导电聚合物纳米粒子的制备及其分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物是一种性能优良的新型功能材料。它除具有良好的柔韧性、可塑性等聚合物特性和易于加工成型等金属特性外,还具有独特的光、电、磁、热等性能,在电磁屏蔽、金属防腐和隐身材料以及传感器和分子器件组装中有着广泛的应用前景。
     纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100 nm)或由它们作为基本单元构成的材料。纳米材料是一种具有全新结构的材料,随着材料尺寸的降低,其表面的电子结构和晶体结构发生变化,产生了一些宏观物质所不具有的特殊效应:小尺寸效应、表面效应、量子尺寸效应和宏观隧穿效应等,从而具有传统材料所不具有的物理化学性质。导电聚合物纳米粒子具有规整的形貌,较大的比表面积,在催化、分离、药物释放和传感器等领域均具有潜在的用途。而聚吡咯纳米粒子良好的环境稳定性和生物相容性使其与其它导电聚合物相比,在化学和生物传感器材料上具有更为广阔的应用前景。因而将功能化聚吡咯、聚吡咯复合物的膜或者纳米粒子等,用于负载或者固定生物物质,有望用于电化学生物传感器的研究也成为近来研究的热点之一。
     电化学发光分析法具有灵敏度高、选择性好、线性范围宽、设备简单、分析速度快、应用广泛,同时获得多种信息,有利于研究快速发光反应和发光反应机理等特点。
     本论文旨在制备出具有导电性,且带有功能基团可负载大量电化学发光信号物质和生物识别物质的导电聚合物纳米粒子,并将其作信号物和探针载体,应用于电化学发光传感器。同时结合生物识别亲合力高、特异性强、目标范围广的特点,应用于相应生物分子或小分子的检测中。
     本论文由四章组成。第一章为前言,介绍了导电聚合物及其纳米结构的合成与特点,评述了导电聚合物的研究进展,简要介绍了导电聚合物纳米材料在电化学传感器中的应用,以及本论文的研究目的、意义及主要研究内容。
     论文第二章为吡咯/N-(2-羧乙基)吡咯纳米粒子制备的研究。首先合成了N-(2-羧乙基)吡咯单体,以此单体为功能化试剂,采用微乳液聚合法和化学氧化法,使吡咯单体与N-(2-羧乙基)吡咯单体共聚,成功制备了吡咯/N-(2-羧乙基)吡咯纳米粒子(简称PPy/PPa NPs)。通过环境扫描电子显微镜和透射电子显微镜观察,该纳米粒子具有较规整的形貌,粒径在40-50nm;通过傅里叶变换红外光谱确定了纳米粒子表面功能化羧基的存在。
     第三章为PPy/PPa NPs负载钌联吡啶衍生物的电化学发光研究。利用PPy/PPa NPs上的羧基共价连接氨基钌联吡啶衍生物,以此复合纳米粒子(简称Rul-PPy/PPa NPs)修饰电极,制作出一种新的电化学发光化学传感器。结果表明该传感器具有很好的电化学和电化学发光特性,测定TPA的线性范围为1.0x10-7mol/L-1.0x10-5 mol/L,检出限为3×10-8mol/L(S/N=3)。
     第四章为PPy/PPa NPs负载电化学发光适体探针夹心法测定凝血酶的研究。以吡咯/N-(2-羧乙基)吡咯纳米粒子为信号负载物,结合凝血酶的两段适体构建高灵敏度的电化学发光适体传感器。将一端有氨基修饰的凝血酶适体Ⅰ共价键合在修饰有对氨基苯磺酸的石墨电极表面,形成生物识别层,特异性捕捉目标蛋白质凝血酶,再结合负载凝血酶适体Ⅱ的Rul-PPy/PPaNPs,建立一种夹心式电化学发光法测定凝血酶的新方法,测定凝血酶的线性范围为1.0×10-15-1.0×10-12mol/L。
Conductive polymers are excellent new functional materials. They have obvious polymer characteristics, such as good flexibility, plasticity and are easy to mold. They also have unique optical, electrical, magnetic, thermal and other properties. So conductive polymers have been used in sensors and molecular devices, electromagnetic shielding, metal corrosion, electrochemical, bio-technology and other fields.
     Nano-material is one kind of a material which size is nanometer scale range (1-100 nm) at least in one dimension of three-dimensions. In recent years, conducting polymer nanoparticles with regular morphology and large surface area have been received much attention duo to their widely applications in catalysis, separation, drug delivery and sensors. Compared to other conductive polymer nanoparticles, polypyrrole nanoparticles have excellent environmental stability and biocompatibility as chemical and biological sensors materials in a more broad application potential. Thus the use of the functional polypyrrole, polypyrrole complex films or nanoparticles, for a load or a fixed biological material in the electrochemical biosensor has become a hot topic in recent research.
     The electrogenerated chemiluminescence (ECL) sensors and biosensors have been received much attention duo to their high sensitivity, good selectivity, fastness and simplicity.
     This thesis aims to synthesize novel conductive polymer nanoparticles and to develop a ECL biosensor using synthesize conductive polymer. This thesis consists of four chapters. The first chapter is introduction, in which the synthesis, the structure and characteristics of conductive polymers are described, and the application of them, and especially includes the conductive polymer nanometer material's application in the electrochemical sensors are reviewed.
     The second chapter is the research of synthesis poly (pyrrole-co-pyrrole propylic acid) nanoparticles. Poly (pyrrole-co-pyrrole propylic acid) nanoparticles (PPy/PPa NPs) were synthesized by using an oil/water micro-emulsion method. The PPy/PPa NPs synthesized were characterized by fourier transform infrared absorption spectroscopy (FTIR), transmission electron microscope (TEM) and scanning electron microscope (SEM). The nanoparticles have a more regular morphology, and particle size at 40-50 nm. And the presence of the carboxylic acid (-COOH) functionality in nanoparticles was confirmed using the FTIR.
     In the third chapter, an ECL sensor for the determination of tri-propylamine (TPA) was designed and fabricated by coating Rul complex-PPy/PPa NPs on the surface of a paraffin-impregnated graphite electrode (PIGE). It was found that ECL intensity of the sensor fabricated was linear with the concentration of TPA in the range from 1.0×10-7 to 1.0×10-5 mol/L, with a detection limit of 3×10-8 mol/L TPA(S/N=3). The ECL sensor also showed good reproducibility and stability.
     In the forth chapter, an ultrasensitive ECL detection method of thrombin based on PPy/PPa NPs carrying a large number of ruthenium complex tags was developed. The probe single thrombin aptamer II and ruthenium complex were loaded on PPy/PPa NPs which was taken as an ECL probe. When the capture thrombin aptamer I with an amine group was covalently immobilized onto the surface of the PIGE, and then recognition of the target thrombin and further captured with the ECL probe to form DNA sandwich conjugate, a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of thrombin in the range from 1.0×10-15 to 1.0×10-12mol/L(S/N=3).
引文
[1]H. Shirakawa, E. J. Lious, A. G. MacDiarmid, et al. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene (CH)x[J]. J. Chem. Soc. Commum.,1977,16:578-583.
    [2]J.O. Stoffer, T. Bone. Polymerization in water in oil microemulsion systems containing methyl methacrylate[J]. J. Disp. Sci. Technol.,1980,1:37-38.
    [3]W. P. Su, J. R. Schrieffer, A. J. Heeger. Soliton in Polyacetylene [J]. Phys. Rev. Lett.,1979,42,1698-1701.
    [4]J. Lippe, R. Holze. Electrochemical in-situ conductivity and polaron concentration measurements at selected conducting polymers [J]. Synth. Met., 1991,43(2):2927-2930.
    [5]K. Yoshino, T. Akashi, S. Morita, et al. Photophysical properties of fullerene-conducting polymer system[J]. Synth. Met.,1995,70(1-3):1317-1320.
    [6]李晓常,李世晋.导电聚合物的进展[J].化工进展,1992,4:7-10.
    [7]封伟.π共轭导电高分子材料的研究进展及存在问题[J].化工新型材料,1998,2(6):13-17.
    [8]万梅香.导电高聚物的现状与挑战[J].中国基础科学,2000,9:24-25.
    [9]赵文元,王亦军.功能高分子材料化学[M].北京:化学工业出版社,2003,74-110.
    [10]王国建,王德海,邱军,赵立群.功能高分子材料[M].上海:华东理工大学出版社,2006,162-230.
    [11]S. Brahim, D. Narinesingh, A. Guiseppi-Elie. Polypyrrole-hydrogel composites for the construction of clinically important biosensors[J]. Biosens Bioelectron, 2002,17(1-2):53-59.
    [12]H. Korri-Youssoufi, B. Makrouf. Electrochemical biosensing of DNA hybridization by ferrocenyl groups functionalized polypyrrole[J]. Anal. Chem. Acta,2002,469(1):85-92.
    [13]J. X. Huang, S. Virji, B.H. Weiller, et al., Polyaniline nanofibers:Facile synthesis and chemical sensors[J]. J. Am. Chem. Soc.,2003,125(2):314-315.
    [14]S. Virji, J. X. Huang, R. B. Kaner, et al. Polyaniline nanofiber gas sensors: Examination of response mechanisms[J]. Nano. Lett.,2004,4:491-496.
    [15]J. X. Huang, S. Virji, B. H. Weiller, et al. Nanostructured polyaniline sensors[J]. J. Chem. Eur.,2004,10(6):1315-1319.
    [16]H. Cheun, M. J. Winokur. Electroluminescence and photoluminescence in poly (di-n-octylfluorene) light-emitting diodes operated at elevated temperatures [J]. Synth. Met.,2005,154:137-140.
    [17]S. Virji, B. H. Weiller, R. B. Kaner, et al. Hydrazine detection by polyaniline using fluorinated alcohol additives[J]. Chem. Mater.,2005,17(5):1256-1260.
    [18]E. Dalas, S. Sakkopoulos, E. Vitoratos. Thermal degradation of the electrical conductivity in polyaniline and polypyrrole composites[J]. Synth. Met.,2000, 114:365-368.
    [19]X. B. Chen, J. P. Issi, J. Devaux, et al. The stability of polypyrrole and its composites[J]. J. Mater. Sci.,1997,32:1515-1518.
    [20]毕先同,姚幼新,钱人元.聚吡咯的研究[J].高分子通讯,1985(6):445-451.
    [21]沙兆林,戴青云.化学氧化法合成聚吡咯薄膜[J].化学研究与应用,1998,10(4):361-365.
    [22]万本强,吴婉群.催化电合成聚吡咯的电化学性质研究[J].西南师范大学学报(自然科学版),1993,18(1):52-55.
    [23]Y. Kudoh, K. Akami, Y. Matsuya. Properties of chemically prepared polypyrrole with an aqueous solution containing Fe2(SO4)3, a sulfonic suifactant and a phenol derivative[J]. Synth. Met.,1998,95:191-196.
    [24]郑玉斌,张善举,柯杨船等.电聚合导电聚吡咯的合成研究[J].功能高分子学报,1996,9(4):613-615.
    [25]L. X. Wang, X.G. Li, Y. L. Yang. Preparation, properties and applications of polypyrroles [J]. React. Funct. Polym.,2001,47:125-139.
    [26]P. A. Calvo, J. Rodriguez, H. Grande, et al. Chemical oxidative polymerization of pyrrole in the presence of m-hydroxybenzoic acid-and m-hydroxycinnamic acid-related compounds[J]. Synth. Met.,2002,126:111-116.
    [27]程发良,宁满霞,莫金垣等.水介质中吡咯的电化学聚合反应[J].分析测试学报,2002,21(4):30-33.
    [28]马建标,李晨曦.功能高分子材料[M].北京:化学工业出版社,2000,202-211.
    [29]徐友龙,季锐,王飞.影响掺杂聚吡咯(PPy)导电性能的因素[J].电子元件与材料,2000,19(5):17-19.
    [30]敬松.结构型导电高分子材料[J].四川化工,1990(2):32-34.
    [31]A. Malinauskas. Chemical deposition of conducting polymers[J]. Polymer,2001, 42 (9):3957-3972.
    [32]M. C. Henry, C. C. Hsueh, B. P. Timko, et al. Reaction of pyrrole and chlorauric acid[J]. J. Electrochem. Soc.,2001,148(11):D155-D162.
    [33]J. Y. Ouyang, Y. F. Li. Effect of electrolyte solvent on the conductivity and structure of as-prepared polypyrrole films [J]. Polymer,1997,38:1971-1975.
    [34]X. H. Li, Y. F. Li. Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride-ethyl ether as electrolyte[J]. J. Appl. Polym. Sci., 2003,90:940-946.
    [35]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2000.
    [36]B. J. Kim, S. G. Oh, M. G. Han, et al. Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium[J]. Langmuir,2000,16(14): 5841-5845.
    [37]阳范文,唐建斌.导电聚苯胺的微乳液聚合[J].桂林工学院学报,2000,20(3):264-266.
    [38]马利,陈云,刘家和等.微乳液法合成纳米聚苯胺的研究[J].包装工程,2005,26(1):57-61.
    [39]S. P. Armes, J. F. Miller, B. Vincent. Preparation and characterization of polypyrrole nanoparticles by dispersion polymerization [J]. J. Colloid. Interf. Sci., 1987,118:410-416.
    [40]C. R. Martin, Template synthesis of polymeric and metal microtubules[J]. Adv. Mater.1991,3(9):457-459.
    [41]H. Dong, S. Prasad, V. Nyame, et al. Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates[J]. Chem. Mater.2004,16(3): 371-373.
    [42]徐相凌,殷亚东,葛学武,叶强,张志成.微乳液聚合研究进展[J].高等化学学报,1999,3(20):478-485.
    [43]郭荣,宋根萍,钱俊红等.O/W微乳液中聚吡咯超微粒子的制备[J].应用化学,1997,14(4):18-20.
    [44]徐祖顺,易昌凤.聚合物纳米粒子[M],2006,北京:化学工业出版社,62-138.
    [45]井新利,郑茂盛,蓝立文.反相微乳液法合成导电聚苯胺纳米粒子[J].高分 子材料科学与工程,2000,16(2):23-25.
    [46]R. M. Penner, C. R. Martin. Controlling the morphology of electronically conductive polymers[J]. J. Elcetrochem.,1986,133(10):2206-207.
    [47]J. C. Hulteen, C. R. Martin. A general template-based method for the preparation of nanomaterials[J]. J. Mater. Chem.,1997,7(7):1075-1087.
    [48]Z. Wei, Z. Zhang. M. Wan, Formation mechanism of self-assembled polyaniline micro/nanotubes[J]. Langmuir,2002,18(3):917-921.
    [49]万梅香.高技术有机高分子材料进展[M].北京:北京化学工业出版社,1994,8-222.
    [50]范彬.模板法制备导电聚合物纳米材料[D],2008.4
    [51]S. J. Ding, C. L. Zhang, M. Yang, X. Z. Qu, Template synthesis of composite hollow spheres using sulfonated polystyrene hollow spheres[J]. Polymer. 2006(47):8360-8366.
    [52]D. H. Reneker, I. Chun, Nanometer diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology,1996(3):216-223.
    [53]E. H. Sanders, R. Kloefkorn, G. L. Bowlin, et al. Two-phase electrospinning from a single electrified jet:microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers[J]. Macromolecules,2003,36(11): 3803-3805.
    [54]Z. M. Zhang, J. Sui, L. J. Zhang, M. X. Wan, Y. Wei, L.M. Yu. Synthesis of polyaniline with a hollow octahedral morphology by using a cuprous oxide template[J]. Adv. Mater.2006, (207):763-769.
    [55]L. J. Pan, L. Pu, Y. Shi, et al. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide[J]. Adv. Mater.2007,19(3):461-464.
    [56]J. Duchet, R. Legras, S. D. Champagne. Chemical synthesis of polypyrrole structure-properties relationship [J]. Synth. Met.,1998, (98):113-122.
    [57]G. S. Attard, J. C. Glyde et al. Nature,1995,378:366.
    [58]D. M. Cheng, H. B. Xia, S. Hardy, Facile fabrication of AgCl @Polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres[J]. Langmuir.2004,18(20) 9909-9912.
    [59]M. Delvaux, J. Duchet, P. Y. Stavaux,et al. Chemical and electrochemical synthesis of polyaniline micro-and nano-tubules[J]. Synth. Met.,2000,113: 275-280.
    [60]R. Madathil, R. Parkesh, S. Ponrathnam, et al. Paterning of conductive polyaniline films from a polymerization-induced self-Assembled gel.[J]. Macromolecules,2004,37(6):2002-2003.
    [61]A. Baba, W. Knoll. Electrochemical growth of dendritic conducting polymer networks[J]. Adv. Mater.,2003,15(12):1015-1019.
    [62]J. M. Liu, S. C. Yang. Novel colloidal polyaniline fibrils made by template guided chemical polymerization[J]. Chem. Commun.,1991,45:1529-1531.
    [63]J. J. Langer, G. Framski, R. Joachimiak. Polyaniline nano-wires and nano-networks[J]. Synth. Met.,2001,121:1281-1282.
    [64]J. J. Langer, G. Framski, S. Golczak. Polyaniline micro-and nanofibrils[J]. Synth. Met.,2001,121:1319-1320.
    [65]H. H. Zhou, S. Q. Jiao, J. H. Chen, etal. Relationship between preparation condition morphology and electroehemical properties of polyaniline prepared by pulse galvanostatic method (PGM)[J]. Thin Solid Films,2004,450(2):233-239.
    [66]X. Sun, S. Dong, E. Wang. Large scale, templateless, surfactantless route to rapid synthesis of uniform poly(o-phenylenediamine) nanobelts[J]. Chem. Commun.,2004,10:1182-1183.
    [67]Y. Yang, M. Wan. Microtubules of polypyrrole synthesized by an electrochemical template-free method[J]. J. Mater. Chem.,2001,11(9): 2022-2027.
    [68]H. H. Zhou, H. Chen. Theoretical and experimental study towards a nano gap dielectric biosensor[J]. Biosens. Bioelectron.,2005,20:1305-1311.
    [69]E. S. Forzani, H. Zhang, L. A. Nagahara, I. Amlani, R. Tsui, N. J. Tao. A conducting polymer nanojunction sensor for glucose detection[J]. Nano Lett., 2004,4(7):1785-1788.
    [70]K Ramanathan, M. A. Bangar, M. Yun, W. Chen, A. Mulehandani, N. V. Myung. Individually addressable conducting polymer nanowires array [J]. Nano Lett. 2004,4(7):1237-1239.
    [71]冯琳洁,吴芳华,徐继明,胡志超,鲜越仲,基于聚吡咯纳米阵列的葡萄糖传感器研究[J].化学传感器,2007,27(3):23-28.
    [72]V. Bajpai, P. He, L. Goettler, J. H. Dong, L. Dai. Controlled syntheses of conducting polymer micro-and nano-structures for potential applications [J]. Synth. Met.,2006,156 (56):466-469.
    [73]U. Yogeswaran, S.M. Chen. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material[J]. Sensors,2008,8: 290-313.
    [74]K. Ramanathan, M. A. Bangar, M. Yun, W.Chen, N.V. Myung, A. Mulchandani. Bioaffinity sensing using biologically functionalized conducting-polymer nanowire[J]. J. Am. Chem. Soc.,2005,127(2):496-497.
    [75]S. Bousalem, S. Benabderrahmane, Y.Y. C.Sang, C. Mangeney, M. M. Chehimi. Covalent immobilization of human serum albumin onto reactive polypyrrole-coated polystyrene latex particles[J]. J. Mater. Chem.,2005,15,3109-3116.
    [76]D. W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials[J], Chem. Rev.,2008,108:746-769.
    [77]J. W. Lee, F. Serna, C. E. Schmidt. Carboxy-endcapped conductive polypyrrole: biomimetic conducting polymer for cell scaffolds and electrodes [J]. Langmuir, 2006,22:9816-9819.
    [78]H. K. Song, G. T. R. Palmore. Redox-active polypyrrole:toward polymer-based Batteries [J]. Adv Mater.,2006,18:1764-1768.
    [79]A. Y. M en'sh ikova, B. M. Shabsel's, T. G. Evseeva. Synthesis of polypyrrole nanoparticles by dispersion polymerization [J]. Russ. J. App. Chem.,2003,76(5): 822-825.
    [80]李新贵,王健,黄美荣等.导电聚苯胺纳米粒子的形成及影响因素[J].塑料工业,2003,31(12):1-4.
    [81]熊冬柏,杨春明.聚(苯胺-吡咯)共聚物/Fe304网状纳米纤维复合物的制备及其吸波性能[J].应用化学,2009,26(9):1054-1059.
    [82]1.Rubinstein, A. J. Bard, Polymer films on electrodes.5. Electrochemistry and chemiluminescence at nafion-coated electrodes[J]. J. Am. Chem. Soe.,1980,102, 6641-6642.
    [83]X. Zhang, A. J. Bard. Electrogenerated chemiluminescent emission from an organized (L-B) monolayer of a tris(2,2'-bipyridine)ruthenium(2+)-based surfactant on semiconductor and metal electrodes[J]. J. Phys. Chem.,1988,92: 5566-5569.
    [84]C. J. Milier, P. MeCord, A. J. Bard, Study of Langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence[J]. Langmuir,1991,7:2781-2787.
    [85]Z. H. Guo, Y. Shen, M. K. Wang, et al. Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/Tris(2,2'-bipyridyl)ruthenium(Ⅱ) multilayer films on indium tin oxide electrodes[J]. Anal. Chem.,2004,76: 184-191.
    [86]Z. H. Guo, S. J. Dong. Electrogenerated chemiluminescence from Ru(Bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films[J]. Anal. Chem.,2004,76:2683-2688.
    [87]Z. H. Guo, S. J. Dong. Electrogenerated chemiluminescence determination of dopamine and epinephrine in the presence of ascorbic acid at carbon nanotube/nafion-Ru(bpy)32+ composite film modified glassy carbon electrode[J]. Electroanal.,2005,17:607-612.
    [88]T Shimdzu, T Iyoda, K Izaki. Photoelectrochemical properties of bis(2, 2-bipyridine)(4,4-dicarboxy-2,2-bipyridine)ruthenium(Ⅱ) chloride[J]. J. Phys. Chem.,1985,89 (4):642-645.
    [89]C. Nicola, R. Foulds, L. Christopher. Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers[J]. Anal. Chem. ism,60,2473-2478.
    [90]陶颖,多壁碳纳米管在固态电致化学发光中的应用研究[D].2007.4
    [91]Y. Tao, Z. Lin, X.Chen, X. Huang, M. Oyama. Functionalized multiwall carbon nanotubes combined with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(Ⅱ) as an electrochemiluminescence sensor [J]. Sens. Actuators. B.,2008,129,758-763.
    [92]C. Sun, W. Lu, Y. Gao, J.Li. Electrochemiluminescence from Ru(bpy)32+ immobilized in poly (3,4-ethylenedioxythiophene)/poly (styrenesulfonate)-poly (vinyl alcohol) composite films[J]. Anal. Chim. Acta,2009,632,163-167.
    [93]H. Wang, G. Xu, S. Dong. Electrochemistry and electrochemiluminescence of stable tris(2,2'-bipyridyl)ruthenium(Ⅱ) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode[J]. Talanta,2001,55,61-67.
    [94]L. H. Shen, X. X. Li, H. L. Qi, C. X. Zhang, Electrogenerated chemiluminescence of ruthenium complex immobilized in a highly cross-linked polymer and its analytical applications [J]. Luminescence,2008,23,370-375.
    [95]黄松音,段朝晖,梁穆兴,林向华,范侠.肿瘤患者凝血指标变化的临床意义[J].血栓与止血学,2002,8(4):156-157.
    [96]H. Thomas, J. Dinshaw, et al. Adaptive recognition by nucleic acid aptamers[J]. Science,2000,287 (5454):820-825.
    [97]J. F. Lee, J. R. Hesselberth. Aptamer database[J]. Nucleic Acids Res,2004,32 Database issue:D95-100.
    [98]T. Hermann, D. J. Patel. Adaptive recognition by nucleic acid aptamers[J]. Science,2000,287 (5454):820-825.
    [99]G. Werstuck, M. R. Green. Controlling gene expression in living cells through small molecule-RNA interactions[J]. Science,1998,282:296-298.
    [100]A. Numnuam, K. Y. Chumbimuni-Torres, Y. Xiang, R. Bash, P. Thavarungkul, P. Kanatharana, E. Pretsch, J. Wang, E. Bakke. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes[J]. Anal. Chem., 2008,80,707-712.
    [101]H. Zhang, Z. Wang, X. F. Li, X. C. Le. Ultrasensitive detection of proteins by amplification of affinity aptamers[J]. Angew. Chem. Int. Ed.,2006,45,1576-1580.
    [102]M. Lee, D. R. Walt. A fiber-optic microarray biosensor using aptamers as receptors [J]. Anal. Biochem.,2000,282:142-146.
    [103]V. A. Spiridonova, E. V. Rog, T. N. Dugina, S. M.Strukova, A. M. Kopylov. Aptamer DNA:A new type of thrombin inhibitors [J]. Russ. J. Bio.org. Chem., 2003,29(5):450-453.
    [104]D. M. Tasset, M. F. Kubik, W. Steiner. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes[J]. J. Mol. Biol.,1997,272:688-698.
    [105]H. Cai, et al. Label-free protein recognition using an aptamer-based impedance measurement assay[J]. Sens. Actuators, B,2006,114:433-437.
    [106]M. Levy, S. F. Cater, A. D. Ellington. Quantum-dot aptamer beacons for the detection of proteins [J]. Chem. Bio. Chem.2005,6:2163-2166.
    [107]李延,电化学发光DNA和适体生物传感器的研究[D],2008.4.
    [108]A. Azioune, A. B. Slimane, L. A. Hamou, A. Pleuvy, M. M. Chehimi, C. Perruchot, S. P. Armes. Synthesis and characterization of active ester-functionalized polypyrrole-silica nanoparticles:application to the covalent attachment of proteins [J]. Langmuir,2004,20,3350-3356.
    [109]W. Chen, Z. Lu, C. M. Li. Sensitive human interleukin 5 impedimetric sensor based on polypyrrole-pyrrolepropylic acid-gold nanocomposite[J]. Anal. Chem. 2008,80,8485-8492.
    [110]T. L. Pittman, W. J. Miao. Examination of electron transfer through DNA using electrogenerated chemiluminescence [J]. J. Phys. Chem. C,2008,112, 16999-17004.
    [111]H. Zheng, Y. Zu. Emission of tris(2,2'-bipyridine)ruthenium(Ⅱ) by coreactant electrogenerated chemiluminescence:from O2-insensitive to highly O2-sensitive[J]. J. Phys. Chem. B,2005,109,12049-12053.
    [112]杨佳.基于适体均相电化学发光法检测凝血酶的研究[D],2008.4.