentor[J].Applied Biochemistry and Biotechnology,1998,70-72:323-329.
    [13]Martak J,Schlosser S,Sabolova E et al.Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation[J].Process Biochemistry,2003,38:1573-1583.
    [14]Liao W,Liu Y,Frear C et al.Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material-dairy manure-using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344[J].Bioresource Technology,2008,99:5859-5866.
    [15]Liao W,Liu Y,Frear C et al.A new approach of pellet formation of a filamentous fungus-Rhizopus oryzae[J].Bioresource Technology,2007,98:3415-3423.
    [16]刘志国.生物化学试验[D].华中科技大学出版社,2007,31-33.
    [17]Hang Y D.Direct fermentation of corn to L(+)-lactic acid by Rhizopus oryzae[J].Biotechnology Letters,1989,11:299-300.
    [18]郑志.米根霉发酵产L-乳酸的代谢调控研究[D].合肥工业大学,合肥:2006.
    [19]李兴江.米根霉深层发酵甘薯淀粉制备L-乳酸工艺研究[D].合肥工业大学,合肥:2004.
    [1]郑美英.Streptoverticillium mobaraense生物合成谷氨酰胺转胺酶的过程优化及工业化条件研究[J].江南大学,无锡:2000.
    [2]梅乐和,岑沛霖.现代酶工程[M].化学工程出版社,北京:2008.
    [3]Papagianni M.Fungal morphology and metabolite production in submerged mycelial processes[J].Biotechnology Advances,2004,22:189-259.
    [4]李兴江.米根霉深层发酵甘薯淀粉制备L-乳酸工艺研究[D].合肥工业大学,合肥:2004.
    [5]郑志.米根霉发酵产L-乳酸的代谢调控研究[D].合肥工业大学,合肥:2006.
    [6]郑志,姜绍通,罗水忠等.不同通气条件下米根霉发酵产L-乳酸的代谢调控[J].农业机械学报,2008,8:79-83,134.
    [7]俞俊堂,唐孝宣,邬行彦等.新编生物工艺学[M].化学工业出版社,北京:2003.
    [8]熊宗贵.发酵工艺原理[M].中国医药科技出版社,北京:1995.
    [9]贾士儒.生物反应工程原理[M].科学出版社,北京:2008.
    [1]朱羽.无载体固定化米根霉发酵L-乳酸研究[D].合肥工业大学,合肥:2006.
    [2]Bai D M,Jia M Z,Zhao X M et aL L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor[J].Chemical Engineering Science,2003,58:785-791.
    [3]Yu M C,Wang R C,Wang C Y et al.Enhanced production of L(+)-lactic acid by floc-form culture of Rhizopus oryzae[J].Journal of the Chinese Institute of Chemical Engineers,2007,38:223-228.
    [4]Martak J,Schlosser S,Sabolova E et al.Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation[J].Process Biochemistry,2003,38:1573-1583.
    [5]Yin P M,Yahiro K,Ishigaki T et al.L(+)-lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor[J].Journal of Bioscience and Bioengineering,1998,85:96-100.
    [6]Yang C W,Lu Z J,Tsao G T.Lactic acid production by pellet-form Rhizopus oryzae in a submerged system[J].Applied Biochemistry and Biotechnology,1995,51-52:57-70.
    [7]Liu Y,Liao W,Chen S.Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose[J].Journal of Applied Microbiology,2008,105:1521-1528.
    [8]Du J X,Cao N J,Gong C S et al.Production of L-lactic acid by Rhizopus oryzae in a bubble column fermentor[J].Applied Biochemistry and Biotechnology,1998,70-72:323-329.
    [9]Zhou Y,Dominguez J M,Cao N J et al.Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311[J].Applied Biochemistry and Biotechnology,1999,77-79:401-407.
    [10]Park E Y,Kosakai Y,Okabe M.Efficient production of L-(+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactor[J].Biotechnology Progress,1998,14:699-704.
    [11]Park Y S,Kosakai Y,Okabe M.Enhancement of L-(+)-lactic acid production using mycelial flocs of Rhizopus oryzae[J].Biotechology & Bioengneering,1997,55:461-470.
    [1]常秀莲.乳酸发酵的固定化及有关动力学的研究[D].烟台大学,烟台:1989.
    [2]白姝.利用游离和固定化米根霉发酵生产L(+)-乳酸的动力学研究[J].天津大学学报,1998,3:341-345.
    [3]江龙法,林建平,岑沛霖.米根霉发酵生产L-乳酸的动力学研究[J].中国畜产与食品,1999,6:279-280.
    [4]陈育如,夏黎明,岑沛霖.聚氨酯固定化米根霉发酵乳酸动力学研究[J].南京师大学报:自然科学版,2002,1:83-88.
    [5]孙梅,匡群,施大林等.耐氨米根霉的分批补料发酵及发酵动力学初探[J].食品与发酵工业,2005,30-34.
    [6]邵伟,仇敏,熊泽.米根霉液体发酵L-乳酸动力学模型的构建[J].江苏调味副食品,2006,2:30-33
    [7]Liu Y Q,Liu D H.Kinetic sthdy on glycerol production by repeated batch fermentation using free Candida krusei[J].Process Biochemistry,2004,39:1507-1510.
    [8]俞俊堂,唐孝宣,邬行彦等.新编生物工艺学[M].化学工业出版社,北京:2003.
    [9]熊宗贵.发酵工艺原理[M].中国医药科技出版社,北京:1995.
    [10]陈坚,李寅.发酵过程优化原理与实践[M].化学工业出版社,北京:2001.
    [1]郑美英.Streptoverticillium mobaraense生物合成谷氨酰胺转胺酶的过程优化及工业化条件研究[D].江南大学,无锡:2000.
    [2]朱羽.无载体固定化米根霉发酵L-乳酸研究[D].合肥工业大学,合肥:2006.
    [3]陆香庆.固定化米根霉发酵生产L-乳酸的研究[D].合肥工业大学,合肥:2006.
    [4]Yu M C,Wang R C,Wang C Y et al.Enhanced production of L(+)-lactic acid by floc-form culture of Rhizopus oryzae[J].Journal of the Chinese Institute of Chemical Engineers,2007,38:223-228.
    [5]Spiricheva O V,Sen'ko O V,Veremeenko D V et al.Lactic acid production by immobilized cells of the fungus Rhizopus oryzae with simultaneous product extraction[J].Theoretical Foundations of Chemical Engineering,2007,41:150-153.
    [6]Liao W,Liu Y,Frear C et al.A new approach of pellet formation of a filamentous fungus-Rhizopus oryzae[J].Bioresource Technology,2007,98:3415-3423.
    [7]Bai D M,Jia M Z,Zhao X M et al.L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor[J].Chemical Engineering Science,2003,58:785-791.
    [8]Liao W,Liu Y,Chen S L.Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production[J].Applied Biochemistry and Biotechnology,2007,137:689-701.
    [9]Liu Y,Liao W,Chen S L.Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model[J].Biotechnology and Bioengineering,2008,99:117-128.
    [10]Miura S,Arimura T,Hoshino M et al.Optimization and scale-up of L-lactic acid fermentation by mutant strain Rhizopus sp MK-96-1196 in airlift bioreactors[J],Journal of Bioscience and Bioengineering,2003,96:65-69.
    [11]Bulut S,Elibol M,Ozer D.Effect of different carbon sources on L(+)-lactic acid production by Rhizopus oryzae[J].Biochemical Engineering Journal,2004,21:33-37.
    [12]Park E Y,Anh P N,Okuda N.Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae[J].Bioresource Technology,2004,93:77-83.
    [13]Huang L P,Jin B,Lant P et al.Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus[J].Biochemical Engineering Journal,2005,23:265-276.
    [14]李兴江.米根霉深层发酵甘薯淀粉制备L-乳酸工艺研究[D].合肥工业大学,合肥:2004.
    [15]Zhang Z Y,Jin B,Kelly J M.Effects of cultivation parameters on the morphology of Rhizopus arrhizus and the lactic acid production in a bubble column reactor[J].Engineering in Life Sciences,2007,7:490-496.
    [16]Gorin P A,Dufrence Y,Bellon-Fontaine M N et al.Surface properties of the condiospores of phanerochate chysosporium and their relevance to pellet formation[J].The Journal of Bacteriology,1993,175:5135-5514.
    [1]袁越锦,王丽萍,徐英英等.啤酒发酵液低温冷却过程的CFD模拟[J].酿酒科技,2008,4:25-28,31.
    [2]宁建根,叶旭初,张林进.柠檬酸发酵罐内气泡流的数值模拟分析[J].南京工业大学学报:自然科学版,2007,5:70-73.
    [3]王丽萍,刘相东,徐尧润.啤酒发酵液冷却过程的流体动力学模拟[J].中国农业大学学报,2006,5:113-116.
    [4]Zhang X W,Burki C A,Stettler M et al.Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 L[J].Biochemical Engineering Journal,2009,45:41-47.
    [5]P.Yu,T.Lee,Y.Zeng et al.A 3 D analysis of oxygen transfer in a low-cost micro-bioreactor for animal celll suspension culture[J].Computer Methods and Programs in Biomedicine,2007,85:59-68.
    [6]Um B H,Hanley T R.A CFD model for predicting the flow patterns of viscous fluids in a bioreactor under various operating conditions[J].Korean Journal of Chemical Engineering,2008,25:1094-1102.
    [7]赵卫宁,潘家祯,陈双喜等.生物搅拌反应器的CFD模拟及在肌苷发酵中的应用[J].华东理工大学学报:社会科学版,2006,5:548-551.
    [8]徐健,刘孝光,潘培道.机械搅拌通风发酵罐内气液两相流的仿真模拟[J].包装与食品机械,2006,6:10-13.
    [9]刘孝光,潘培道,徐健.基于CFD技术的机械搅拌通风发酵罐溶氧性能预测[J].轻工机械,2008,2:21-24.
    [10]蒋啸靖,夏建业,赵劼等.生物搅拌反应器内混合情况的CFD模拟及在发酵中的应用[J].化学与生物工程,2008,7:54-57.