阴离子型孪连表面活性剂的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从分子设计角度,为满足表面活性剂的驱油要求,确定合成疏水链和亲水基固定的联接基团结构不同的Gemini表面活性剂。以1,2-环氧十四烷烃和短碳链二醇为原料,经过开环、硫酸化和中和反应,成功合成了6种纯度高、结构明确的联接基团不同的硫酸盐型Gemini表面活性剂。反应中间体和产物均通过核磁共振氢谱、傅里叶红外光谱、电喷雾质谱等分析手段进行了结构鉴定。用合成的系列硫酸盐型Gemini表面活性剂作为模型化合物,研究其结构与性能的关系。主要研究内容和结论如下:
     通过测定硫酸盐型Gemini表面活性剂在纯水和一定离子强度水溶液中的表面张力,研究了其在水/空气界面的吸附行为,考察了温度、电解质等因素对吸附行为的影响。通过表面张力随浓度变化的γ-lgC曲线,获得临界胶束浓度(cmc)、临界胶束浓度下的表面张力(γcmc)、降低表面张力的效率(pC20)、最大吸附量(Γmax)和标准吸附自由能0? Gad等物化参数。结果表明,相对于传统表面活性剂,硫酸盐型Gemini表面活性剂具有很好的降低表面张力效率的能力,其cmc在10-5-10-6mol/L数量级,? Ga0d的绝对值很高,表面活性剂分子更易吸附在气/液界面上。联接基团链短的、微弱亲水性(能与水形成氢键)的疏水柔性基团的Gemini表面活性剂的γcmc最小。联接基团的亲水亲油性对表面吸附性质有重要影响。无机盐电解质的加入,中和了亲水基的部分电荷,削弱了吸附层中的静电排斥力,分子间的有序结构得到了加强,使得表面活性剂分子间相互吸引作用增强,表面活性增强。温度的变化会影响胶束的形成,从而改变水溶液的表面性质。
     测定了联接基团为EO的Gemini表面活性剂的动态表面张力,采用Rosen经验方程分析计算,得到了动态表面张力参数,进一步考察了联接基团不同的Gemini表面活性剂分子在气/液界面的吸附动力学行为。研究结果表明,随着联接基链的增长,t *值增大,n值增大,R1/2值减小,即分子在体相中的扩散减慢,吸附到溶液表面上的能力增强,动态表面活性降低。
     利用泡沫扫描仪测定了硫酸盐型Gemini表面活性剂的泡沫性能,考察了表面活性剂的分子结构、浓度、温度、以及无机盐电解质、聚合物和脂肪醇添加剂等因素对起泡性能和泡沫稳定性能的影响。实验发现,常温下此类表面活性剂有很好的起泡能力和泡沫稳定性。联接基结构的变化,或者外界条件的改变,本质都是改变了表面活性剂分子在泡沫表面膜上排列的疏密程度,从而影响了泡沫性能。
     测定了硫酸盐型Gemini表面活性剂与正构烷烃、原油体系的界面张力,考察了表面活性剂浓度、联接基团结构和无机盐对界面张力的影响。界面张力扫描发现,此体系Gemini表面活性剂的最小烷烃数为12,联接基团的结构对其不构成影响;硫酸盐型Gemini表面活性剂具有良好的耐盐性能。T2E1和T2H1有很高的界面活性,与孤岛东区原油体系的界面张力可以达到10-4mN/m。选择T2E1作为驱油用表面活性剂,考察了其在油砂中的静态吸附性能和热稳定性能,岩心驱油实验表明,其提高采收率可达16.3%。
In the dissertation,novel six di-n-alkyl diol intermediates were synthesized from 1, 2-epoxytetradecane and short-chain diols through ring-opening, sulfation and neutralization. The chemical structures were characterized by FT-IR, 1H-NMR and ESI-MS methods. As model compounds, the relations of structure and properties of the highly purified anionic gemini surfactants were studied. The main work and conclusions are as following:
     The surface tensions of anionic Geminis were investigated in aqueous solutions by Wilhelmy plate method, to study the adsorption behavior at the water/air interface, and the effect of temperature and ionic strength to adsorption properties. The values of cmc,γcmc, pC20,Γmax, ? Ga0d were obtained by theγ-lgC curves. It is indicated that the anionic Geminis are three orders of magnitude more surface active than that of their single-chained counterparts, cmc values are lowered by two to three orders of magnitude, and easier adsorbed at the interface. The smallestγcmc values are Geminis with spacer groups of short, slightly hydrophilic (just capable of hydrogen bonding with water) hydrophobic and flexible. The properties of spacer groups are remarkably important to the surface adsorption. Partial charge of the hydrophilic group was neutralized, the repulsive force was weakened, and the intermolecular ordered structure was strengthened because of the addition of sodium chloride. The factor of temperature will influence the formation of micelles, thus the behavior in aqueous solution will be changed.
     Dynamic surface tensions of anionic Geminis with spacer group of EO units were investigated in aqueous solution. Dynamic surface parameters were obtained by use of Rosen equation. The results show that, the more length of spacer chain, the slower diffusion rate of molecular from bulk phase to surface, the stronger adsorption at aqueous surface, and the lower dynamic surface activity.
     The foam properties of anionic Geminis in aqueous solutions at different conditions, such as the molecular structure, concentration of Geminis, temperature and different additives (sodium chloride, polymer and aliphatic alcohol, etc.) were measured by the Foamscan. It is found that the anionic Geminis display good foaming performance at room temperature. Essentially, the foam performance is influenced by the molecular arrangement at air/water interface.
     The interfacial tension between anionic Geminis and n-alkanes, crud oil had been investigated at different conditions, such as the concentration of anionic Geminis, spacer group structure and inorganic salt. The minimum alkyl carbon number (nmin) of anionic Geminis is dodecane by interfacial tension scanning. The structure of spacer group makes no influence to nmin. Anionic Geminis display outstanding salt resistance. The interfacial tensions reduce as the salt concentration and the number of EO units in spacer group increasing. Ultra low interfacial tension could be achieved in water/crude oil system of T2E1 and T2H1. T2E1 was selected as EOR surfactant to study the static adsorption consumption by oil sand and thermal stability. Core flooding experiment shows that enhanced oil recovery is 16.3% (OOIP).
引文
[1]俞稼镛,宋万超,李之平等.化学复合驱基础及进展[M].北京:中国石化出版社, 2002: 1-8
    [2]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社, 2001: 1-5
    [3]朱友益,沈平平.三次采油复合驱用表面活性剂一合成、性能及应用[M].北京:石油工业出版社, 2002:1-10
    [4]沈平平,俞稼镛等.大幅度提高石油采收率的基础研究[M].北京:石油工业出版社, 2001:1-7
    [5]沈平平,俞稼镛等.大幅度提高石油采收率的基础研究[M].北京:石油工业出版社, 2004: 1-5
    [6] Foster W. R. A Low-Tension Waterflooding Process [J]. Pet. Technol, 1973, 25: 205-210
    [7] Ehrlich R., Hasiba H. H., Raimondi P. Alkaline Waterflooding for Wettability Alteration-Evaluating a Potential Field Application [J]. J. Petroleum Technology, 1974, 26: 1335-1343
    [8] De Groote M. Flooding Process for Recovering Oil from Subterranean Oil Bearing Strata [P]. US: 2233382,1941-02-25.
    [9] De Groote M., Monson L. T. Flooding Process for Recovering Fixed Oil from Subterranean Oil Bearing Strata [P]. US: 1823440, 1931-09-15
    [10] Blair C. M., Groves W., Lehmann S. Process for Increasing Productivity of Subterranean Oil-Bearing Strata [P]. US: 2356205, 1944-08-22
    [11] Holbrook O. C. Surfactant-Water Secondary Recovery Process [P]. US: 3006411, 1961-10-31
    [12] Reisberg, Joseph. Secondary Recovery Method [P]. US: 3330344, 1967-07-11
    [13] Nelson R. C., Lawson T. B., Thigpen D. R. Cosurfactant-Enhanced Alkaline Flooding [J]. SPE12672, 1984: 413-424
    [14] Martin M. D., Oxley J. C. Effect of Various Alkaline Chemicals on Phase Behavior of Surfactant/Brine/Oil Mixtures [J]. SPE13575, 1985: 277-287
    [15] Clark S. R., Smith S. M. Design and Application of an Alkaline-Surfactant-Polymer Recovery System to the West Kiehl Field [J]. SPE17538, 1993: 172-179
    [16] Lin F. F. J., Besserer G. J., Pitts M. J. Laboratory Evaluation of Crosslinked Polymer and Alkaline-Polymer-Surfactant Flood [J]. J. Canadian Petroleum Technology, 1987, 26(6): 54-65
    [17]曹绪龙.碱-助表面活性剂-聚合物体系相性质的研究[J].油田化学, 1991, 8(4):357-361
    [18] Schler P. J., Kuehne D.L., Lerner R.M. Improving Chemical Flood Efficiency with Micellar/Alkaline/Polymer Processes [J]. SPE14934, 1989: 80-88
    [19] Bernad G. G. Has Caustic Consumption Been Underestimated in Field Caustic Floods? [J]. SPE8789, 1979: 1-4
    [20] Krumrine P. H., Falconer J. S. Surfactant Flooding 1: The Effect of Alkaline Additives on IFT, Surfactant Adsorption, and Recovery Efficiency [J]. Society Petroleum Engineers J, 1982, 22(4): 503-513
    [21] Cayias J.L., Schechter R.S., Wade W.H. The Application of Low Interfacial Tensions Scaling Rules to Binary Hydrocarbon Mixtures [J]. J. Colloid and Interface Science, 1977, 59(1): 39-44
    [22] Cayias J. L., Schechter R. S., Wade W. H. The Utilization of Petroleum Sulfonates for Producing Low Interfacial Tensions Between Hydrocarbons and Water [J]. ibid, 1977, 59(1): 31-38
    [23]李殿文.前苏联表面活性剂的稀体系驱油[J].油田化学, 1993, 10(2): 188-194
    [24]李干佐,林元等. Tween80表面活性剂复合驱油体系研究[J].油田化学, 1994, 11(2): 152-156
    [25]陈茂涛,刘斌丽.烷基酚聚氧乙烯醚在油砂上的吸附损失[J].油田化学, 1991, 8(3): 240-244
    [26]赵立艳,樊西惊.表面活性剂驱油体系的新发展[J].西安石油学院学报, 2000, 15(2): 55-58
    [27] Eimund G. J., Clas S., Per-Erik H., et al. Branched Ether Surfactant and Their Use in an Enhanced Oil Recovery Process [P]. WO: 015289, 1991-10-17
    [28] Maerker J. M. Surfactant Flood Process Design for Loudon [J]. SPE Reservoir Eng, 1992, 7(1): 36-44
    [29] Danzik, Mitchell, Wall, et al. Miscible Gas Enhanced Oil Recovery Method UsingEthoxylated Alkylphenol Sulfonate [P]. WO: 012158A1, 1989-12-14
    [30] Teletzke , Ashcraft , Reed , et al. Oil Recovery Process Using Alkyl Hydroxyaromatic Dianionic Surfactant as Mobility Control Agents [P]. US: 4828032, 1989-05-09
    [31] Bae J. H., Chou I. S. Method for Recovering Petroleum Using Oligomeric Surfactants [P]. US: 4819729, 1989-04-11
    [32] Sheehy, Alan. Oil Recovery Using Microorganisms [P]. WO: 001780, 1992-02-06
    [33] Huang Hongdu. U ltralow Oil-Water IFTs Using Neutralized Oxi-Dized Hydrocarbons as Surfacetants [J]. J. American Oil Chemists’Society, 1990, 67(6): 406-441
    [34] Kazan Chem. Tech. Inst. Compounds for Forceing Oil out of Stratum [P]. RU: 1773100C, 1995-04-20
    [35] Frederick C. B., Verona N. J. Washing Composition [P]. US: 2524218, 1950-10-03
    [36] Quencer L.B. The Detergency Properties of Mono and Dialkylated Mono and Disulfonated Diphenyl Oxide Surfactants [C]. Barcelona, Proceedings of the 4th World Surfactant Congress, 1996, 66-75
    [37] Bunton C. A., Robinson L. Catalysis of Nucleophilic Substitutions by Micelles of Dicationic Detergent [J]. J. Organic Chemistry, 1971, 36 (3): 2346-2352
    [38] Deinega Y., Ul berg Z. R., Marochko L. G. Metal-Polymer Coatings Based on a Lead-Zinc Alloy [J]. Powder Metallurgy and Metal Ceramics, 1976, 15(1): 23-26
    [39] Okahara M., Masuyama A., Zhu Y-P, et al. Surface Active Properties of New Type of Amphipathic Compounds with Two Hydrophilic Ionic Groups and Two Lipophilic Alkyl Chains [J]. J Jpn Oil Chem Soc, 1988, 37: 746-747
    [40] Zhu Y-P, Masuyama A, Okahara M, et al. Preparation and Surface Active Properties of Amphipathic Compounds with Two Sulfate Groups and Two Lipophilic Alkyl Chains [J]. JAOCS, 1990, 67(7): 459-463
    [41] Zhu Y-P, Masuyama A., Okahara M., et al. Preparation and Properties of Double-Chain Surfactants Bearing Two Sulfonate Groups [J]. J Jpn Oil Chem Soc, 1991, 40(6): 473-477
    [42] Zhu Y-P, Masuyama A., Okahara M., et al. Preparation and Surface-Active Properties of New Amphipathic Compounds with Two Phosphate Groups and Two Long-Chain Alkyl Groups [J]. JAOCS, 1991, 68(4): 268-271
    [43] Zhu Y-P, Masuyama A., Okahara M., et al. Preparation and Properties of Double-orTriple-Chain Surfactants with Two Sulfonate Groups Derived from N-Acyldiethanolamines [J]. ibid, 1991, 68(7): 539-543
    [44] Zana R., Benrraou M., Rueff R. Alkanediyl-α, ?-Bis (dimethylalkylammonium bromide) Surfactants 1. Effect of the Spacer Chain Lenghth on the Critical Micelle Concentration and Micelle Ionization Degree [J]. Langmuir, 1991, 7: 1072-1075
    [45] Alami E., Levy H., Zana R. Alkanediyl-α,ω-Bis (dimethyl alkyl ammonium bromide) Surfactants. 2. Structure of the Lyotropic Mesophases in the Presence of Water [J]. ibid, 1993, 9: 940-944
    [46] Alami E., Beinert G., Zana R. Alkanediyl-α,ω-Bis (dimethylalkylammonium bromide) Surfactants. 3. Behavior at the Air-Water Interface [J]. ibid, 1993, 9: 1465-1467
    [47] Frindi M., Michels B., Zana R. Alkanediyl-α,ω-Bis (dimethylalkylammonium bromide) Surfactants. 4. Ultrosonic Absorption Studies of Amphiphile Exchange Between Micelles and Bulk Phase in Aqueous Micellar Solutions [J]. ibid, 1994, 10: 1140-1145
    [48] Danino D, Talmon Y, Zana R. Alkanediyl-α,ω-Bis (dimethylalkylammonium bromide) Surfactants. 5. Aggregation and Microstructure in Aqueous Solutions [J]. ibid, 1995, 11: 1448-1456
    [49] Zana R, Levy H. Alkanediyl-α,ω-Bis (dimethylalkylammonium bromide) Surfactants (Dimeric Surfactants). 6. CMC of the Ethanediyl-1, 2-Bis (dimethyl alkyl ammonium bromide) Series [J]. Colloids Surfaces A, 1997, 127(1-3): 229-232
    [50] Zana R. Bolaform and Dimeric Surfactants, Specilist Surfactants [C]. London, Blakie Academic and Professiona1, 1997: 80-103
    [51] Rosen M. J. Geminis: A New Generation of Surfactants [J]. CHEMTECH, 1993, 23(3): 30-33
    [52] Rosen M. J, et al. Relationship of Structure to Properties of Surfactants. 16. Linear Decyldiphenylether Sulfonates [J]. JAOCS, 1992, 69 (1): 30-33
    [53] Rosen M. J, et al. Normal and Abnormal Surface Properties of Gemini Surfactants [C]. Proceeding of the 4th World Surfactants Congress, Barcelona, 1996, 2: 416-423
    [54] Rosen M. J., Zhu Z. H., Gao T. Synergism in Binary Mixture of Surfactants [J]. J. Collod. Interface Sci, 1993, 157(1): 254-259
    [55]赵剑曦.新一代表面活性剂: Gemini [J].化学进展, 1999, 11(4): 348-357
    [56] Jiang R, Huang Y-X,Zhao J-X. Aqueous Two-Phase System of an Anionic Gemini Surfactant and a Cationic Conventional Surfactant Mixture [J]. Fluid Phase Equilibria, 2009, 277(2): 114-120
    [57] Zheng O, Zhao J-X, Yan H. Dilution Method Study on the Interfacial Composition and Structural Parameters of Water/C12–EOx–C12 2Br/n-hexanol/n-heptane microemulsions: Effect of the Oxyethylene Groups in the Spacer [J]. J. Colloid and Interface Science, 2007, 310(1): 331-336
    [58] Zheng O, Zhao J-X, Chen R-T. Aggregation of Quaternary Ammonium Gemini Surfactants C12-s-C12 2Br in n-heptane/n-hexanol Solution: Effect of the Spacer Chains on the Critical Reverse Micelle Concentrations [J]. ibid, 2006, 300(1): 310-313
    [59] Jiang R., Ma Y-H, Zhao J-X. Adsorption Dynamics of Binary Mixture of Gemini Surfactant and Opposite-Charged Conventional Surfactant in Aqueous Solution [J]. ibid, 2006, 297(2): 412-418
    [60]赵剑曦.杂双子表面活性剂的研究进展[J].化学进展, 2005, 17(6): 987-993
    [61]赵剑曦,朱永平,游毅. C_(12)-s-C_(12)·2Br和己醇混合水溶液的胶团化行为[J].物理化学学报, 2003, 19(6): 557-559
    [62] Huang X, Han Y-Ch, Wang Y-L. Aggregation Properties of Cationic Gemini Surfactants with Dihydroxyethylamino Headgroups in Aqueous Solution [J]. Colloids and Surfaces A, 2008, 325(1-2): 26-32
    [63] Wang Y-X, Han Y-Ch, Wang Y-L. Aggregation Behaviors of a Series of Anionic Sulfonate Gemini Surfactants and their Corresponding Monomeric Surfactant [J]. ibid, 2008, 319(2): 534-541
    [64] Song X-Y, Li P-X, Wang Y-L. Solvent Effect on the Aggregate of Fluorinated Gemini Surfactant at Silica Surface [J]. J. Colloid and Interface Science, 2006, 304(1): 37-44
    [65] Li Y-J, Wang X-Y, Wang Y-L. Comparative Studies on Interactions of Bovine Serum Albumin with Cationic Gemini and Single-Chain Surfactants [J]. J. Phys. Chem. B, 2006, 110: 8499-8505
    [66] Wang X-Y, Wang J-B, Wang Y-L. Interactions of Cationic Gemini Surfactants with Hydrophobically Modified Poly (acrylamides) Studied by Fluorescence and Microcalorimetry [J]. ibid, 2005, 109: 12850-12855
    [67] Wang X-Y, Wang J-B, Wang Y-L. Micellization of a Series of Dissymmetric Gemini Surfactants in Aqueous Solution [J]. ibid, 2003, 107: 11428-11432
    [68] Wang X-Y, Wang J-B, Wang Y-L. Effect of the Nature of the Spacer on the Aggregation Properties of Gemini Surfactants in an Aqueous Solution [J]. Langmuir, 2004, 20: 53-56
    [69]姚志刚,李干佐,董凤兰. Gemini表面活性剂合成进展[J].化学进展, 2004, 16(3): 349-364
    [70]陈文君,顾强,李干佐.添加剂对双子表面活性剂DYNOL-604浊点的影响[J].化学学报, 2002, 60(5): 810-814
    [71] Pestman J. M., TerPatra K. R., Stuart M. C. A. Nonionic Bolaamphophiles and Gemini Surfactants Based on Carbohydrates [J]. Langmuir, 1997, 13: 6857-6560
    [72] Menger F. M., Seredyuk V. A., Apkarian R. P., et al. Depth-Profiling with Giant Vesicle Membranes [J]. J. Am. Chem. Soc., 2002, 124(42): 12408-12409
    [73] Zana R., Levy H., Papoutsi D., Beinert G. Micellization of Two Triquaternary Ammonium Surfactants in Aqueous Solution [J]. Langmuir, 1995, 11: 3694-3698
    [74] Menger F. M., Littau C. A. Gemini Surfactants: Synthesis and Properties [J]. J Am Chem Soc, 1991, 113: 1451-1452
    [75] Menger F. M., Littau C. A. Gemini Surfactants: a New Class of Self-Assembling Molecules [J]. ibid, 1993, 115(22): 10083-10090
    [76] Menger F. M., Jason S. K. Gemini Surfactants [J]. Angew. Chem. Int. Ed, 2000, 39: 1906-1920
    [77] Zhu Y-P, Masuyama A., Okahara M., et al. Double-Chain Surfactants with Two Carboxylate Groups and Their Relation to Similar Double-Chain Compounds [J]. J. Colloid Interface Science., 1993, 158: 40-45
    [78] ?ystein Rist, Carlson H. J. Synthesis of New Gemini Surfactants [J]. Synthetic Commun, 1999, 29(5): 749-754
    [79] Menger F. M., Keiper J. S., Azov V. Gemini Surfactants with Acetylenic Spacers [J]. Langmuir, 2000, 16: 2062-2067
    [80] Menger F. M., Migulin V. A. Synthesis and Properties of Multiarmed Geminis [J]. J. Org. Chem., 1999, 64(24): 8916-8921
    [81] Zhu Y-P, Masuyama A., et al. Preparation and Properties of Glycerol-Based Double-orTriple-Chain Surfactants with Two Hydrophilic Ionic Groups [J]. JAOCS, 1992, 69 (7): 626-632
    [82] Michael D. Cationic Amphitropic Gemini Surfactants with Hydrophilic Oligo (oxyethylene) Spacer Chains [J]. Chem Commun, 1997, 2105-2106
    [83] Duivenvoorde F. L. Synthesis and Properties of Di-n-dodecyl Alkyl Bisphosphate Surfactants [J]. Langmuir, 1997, 13(14): 3737-3743
    [84] Makowska D., Hreczuch W., Zimoch J. Surface Activity of Mixtures of Oxyethylated Methyl Dodecanoate and Sodium Dodecylbenzenesulfonate [J]. J. Surfact Deterg, 2001, 4(2): 121-126
    [85] Soma D., Viand K. A., Prem S. G,, et al.Novel Gemini Micelles from Dimeric Surfactants with Oxyethylene Spacer Chain. Small Angle Neutron Scattering and Fluorescence Studies [J]. J. Phys Chem B, 1998, 102: 6152-6160
    [86] ?ystein Rist. Synthesis of Novel Diammonium Gemini Surfactants [J]. Molecules, 2001, 6: 979-987
    [87] Perez L., Garcia M. T., Isabel R. Biological Properties of Arginine-Based Gemini Cationic Surfactants [J]. Environmental Toxicology and Chemistry, 2002, 1(6): 1279-1285
    [88] Mohamed A., Jouani E., et al. Double-Chain Surfactants with Two Carboxylate Groups and Their Relation to Similar Double-Chain Compounds [J]. New J Chem., 1999, 23: 557-562
    [89] Mariano J., Castro L., Kovensky J., et al. Gemini Surfactants from Alkglucesides [J]. Tetrahedron Letters, 1997, 38(23): 3995-3999
    [90] Th Dam. Gemini Surfactants from Alkyl Glucosides [J]. Colloids and Surfaces A, 1996, 118: 41-49
    [91] Devinsky F. L., Lacko I., Imam T. Relation Between Structure and Solubilization Properties of Some Bisquaternary Ammonium Amphiphiles [J]. J Colliod Interface Science, 1991, 143: 336-342
    [92] Renouf P. Dimeric Surfactants: First Synthesis of an Asymmetrical Gemini Compound [J]. Tetrahedron Lett, 1998, 39: 1357-1360
    [93] Masuyama A., Endo C., Takeda S. Ozone-Cleavable Gemini Surfactants, a New Candiate for an Environmentally Friendly Surfactant [J]. Chem Commun, 1998, 18: 023-2026
    [94] Kern F. Adsorption of Dimeric (Gemini) Surfactants at the Aqueous Solution/Silica Interface [J]. ibid, 1994, 10: 17140-17145
    [95] Karaborni S. Simulating the Self-Assembly of Gemini (Dimeric) Surfactants [J]. Science, 1994, 266(14): 254-255
    [96] Asual V. K. Small-Angle Neutron Scattering Study of Micellar Structure of Dimeric Surfactants [J]. Physical Review E, 1998, 57(1): 776-780
    [97] Asual V. K. Micellar Structure of Dimeric Surfactants with Phosphate Head Groups and Wettable Spacers: A Small-Angle Neutron Scattering Study [J]. ibid, 1999, 59(3): 116-121
    [98] Knaebel A. Lamellar Structures in Aqueous Solutions of a Dimeric Surfactant [J]. Langmuir, 2000, 16: 2489-2492
    [99] Asual V. K. Transition from Dose to Rod-Like Shape: 16-3-16 Dimeric Micelles in Aqueous Solutions [J]. J Chem Soc. Faraday Trans. 1998, 94(19): 2965-2976
    [100] Chorro C., Chorro M., Dolladille O., et al. Adsorption of Dimeric (Gemini) Surfactants at the Aqueous Solution/Silica Interface [J]. J. Colloid Interface Sci, 1998, 199: 169-176
    [101] Zana R. Micellization of Amphiphiles: Selected Aspects [J]. Colloids and Surfaces A, 1997, (123-124): 27-35
    [102] Liang Z. Y., Wang C., Huang J. The Research on the Vesicle Formation and Transformation in Novel Gemini Surfactant Systems [J]. ibid, 2003, 224: 213-220
    [103] Soma D., Aswal V. K., Goyal P. S. Role of Spacer Chain Length in Dimeric Micellar Organization. Small Angle Neutron Scattering and Fluorescence Studies [J]. J. Phys. Chem, 1996, 100 (28): 11664–11671
    [104] Tsiourvas D., Paleos C. M., Skoulios A. Structural Study of Liquid Crystalline Long-Chain n-Alkylammonium Polyacrylates [J]. Macromolecules, 1997, 30: 7191-7195
    [105]水玲玲,郑利强,赵剑曦等.双子表面活性剂体系的界面活性研究[J].精细化工, 2001, 18 ( 2): 67-69
    [106] Voort V. D. Synthesis of High-Quality MCM-48 and MCM-41 by means of the Gemini Surfactant Method [J]. J Phys Chem B, 1998, 102(44): 8847-8851
    [107] Devinsky F., Lacko I., Mlynarcik D. Relationship between Critical Micelle Concentrations and Minimum Inhibitory Concentrations for some Non–Aromatic Quatemay Ammonium Salts and Amine Oxides [J]. Tenside Det, 1985, (22): 13-16
    [108] Massi L., Guittard F., Levy R., et al. Preparation and Antimicrobial Behavior of Gemini Fluoro- Surfactants [J]. Chem Inform, 2003, 34(37): 519- 523
    [109] David S., Pérez L., Infante M. R. Sequetration of Bacterial Lipopolysaccharide by Bis (args) Gemini Compounds [J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12(3): 357-360
    [110] Dubnickova M., Yaradaikin S., Lacko I., et al. Effects of Gemini Surfactants on Egg Phosphatidylcholine Bilayers in the Fluid Lamellar Phase [J]. Colloids and Surfaces B: Biointerfaces, 2004, 34 (3): 161-164
    [111] Jennings K. H., Marshall I. C. B., Wilkinson M. J. Aggregation Properties of a Novel Class of Cationic Gemini Surfactants Correlate with Their Efficiency as Gene Transfection Agents [J]. Langmuir, 2002(18): 2426-2429
    [112] Karlsson L., Van Eijk M. C. P., Soderman O. Compaction of DNA by Gemini Surfactants: Effects of Surfactant Architecture [J]. J. Colloid and Interface Science, 2002, 252(2): 290- 296
    [113] Kirby A J, Camilleri P, Engberts J B F N, et al. Gemini Surfactants: New Synthetic Vectors for Gene Transfection [J]. Angew Chem Int Ed, 2003, 42 (13): 1448-1457
    [114] Chen Kangmin,Locke David C,Maldacker Thomas, et al,Separation of Ergot Alkaloids by Micellar Electrokinetic Capillary Chromatography Using Cationic Gemini Surfactants [J]. J Chromatogr A, 1998, 822(2): 281-290
    [115] Morey M. S., Stucky G. D., Schwarz S. Isomorphic Substitution and Postsynthesis Incorporation of Zirconium into MCM-48 Mesoporous Silica [J]. J. Phys. Chem. B, 1999,103 (12): 2037-2041
    [116] Achouri M. E., Infante M. R., Izquierdo F., et al. Some Cationic Gemini Surfactants and Their Inhibitive Effect on Iron Corrosion in Hydrochloric Acid [J]. Corrosion Science, 2001, 43: 19-35
    [117] Choi T. S., Shimizu Y., Shirai H., et al. Solubilization of Disperse Dyes in Cationic Gemini Surfactant Micelles [J]. Dyes and Pigments, 2000, 45(2): 145-157
    [118] Zaitoun A., Fonseca C., Berger P., et al. New Surfactant for Chemical Flooding in High-salinity Reservoir [J]. SPE80237, 2003: 1-11
    [119] Berger P. D., Lee C. H. Ultro-low Concentration Surfactants for Sandstone andLimestone Floods [J]. SPE75186, 2002: 1-7
    [120] Chen H., Han L-J, Luo P-Y, et al. The Interfacial Tension Between Oil and Gemini Surfactant Solution [J]. Surface Science, 2004, 552(1-3): 53-57 [121 ]许立铭,刘靖,董泽华等.双季铵盐杀菌剂的研制与性能[J].工业水处理, 1996, 16(4): 12-15
    [122]谭中良.新型抗盐孪连表面活性剂的合成与研究[D].北京:中国石油勘探开发研究院. 2004
    [123] Sekhon B S. Gemini (Demeric) Surfactants the Two Faced Molecules [J]. Resonance, 2004, 9: 42-49
    [124] Zana R. Dimeric (Gemini) Surfactants: Effect of the Spacer Group on the Association Behavior in Aqueous Solution [J]. J. Colloid Interf Sci, 2002, 248: 203-220
    [125] Wang Y-J, Marques E. F. Non-Ideal Behavior of Mixed Micelles of Cationic Gemini Surfactants with Varying Spacer Length and Anionic Surfactants: A Conductimetric Study [J]. J Mol Liq, 2008, 142(1-3): 136-142
    [126] Biesen G. V., Bottaro C. S. Linear Solvation Energy Relationships of Anionic Dimeric Surfactants in Micellar Electrokinetic Chromatography II. Effect of the Length of a Hydrophilic Spacer [J]. J Chromatogr A, 2008, 1180(1-2, 8): 171-178
    [127] Gautam A., Kambo N., Upadhyay S.K. Anionic Gemini Surfactant viz. Sodium Salt of Bis (1-dodecenylsuccinamic acid); Synthesis, Surface Properties and Micellar Effect on Oxidation of Reducing Sugars by Hexacyanoferrate(III) [J]. Colloids and Surfaces A, 2008(1-2):195-202
    [128] Dix L R. Sodium Salts of Bis (1-dodecenylsuccinamic Acids): A Simple Route to Anionic Gemini Surfactants [J]. J. Colliod Interface Sci, 2001, 238: 447-448
    [129] Magdassi S., Ben M. M., Talmon Y., et al. Microemulsions Based on Anionic Gemini Surfactant [J]. Colloids Surf. A, 2003, 212: 1-7
    [130] Yoshimura T., Esumi K. Synthesis and Surface Properties of Anionic Gemini Surfactants with Amide Groups [J]. J. Colliod Interface Sci, 2004, 276: 231-238
    [131] Masakatsu H., Shinoda K. Krafft Points of Calcium and Sodium Dodecylpoly (oxyethylene) Sulfates and Their Mixtures [J]. Journal of Physical Chemistry, 1973, 77(3): 378-381
    [132] Okano T., Egawa N., Fujiwara M., et al.α-Sulfonated Fatty Acid Esters: II. SolutionBehavior ofα-Sulfonated Fatty Acid Polyethylene Glycol Esters [J]. J. Am Oil Chem Soc, 1996, 73(1): 31-37
    [133] Masuyama A., Endo C., Takeda S. Ozone-Cleavable Gemini Surfactants. Their Surface-Active Properties Ozonolysis and Biodegradability [J]. Langmuir, 2000, 16: 368-373
    [134] Weil J. K., Smith F. D., Stirton A. J., et al. Tallow Alcohol Sulfates Properties in Relation to Chemical Modification [J]. JAOCS, 1959, 36: 241-244
    [135] Dahanayake M. D., Coben A. W., Rosen M. J. Relationship of Structure to Properties of Surfactants. 13. Surface and Thermodynamic Properties of Some Oxyethylenated Sulfates and Sulfonates [J]. J. Phys. Chem, 1986, 90: 2413-2418
    [136] Boucher E. A., Grinchuk T. M., Zettlemoyer A. C. Surface Activity of Sodium Salts of Alpha-Sulfo Fatty Esters: the Air-Water Interface [J]. J. Am. Oil Chem. Soc, 1968, 45: 49-52
    [137] Peltonen L., Hirvonen J., Yliruusi J. The Behavior of Sorbitan Surfactants at the Water–Oil Interface: Straight-Chained Hydrocarbons from Pentane to Dodecane as an Oil Phase [J]. J. Colloid and Interface Sci, 2001, 240: 272-276
    [138]赵国玺,朱步瑶.表面活性剂作用原理,北京:轻工业出版社2003: 704-718
    [139] Rosen M. J., Song L. D. Dynamic Surface Tension of Aqueous Surfactant Solutions 8. Effect of Spacer on Dynamic Properties of Gemini Surfactant Solutions [J]. J. Colloid Interface Sci, 1966, 179: 261-263
    [140]郑利强,水玲玲,李干佐.双子表面活性剂溶液的表面活性的研究[J].化学学报, 2001, 59 (5): 641-643
    [141]李干佐,陈文君,顾强.双子表面活性剂Dynol-604溶液的动态表面张力研究[J].高等学校化学学报, 2002, 23 (11): 2117-2119
    [142] Rosen M J. Surfactant and interfacial phenomena [D]. Third edition, New Jersery: John Wiley & Sons, Hoboken. 2004: 235-236.
    [143]廖广志,李立众,孔繁华等.常规泡沫驱油技术[D].北京:石油工业出版社, 1999: 132-137
    [144] Ochi J., Vernoux J. F. A Two-Dimensional Network Model to Simulate Permeability Decrease Under Hydrodynamic Effect of Particle Release and Capture [J]. Transport in Porous Media, 1999, 37: 303-325
    [145] Lewandowska J., Laurent J. Homogenization Modeling and Parametric Study ofMoisture Transfer in an Unsaturated Heterogeneous Porous Medium [J]. ibid, 2001; 45: 321-345
    [146] Kovscek A. R., Bertin H. J. Foam Mobility in Heterogeneous Porous Media (I: Scaling Concepts) [J]. ibid, 2003, 52(1): 17-35
    [147] Kovscek A. R., Bertin H. J. Foam Mobility in Heterogeneous Porous Media (II: Experimental Observations) [J]. ibid, 2003, 52(1): 37-49
    [148] Bennethum L. S., Weinstein T. Three Pressures in Porous Media [J]. ibid, 2004, 54(1): 1-34
    [149] Virnovsky G. A., Frills H. A., Lohne A. A Steady-State Upscaling Approach for Immiscible Two-Phase Flow [J]. ibid, 2004, 54(2): 167-192
    [150] Chen Z-X, Huan G-R, Li B-Y. An Improved IMPES Method for Two-Phase Flow in Porous Media [J]. ibid, 2004, 54(3): 361-376
    [151] Juanes R., Tadeuszw, Patzek. Analytical Solution to the Riemann Problem of Three-Phase Flow in Porous Media [J]. ibid, 2004, 55(1): 47-70
    [152] Pilon L., Fedorov A. G. Viskanta R. Steady-State Thickness of Liquid–Gas Foams [J]. J. Colloid and Interface Science, 2001, 242: 425-436
    [153] Tamura T., Kaneko Y., Nikaido M. Stability Factors of Foam Film in Contrast to Fluctuation Induced by Humidity Reduction [J]. ibid, 1997, 190: 61-70
    [154] Fruhner H., Wantke K-D, Lunkenheimer K. Relationship between Surface Dilational Properties and Foam Stability [J]. Colloids and Surfaces A, 1999, 162: 193-202
    [155] Rusanov A. I., Krotov V. V., Nekrasov A. G. New Methods for Studying Foams: Foaminess and Foam Stability [J]. ibid, 1998, 206: 392-396
    [156] Francois G. G., Henri L. R. Interbubble Gas Diffusion and the Stability of Foams [J]. ibid, 1997, 194(1): 31-36
    [157]宋育贤.泡沫流体在油田上的应用[J].国外油田工程, 1997, 13(1): 5-8, 17
    [158] Rosen M.J. Surfactants and Interfacial Phenomena [M]. Third edition, John Wiley & Sons, Hoboken, New Jersey, 2004: 59-67
    [159] Robert K., Prud’homme, Saad A. K. Foams: Theory, Measurements, and Applications [C]. New York: Marcel Dekker Inc, 1995: 57-65
    [160] Davide B., Bruno C., Alessandro G. Role of Surfactant Structure on Surface andFoaming Properties [J]. Colloids and Surface, 2001, 189: 65-73
    [161] Stubenrauch C., Miller R. Stability of Foam Films and Surface Rheology: An Oscillating Bubble Study at Low Frequencies [J]. J. Phys. Chem. B, 2004, 108: 6412-6421
    [162] Patist A., Chhabra V., Pagidipati R., et al. Effect of Chain Length Compatibility on Micellar Stability in Sodium Dodecyl Sulfate/Alkyltrimethylammonium Bromide Solutions [J]. Langmuir, 1997, 13: 432-434.
    [163]张军,管小军.分子结构与泡沫剂性能[J].山东建材, 1998, 2: 8-10
    [164] Tamura T., Takeuchi Y., Kaneko Y., Influence of Surfactant Structure on the Drainage of Nonionic Surfactant Foam Films [J]. J. Colloid and Interface Science, 1998, 206: 112-121.
    [165] Beneventi D., Carre B., Gandini A. Role of Surfactant Structure on Surface and Foaming Properties [J]. Colloids and Surfaces A, 2001, 189: 65-73
    [166] Mktal K. L., Lind B. Surfactant in Solution [J]. New York: Plenum Press, 1984, 617-624
    [167]赵晓东,孟英锋,冯林.茶皂素与脂肪醇复配体系的泡沫性能研究[J].日用化学工业, 1999, 5: 18-21
    [168]王景元,王果庭.烷链醇对烷基磺酸钠胶束性质的影响[J].石油学报, 1993, 14(1): 66-71
    [169] Nikolov A. D., Waan D. T. Ordered Micelle Structuring in Thin Film Formed from Anionic Surfactant Solutions [J]. J. Colloid and Interface Science, 1989, 133 (1): 1-12
    [170] Patist A., Axelberd T., Shah D. O. Effect of Long Chain Alcohols on Micellar Relaxation Time and Foaming Properties of Sodium Dodecyl Sulfate Solutions [J]. ibid, 1998, 208: 259-265
    [171]张路,罗澜,赵滩等.油相性质对水相中混合表面活性剂协同效应的影响[J].油田化学, 2000, 17(3): 268-271
    [172]张路,罗澜,赵滩等.表面活性剂亲水一亲油能力对动态界面张力的影响[J].物理化学学报, 2001, 17(l): 62-65
    [173]杨普华,杨承志译.化学驱提高石油采收率[M].北京:石油工业出版社, 1988: 3-7
    [174]郝京诚,汪汉卿,鲁润华等.微乳液相行为和微观结构的研究[J].中国科学(B辑), 1997, 27(2): 131-139
    [175]牟建海,李干佐,廖广志等.三元复合驱低浓度体系相行为及中间混合层结构分析[J].中国科学(B辑), 2002, 32(l): l-6
    [176] Puig J. E., Franses E. I., Dvais H., et al. On Interfacial Tensions Measured with Alkyl Aryl Sulfonate Surfactants [J]. Society of Petroleum Engineers Journal, 1979, 19(2): 71-82
    [177] Franses E. I., Puig J. E., TalmonY., et al. Roles of Liquid Crystals and Micelles in Lowering Interfacial Tension [J]. J. Physical Chemist, 1980, 84(12): 1547-1556
    [178] Puig J. E., Franses E. I., Miller W. G. Relation of Phase Behavior to Interfacial Tensions of Mixed Surfactant Systems [J]. Joumal of Colloid and Interface Science, 1982, 89(2): 441-457