干旱对玉米雌雄穗基因表达的影响和谷氨酸脱羧酶基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米不仅是重要的粮食和饲料作物,也是重要的食品工业原料和能源植物。玉米是我国第二大粮食作物,玉米生产在我国国民经济中占有十分重要的地位。我国有60%的玉米种植面积受到干旱胁迫,每年因旱灾而减产20%~30%,直接影响国民经济发展及灾区人民生活。在玉米的生育期中,从孢子母细胞到受精和种子形成的早期阶段对包括干旱胁迫在内的各种胁迫最为敏感,其中有两个敏感高峰期:第一个是从减数分裂到四分体时期,这期间的胁迫可引起配子的不正常发育;第二个高峰期是从开花到籽粒发育的起始,这期间的胁迫可影响授粉或受精,诱导了花的脱落或新形成籽粒的败育。因此搞清楚干旱对开花期玉米的伤害及玉米在此期对干旱的适应和调节机制,对于培育抗旱玉米品种具有重要意义,也是国内外学者们关注的重要课题之一。
     要探索某一植物对某种胁迫所产生的应答,需要对胁迫应答的基因表达变化有一个整体的认识。由于基因芯片具有一次可以同时分析成千上万基因表达的强大优势,近年来己被用来分析多种植物在多种胁迫或刺激下的基因表达谱。对拟南芥在干旱、冷、盐、强光、损伤、氧化、紫外线等胁迫下的表达谱分析已有较多报道。利用芯片技术研究水稻和其它作物在胁迫条件下基因表达变化的工作也报道较多。
     玉米在逆境下的基因表达谱研究已有较多的报道。在干旱胁迫下,玉米幼苗叶片和根有着不同的基因表达模式,一个乙烯信号途径可能参与了玉米对干旱的反应。在盐胁迫处理3h时玉米根的转录组变化最为剧烈,这些表达变化的基因中最为显著的是参与运输和信号转导途径的基因。对抽丝前和抽丝后雌穗在遮阴胁迫下的基因表达研究发现,参与ABA信号途径的基因表达上调;参与淀粉合成的基因表达下调,而参与淀粉降解的基因表达没有变化。对抽丝后未受粉的雌穗和授粉后8天的籽粒在缺水胁迫下的基因表达谱研究发现,不同的组织对胁迫的敏感程度不同,共有17个基因在不同的组织中都呈现差异表达,这些基因参与广泛的生物学反应。对授粉后15天的玉米籽粒在干旱和盐胁迫下的基因表达谱分析发现,在这两种胁迫下都上调表达的基因主要是参与非生物胁迫、损伤和病菌侵染的应答基因,而共同表达下调的主要是参与能量代谢的基因。从以上结果来看,芯片表达谱的研究主要集中在玉米苗期和在生殖期中对胁迫敏感的第二高峰期,而在玉米生殖期对干旱胁迫敏感的第一个高峰期的基因组表达谱研究未见报道。
     本实验以处于对干旱敏感的第一高峰期的雄穗和处于小花分化期的雌穗为材料,利用玉米基因组芯片(microarray)检测了雌雄穗在玉米植株受到缺水胁迫1天和7天时的基因表达谱。该芯片包含了57452个转录本,代表了3万多个基因。我们以处理和对照样品的信号值的比值不低于3倍的转录本为有意义的差异表达转录本。经过1天的缺水胁迫,雌穗中表达上调的转录本有70个,表达下调的有89个(占差异表达转录本的56%);在雄穗中表达上调的转录本有191个,表达下调的有681个(占差异表达转录本的78%)。在7天的缺水胁迫下雌穗中表达上调的转录本有169个,表达下调的有33个,表达上调的转录本占差异表达转录本的84%;在雄穗中表达上调的转录本有939个,表达下调的有574个,表达上调的转录本占差异表达转录本的62%。在雌雄穗中差异表达的转录本共有2552个。雌雄穗的表达谱差异较大。在雌雄穗中都表达上调的转录本有73个,都表达下调的有17个。通过对这些差异表达的转录本的生物信息学分析,发现参与代谢的转录本的比例最大,其中比较突出的是参与蔗糖、棉子糖和海藻糖代谢途径的转录本。另外,在雄穗中参与信号转导和细胞壁代谢的转录本也占据了相当大的比例。这些差异表达的基因可能是对缺水胁迫的应答基因。
     利用来自叶片差减文库的514个单一(unique)ESTs制作了尼龙膜cDNA宏阵列(macroarray),研究了在缺水胁迫下这些ESTs在雌雄穗中的表达变化。以处理和对照样品的信号值的比值不低于3倍的ESTs为有意义的差异表达ESTs。在1天和7天缺水胁迫下,雌穗中表达上调的ESTs分别有58和106个:雄穗中表达上调的ESTs分别有79和151个。在雌雄穗中表达上调的ESTs共有222个。对这222个ESTs进行功能分类分析,发现参与代谢和信号转导的ESTs占据了主要份额,这与芯片的实验结果相一致。我们把这222个ESTs与玉米芯片上oligo所代表的序列进行比对,序列相匹配的有184个,约占82%,其中有125个在芯片和宏阵列实验中都表现上调,约占68%。表明这两个检测试验的结果一致性较好。
     在用玉米基因组芯片和宏阵列进行的检测试验中都出现一个受干旱胁迫诱导表达的候选谷氨酸脱羧酶(GAD)基因,我们克隆了该基因的cDNA全长,并在大肠杆菌中实现表达。通过对融合蛋白酶活性分析,证明该基因的确为谷氨酸脱羧酶基因,命名为ZmGAD1。序列分析表明,ZmGAD1编码蛋白具有谷氨酸脱羧酶保守的两个结构域,即序列中部的磷酸吡哆醛(PLP)结合位点和C端的钙调素(CaM)结合位点。Southern blotting分析表明,该基因在基因组中存在一个拷贝。利用相似性搜索获得了ZmGAD1的基因组基因序列,并发现ZmGAD1基因定位在1号染色体上,由7个外显子和6个内含子组成。利用电子克隆,获得了玉米中谷氨酸脱羧酶基因的另一个成员全序列,命名为ZmGAD2。序列分析发现ZmGAD2的C端没有结合CaM的结构特点。分析ZmGAD2的基因组基因序列,发现ZmGAD2基因定位在2号染色体上,由4个外显子和3个内含子组成。ZmGAD1和ZmGAD2分别与水稻OsGAD1和OsGAD2的进化关系较近,而且它们的基因组基因的结构特点相似,推测它们可能是不同物种中的直向同源基因(orthologs)。表达谱分析表明,ZmGAD1在根、叶片、茎、雌穗和雄穗中都有表达,在雌穗中表达强度最高,在叶片中表达强度最低。在PEG、盐、冷、ABA和MeJA处理下,玉米苗期的叶片中ZmGAD1呈现上调表达;在根中,ZmGAD1的表达变化与其在叶片中有差异。分析克隆的ZmGAD1编码区的上游序列,发现含有较多的胁迫应答元件,如ABRE等,表明ZmGAD1基因的表达受转录水平的调节。测定胁迫下玉米叶片和根GAD酶活性,发现随着处理时间的延长,GAD的酶活性持续升高,与该基因在转录水平的变化不完全一致,推测ZmGAD1的酶活性也受翻译后调节。
     此外,本工作构建了含有ZmGAD1的植物表达载体,为进一步研究ZmGAD1在植物处于逆境中所起的作用打下了基础。谷氨酸脱羧酶(GAD,EC 4.1.1.15)是GABA合成的关键酶,GABA在植物对逆境的反应中可能有重要的生理作用,克隆的ZmGAD1基因可能有较好的应用前景。
Maize(Zea mays L.)is not only an important economic crop in the world,but also a vital resource for forage and food industry.In our country about 60%of maize area is under water-deficit stress,which causes 20%-30%of reduction every year and affects the development of national economy and the normal life of people in the arid field.The extent to which crop productivity is affected depends largely on the development stage at which the plants encounter stresses.Among these stages,reproductive development from meiosis in the spore mother cells to fertilization and early seed establishment is extremely sensitive to various stresses, such as drought.Two peaks of sensitivity are encountered within this period.The first is centered on the period from meiosis to tetrad break-up in anthers.The second peak occurs during anthesis and initial stages of grain development.Stresses in this period cause a variety of abnormalities in floral organs which interfere with pollination or fertilization,and induce abscission of flowers or abortion of newly formed grains.Understanding the mechanism of plant tolerance to environmental stresses and the molecular basis of plant responses to water stress,especially at extremely sensitive stage might provide new strategies to improve the stress tolerance of agriculturally important plants.
     Understanding maize responses to water stress requires a comprehensive evaluation of stress-induced changes in gene expression and is expected to advance our insight into crop improvement.Microarray provides an analytical tool by which thousands of genes can be studied at one time.cDNA or Oligo microarray has recently been used to monitor global gene expression in response to several abiotic stresses in higher plants especially in Arabidopsis and rice.
     Recently,this technology has been applied to analyze maize gene expression profiles under various stress conditions.The leaves and roots of maize seedlings had different expression profiles under drought treatment,and an ethylene signaling pathway might be involved in the maize response to this stress.The response of the transcriptome of maize roots to salt stress was rapid and transient,leading to a burst changes after three-hour salt treatment.Of the salt induced ESTs,genes involved in the transport and signal transduction pathways were prominent.The results of gene expression profiles in ears before and after silking under shade stress showed that genes concerned in the ABA signal pathway were up-regulated,and genes involved in starch synthesis were down-regulated while genes of starch degradation didn't have significant changes.Oligonucleotide microarrays were used to examine genes expression at 4 days after silking and 8 days after pollination in maize ear and kernel in response to water-deficit stress.The result showed that the sensitivity to the extent of stress were different in different tissues.Only 17 genes,involved in many responses,expressed differentially in all the tissues.During water- and salt-stress treatments of developing kernels at 15 days after pollination,the genes involved in various stress responses(abiotic,wounding and pathogen attack)were up-regulated and the gene predominantly involved in energy generation were down-regulated in both stresses.Collectively,those researches were focused on the maize seedling and reproductive stage at the second peak of sensitivity to abiotic stress.However,the mechanistic bases of cellular response at the first sensitive peak to water deficit are still not been reported previously.
     To advance our understanding of the response to water deficit stress in the maize reproductive organs at the first peak sensitive to water deficit,we monitored gene expression in the developing immature tassels and ears under water deficit stress using oligo microarray slides containing 57,452 transcripts.After 1 day and 7 days of stress,immature tassels and ears differed considerably in their transcriptional responses,and the majority of changes were organ specific.By 1 day of stress,70 transcripts were up-regulated and 89 transcripts(56%of differential expression transcripts)were down-regulated in the ears;191 transcripts were up-regulated and 681 transcripts(78%of differential expression transcripts)were down-regulated in the tassels.By 7 days of stress,169 transcripts(84%of differential expression transcripts)were up-regulated and 33 transcripts were down-regulated in the ears;939 transcripts(62%of differential expression transcripts)were up-regulated and 574 transcripts were down-regulated in the tassels.There were obvious differences between the expression profiles of the ears and tassels.Only 73 transcripts were up-regulated and 17 were down-regulated in the two organs.Most of these transcripts have not been previously reported to be associated with water-deficit stress and are involved in a broad range of cell metabolisms,predominately in sucrose, trehalose and raffinose metabolism,and in cell wall metabolism and signal transduction in the tassels.These transcripts may be the genes response to water-deficit stress.
     A cDNA macroarray containing 514 unique ESTs in the subtracted cDNA library from maize leaves under water-deficit stress was constructed and used to analyze their expression profiles in maize immature ears and tassels during water-deficit stress.The results indicated that 58 ESTs by 1 day of stress and 106 ESTs by 7 days of stress were significantly up-regulated in the ears under water stress. Correspondingly,79 and 151 ESTs were significantly up-regulated in the tassels by 1 day and 7 days of stress.All of 222 ESTs,found to be up-regulated for at least one time-course point in either maize ears or tassels,were used for the hierarchical cluster analysis,and the results suggested that most ESTs were involved in cell metabolism, which was a good agreement with the microarray result.When the 222 ESTs were aligned with the sequences represented by 70 mer oligo on microarray using BLASTN program,184 ESTs were shown with good matched sequences.About 68%of these 184 ESTs were co-upregulated in the microarray and macroarray experiments,which showed a good agreement between them.
     A full-length cDNA,putative glutamate decarboxylase designated ZmGAD1, induced by water stress both in the microarry and macroarry experiments,has been isolated by the combination of bioinformatics and PCR based approaches.The entire cDNA ORF coding for the ZmGAD1 protein was inserted into the pET30a(+) expression vector.The recombinant protein showed the activity of glutamate decarboxylase.Sequence analysis showed that this protein had two conserved domains of glutamate decarboxylase,a pyridoxal-5'-phosphate(PLP)binding domain in the middle region of the peptides and a calmodulin(CaM)-binding domain at the carboxyl terminus.Southern blotting analysis suggested that the ZmGAD1 was a single-copy gene in the maize genome.The genomic sequence of ZmGAD1 was cloned,showed that ZmGAD1 was located on Chromosome 1 and had 7 exons and 6 introns.Based on a short mRNA sequence,we cloned another maize GAD gene in silico,designated ZmGAD2,which also had an entire ORF.Sequence analysis showed that ZmGAD2 didn't have the CaM site.ZmGAD2 was located on Chromosome 2 and had 4 exons and 3 introns.
     A homology tree of GADs from various plant species revealed ZmGAD1 had a closer evolutionary relationship with rice OsGAD1,and ZmGAD2 with OsGAD2,
引文
1.Shinozaki K,Yamaguchi-Shinozaki K,Seki M(2003)Regulatory network of gene expression in the drought and cold stress responses.Curr Opin Plant Biol.,6:410-417.
    2.Eulgem T,Rushton PJ,Robatzek S,Somssich IE(2000)The WRKY superfamily of plant transcription factors.Trends Plant Sci.,5:199-206.
    3.Bilaud T,Koering CE,Binet-Brasselet E,Ancelin K,Pollice A,Gasser SM,Gilson E(1996)The telobox,a Myb-related telomeric DNA binding motif found in proteins from yeast,plants and human.Nucleic Acids Res.,24:1294-1303.
    4.Singh KB(1998)Transcriptional regulation in plants:the importance of combinatorial control.Plant Physiol.,118:1111 -1120.
    5.Quattrocchio F,Wing J,van der Woude K,Souer E,de Vetten N,Mol J,Koes R(1999)Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color.Plant Cell,11:1433-1444.
    6.Higginson T,Lis F,Parish RW(2003)AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana.Plant J.,35:177-192.
    7.Kranz HD,Denekamp M,Greco R,Jin H,Leyva A,Meissner RC,Petroni K,Urzainqui A,Bevan M,Martin C,Smeekens S,Tonelli C,Paz-Ares J,Weisshaar B(1998)Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana.Plant J.,16:263-276.
    8.Vailleau F,Daniel X,Tronchet M,Montillet JL,Triantaphylides C,Roby D(2002)A R2R3-MYB gene,AtMYB30,acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack.Proc Natl Acad Sci USA.,99:10179-10184.
    9.Ito M,Arakis,Matsunagas,Itoh T,Nishihama R,Machida Y,Doonan JH,Watanabe A(2001)G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors.Plant Cell,13:1891-1905.
    10.Olsen AN,Ernst HA,Lo Leggio L,Skriver K(2005)NAC transcription factors:structurally distinct,functionally diverse.Trends Plant Sci.,10:79-87.
    11.Orozco-Cardenas ML,Narvaez-Vasquez J,Ryan CA(2001)Hydrogen peroxide acts as a second messenger for the induction of defense genes in tobacco plants in response to wounding,systemin,and methyl-jasmonate.Plant Cell,13:179-191.
    12. Ligterink W, Hirt H (2001) Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools, Int Rev Cytol., 201:209-275.
    13. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases AtMPK4 and AtMPK6. Plant J., 24:655-665.
    14. Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H, Meskiene I (2000) SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 12:2247-2258.
    15. Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell, 12:165-178.
    16. Chitlaru E, Seger R, Pick U (1997) Activation of a 74 kDa plasma membrane protein kinase by hyperosmotic shocks in the halotolerant alga Dunaliellasalina. J Plant Physiol, 151:429-436.
    17. Usamis, Banno H, ItoY, Nishihama R, MachidaY(1995) Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci USA , 92:8660-8664.
    18. UraoT, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozak K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell, 11:1743-1754.
    19. Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol., 131:454-462.
    20. Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell, 12:111 -124.
    21. El Maarouf H, Zuily-Fodil Y, Gareil M, d'Arcy-Lameta A, Pham-Thi AT (1999) Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol., 39:1257-1265.
    22. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol., 49:199-222
    23. Taji T, Ohsumi C, Iuchis, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J., 29:417-426.
    24. Brenac P, Horbowicz M, DownersM, Dickermn AM, Smith ME, Obendorf RL (1997) Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation. J. Plant Physiol., 150:481-488.
    25. Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA, 90:1629-1633.
    26. Dure L (1993) A repeating 11-mer ammonia acid motif and plant desiccation. Plant J., 12:363-369.
    27. Welin BV, Olson A, Nylander M, Palva ET (1994) Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol., 26:131 -144.
    28. Cattivelli L, Baldi P, Crosatti C, di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol., 48:649-665.
    29. Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley conferred tolerance to water deficit and salt stress in transgenic rice. Plant PhysioL, 110:249-257.
    30. Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant PhysioL, 134:401-408.
    31. Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK, Gong Z (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J., 43:273-283.
    32. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol., 53:247-273.
    33. Shao HB, Guo QJ, Chu LY, Zhao XN, Su ZL, HuYC, Cheng JF (2007) Understanding molecuLar mechanism of higher plant plasticity under abioticstress. Colloids Surf B Biointerfaces, 54:37-45.
    34. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell, 14 Suppl:S165-183.
    35. Chinnusamy V , Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot., 55:225-236.
    36. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot., 58:221-227.
    37. Salter PJ, Goode JE (1967) Crop responses to water at different stages of growth (Research review number 2). Commonwealth Agricultural Bureaux, Farnham Royal, UK
    38. O'Toole JC, Moya TB (1981) Water deficit and yield in upland rice. Field Crop Res., 4:247-259.
    39. Saini HS, Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Ann Bot., 48:623-633.
    40. Westgate ME, Boyer JS (1986) Reproduction at low silk and pollen water potentials in maize. Crop Sci., 26:951 -956.
    41. Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sex Plant Reprod., 10:67-73.
    42. Saini HS, Sedgley M, Aspinall D (1984) Developmental anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Aust J Plant Physiol., 11:243-253.
    43. Lalonde S, Beebe D, Saini HS (1997) Early signs of disruption of wheat anther development associated with the induction of male sterility by meiotic-stage water deficit. Sex Plant Reprod., 10:40-48.
    44. Sheoran IS, Saini HS (1996) Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod., 9:161 -169.
    45. Zavadskaya IG, Skazkin FD (1960) On microsporogenesis in barley as affected by soil moisture deficiency and by application of nitrogen at various stages of development. Dokl Akad Nauks SSR., 131:692-694.
    46. Bingham J (1966) Varietal response in wheat to water supply in the field, and male sterility caused by a period of drought in a glass house experiment. Ann Appl Biol., 57:365-377.
    47. Skazkin FD, Lukomskaya KA (1962) Effect of soil water deficiency on formation of female gametophyte. Dokl Akad Nauks SSR., 146:1449-1451.
    48. Moss GI, Downey LA (1971) Influence of drought stress on female gametophyte development in corn (Zea mays L.) and subsequent grain yield. Crop Sci., 11:368-372.
    49. Hayase H, Satake T, Nashiyama I, Ito N (1969) Male sterility caused by cooling treatment at the meiotic stage in rice plants. II. The most sensitive stage to cooling and fertilizing ability of pistils. Proc Crop Ssci Soc Jpn., 38:706-711.
    50. Brooking IR (1976) Male sterility in sorghum bicolor L. Moench induced by low night temperature. I. Timing of the stage of sensitivity. Aust J Plant Physiol., 3:589-596
    51. Satake T, Yoshida S (1978) High temperature induced sterility in indica rices at flowering. Jpn J Crop Sci., 47:6-17
    52. Saini HS, Aspinall D (1982) Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann Bot., 49:835-846.
    53. Saini HS, Sedgley M, Aspinall D (1983) Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Aust J Plant Physiol., 10:137-144.
    54. Morgan JM, King RW (1984) Association between loss of leaf turgor, abscisic acid levels and seed set in two wheat cultivars. Aust J Plant Physiol., 11:143-150.
    55. Tsuda M, Takami S (1993) Changes of water potential in rice panicle under increasing drought stress at various stages. Jpn J Crop Sci., 62:41 -46.
    56. Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol., 111:137-145.
    57. Westgate ME, Passioura JB, Munns R (1996) Water status and ABA content of floral organs in drought-stressed wheat. A ust J Plant Physiol., 23:763-772.
    58. Zees Y, O'Brien TP(1970) A special type of tracheary element associated with 'xylem discontinuity' in the floral axis of wheat. Aust J Biol Sci., 23:783-791.
    59. O'Brien TP, Sammut ME, Lee JW, Smart MG (1985) The vascular system of the wheat spikelet. A ust J Plant Physiol., 12:487-511.
    60. Morgan JM (1980) Possible role of abscisic acid in reducing seed set in water-stressed wheat plants. Nature, 289:655-657.
    61. Saini HS, Aspinall D (1982) Sterility in wheat (Triticum aestivum L.) induced by water deficit or high temperature: possible mediation by abscisic acid. Aust J Plant Physiol., 9:529-537.
    62. Goldbach H, Goldbach E (1977) Abscisic acid translocation and influence of water stress on grain abscisic acid content. J Exp Bot., 28:1342-1350.
    63. Wolf O, Jescke WD, Hartung W (1990) Long distance transport of abscisic acid in salt stressed Lupinus albus plants. J Exp Bot., 41:593-560.
    64. Waters SP, Martin P, Lee BT(1984) Influence of sucrose and abscisic acid on the determination of grain number in wheat. J Exp Bot., 35:829-840.
    65. Zeng ZR, King RW, Morgan JM (1985) Regulation of grain number in wheat - genotype difference and responses to applied abscisic-acid and to high-temperature. Aust J Plant Physiol., 12:609-619.
    66. Dembinska O, Lalonde S, Saini HS (1992) Evidence against the regulation of grain set by spikelet abscisic acid levels in water stressed wheat. Plant Physiol., 100:1599-1602.
    67. Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell, 6:1665-1679.
    68. Koch KE, Xu J, Duke ER, McCarty DR, Yuan CX, Tan BC, Avigne WT (1995) Sugar provides a long distance signal for coarse control of genes affecting its metabolism. In: Pontis HG, Salerno GL, Echeverria EJ (eds), Sugar metabolism, biochemistry,physiology and molecular biology. MD, pp266-277, American society of Plant Physiologists, Rockville.
    69. Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol., 47:509-540.
    70. Koch KE, Nolte KD, Duke ED, McCarty DR, Avigne WT (1992) Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell, 4:59-69
    71. Xu J, Avigne WT, McCarty DR, Koch KE (1996) A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism - evidence from maize invertase gene family. Plant Cell, 8:1209-1220.
    72. Zinselmeier C, Westgate ME, Schussler JR, Jones RJ (1995) Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol, 107:385-391.
    73. Andersen MN, Asch F, Wu Y, Jensen CR, Naested H, Mogensen VO, Koch KE (2002) Soluble invertase expression is an early target of drought stress during the critica, abortion-sensitive phase of young ovary development in maize. Plant Physiol, 130:591-604.
    74. McLaughlin JE, Boyer JS (2004) Glucose localization in maize ovaries when kernel number decreases at low water potential and sucrose is fed to the stems. Ann Bot., 94:75-86.
    75. Brazma A,Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U (2001) Minimum information about a microarray experiment (MIAME) -toward standards for microarray data. Nat Genet., 29:365-371.
    76. Tuberosa R, Salvi S, Sanguineti M, Landi P, Maccaferri M, Conti S (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot. , 89:941-963.
    77. Ozturk Z, Talame V, Deyholos M, Michalowski C, Galbraith D, Gozukirmizi N, Tuberosa R, Bohnert H (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol.Biol., 48:551-573.
    78. Oono Y, Seki M, Nanjo T, NarusakaM, Fujita M, Satoh R, Satou -M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca 7000 full-length cDNA microarray. Plant J., 34:868-887.
    79. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito V, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol., 133:1755-1767.
    80. Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol., 52:873-891.
    81. Andjelkovic V, Thompson R (2006) Changes in gene expression in maize kernel in response to water and salt stress. Plant Cell Rep., 25:71-79.
    82. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J., 31:279-292.
    83. Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol., 130:1109-1120.
    84. DelessertC, Wilson IW, Van Derstraeten D, Dennis ES, Dolferus R (2004) Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol Biol., 55:165-181.
    85. Stanley Kim H, Yu Y, Snesrud EC, Moy LP, Linford LD, Haas BJ, Nierman WC, Quackenbush J (2005) Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome. Plant J., 41:212-220.
    86. Nagata T, Yamada H, Du Z, Todoriki S, Kikuchi S (2005) Microarray analysis of genes that respond to gamma-irradiation in Arabidopsis. J Agric Food Chem., 53:1022-1030.
    87. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol., 6:25.
    88. Yamaguchi T, Nakayama K, Hayashi T, Yazaki J, Kishimoto N, Kikuchi S, Koike S (2004) cDNA microarray analysis of rice anther genes under chilling stress at the microsporogenesis stage revealed two genes with DNA transposon Castaway in the 5'-flanking region. Biosci Biotechnol Biochem., 68:1315-1323.
    89. Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C , Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol., 63:591-608.
    90. Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q (2006) Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol., 60:617-631.
    91. Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol., 55:807-823.
    92. Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G (2006) Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J., 48:710-27.
    93. Casati P, Walbot V (2004) Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biol., 5:R16.
    94. Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DVV, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol., 52:873-891.
    95.Yu LX,Setter TL(2003)Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit.Plant Physiol.,131:568-582.
    96.Zinselmeier C,Sun Y,Helentjaris T,Beatty M,Yang S,Smith H,Habben J(2002)The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize.Field Crop Res.,75:111-121.
    97.Imin N,Kerim T,Rolfe BG,Weinman JJ(2004)Effect of early cold stress on the maturation of rice anthers.Proteomics,4:1873-1882.
    98.McCarty DR(1986)A simple method for extraction of RNA from maize tissues.MNL 60,61.
    99.岳桂东,胡孝瑞,庄云龙,张举仁(2006)干旱胁迫下开花期玉米消减文库的构建及分析.山东大学学报(理学版),41:168-172.
    100.Eisen MB,Spellman PT,Brown PO,Botstein D(1998)Cluster analysis and display of genome-wide expression patterns.Proc Natl Acad Sci USA.,95:14863-14868.
    101.Edmeades GO,Bolanos J,Chapmans C,Lafitte HR,Banzige M(1999)Selection improves drought tolerance in tropical maize populations:I Gains in biomass,grain yield,and harvest index.Crop Sci.,39:1306-1315.
    102.Betran FJ,Beck D,Banziger M,Edmeades GO(2003)Genetic analysis of inbred and hybrid grain yield under stress and non stress environments in tropical maize.Crop Sci.,43:807-817.
    103.Bruce WB,Edmeades GO,Barker TC(2002)Molecular and physiological approaches to maize improvement for drought tolerance.J Exp Bot.,53:13-25.
    104.Carlsons J,Chourey PS,Helentjaris T,Datta R(2002)Gene expression studies on developing kernels of maize sucrose synthase(SuSy)mutants show evidence for a third SuSy gene.Plant Mol Biol.,49:15-29.
    105.Subbaiah CC,Palaniappan A,Duncan K,Rhoads DM,Huber SC,Sachs MM(2006)Mitochondrial localization and putative signaling function of sucrose synthase in maize.J Biol Chem.,281:15625-15635.
    106.Duncan KA,Hardins C,Hubers C(2005)The third sucrose synthase in Zea mays(SUS3)is a ubiquitous protein that is phosphorylated and membrane associated(abstract no.22005).In Plant Biology 2005,July 16-20,2005,Seattle.American Society of Plant Biologists,Rockville.
    107.Roitsch T,Gonzalez MC(2004)Function and regulation of plant invertases:sweet sensations.Trends Plant Sci.,9:606-613.
    108.Goddijn OJM,van Dun K(1999)Trehalose metabolism in plants.Trends Plant Sci.,4:315-319.
    109.Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology, 13:17R-27R.
    110.Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG , Jones JDG , Smeekenss C , Graham IA (2002) Trehalose-6-phosphatesynthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J., 29:225-235.
    111. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim VS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth.Plant Physiol., 131:516-524.
    112Keller R, Brearley CA, Trethewey RN, Müller-Rober B (1998) Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myo-inositol 3-phosphatesynthase. Plant J., 16:403-410.
    113.Minic Z, Jouanin L (2006) Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem., 44:435-449.
    114.Cho SK, Kim JE, Park JA, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett., 580:3136-3144.
    115.Wu Y, Jeong BR, Fry SC, Boyer JS (2005) Change in XET activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential. Planta, 220:593-601.
    116.Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol., 123:1313-1324.
    117.Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 279:717-720
    118.Mukhopadhyay A, Vij S, Tagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc NatlAcad Sci USA., 101:6309-6314.
    119.Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H (2003) Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J., 36:830-841.
    120.Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol., 41:577-585.
    121.Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwills, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol., 53:383-397.
    122.Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NACl to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell, 17:1376-1386.
    123.Ohnishi T, SugaharaS, Yamada T, KikuchiK, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genetsyst., 80:135-139.
    124.Pylatuik JD, Fobert PR (2005) Comparison of transcript profiling on Arabidopsis microarray platform technologies. Plant Mol Biol., 58:609-624.
    125.Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS (2002) Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics, 18:405-412.
    126.Xu W, Bak S, Decker A, Paquette SM, Feyereisen R, Galbraith DW (2001) Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene, 272:61-74.
    127 Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci., 9:110-116.
    128.Bown AW, Shelp B (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol., 115:1-5.
    129 Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci., 4:446-452.
    130.Wallace W , Secor J, Schrader LE (1983) Rapid accumulation of γ-aminobutyric acid and alanine insoybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol., 75:170-175.
    131 Reggiani R, Cantu CA, Brambilla I, Bertani A (1988) Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physiol., 29:981-987.
    132.Serraj R, Shelp BJ, Sinclair TR (1998) Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress. Physiol Plant, 102:79-86.
    133.Satyanarayan V, Nair PM (1985) Purification and characterization of glutamate decarboxylase from solarium t uberosum. Eur J Biochem., 150:53-60.
    134.Breitkreuz KE, Shelp BJ (1995) Subcellular compartmentation of the 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons. Plant Physiol, 108:99-103.
    135.Schales O, Schaless S (1946) Glutamic acid decarboxylase of higher plant: 11 pH activity curve, reaction kinetics, inhibition by hydroxylaminc. Arch Biochem., 11:115-166.
    136.Tsushida T, Murai T (1987) Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic conditions. Agr Biol Chem, 51:2865-2871.
    137.Ling V, Snedden WA, Shelp BJ (1994) Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin activated enzyme. Plant Cell, 6:1135-1143.
    138.Yuns J, Ohs H (1998) Cloning and characterization of a tobacco cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase. Mol Cells., 8:125-129.
    139.Turano FJ, Fang TK (1998) Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiol., 117:1411 -1421.
    140.Bouche N, Fait A, Zik M, Fromm H (2004) The root-specific glutamate decarboxylase (GADl) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol., 55:315-325
    141 Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H (1993) A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J Biol Chem., 268:19610-19617.
    142.Gallego PP, Whotton L, Pictons, Grierson D, Gray JE (1995) A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site. Plant Mol Biol., 27:1143-1151.
    143.Akama K, Akihiro T, Kitagawa M, Takaiwa F (2001) Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim Biophys Acta., 1522:143-150.
    
    144. Ohs H, Choi WG, Lee IT, Yuns J (2005) Cloning and characterization of a rice cDNA encoding glutamate decarboxylase. J Biochem Mol Biol. , 38:595-601.
    
    145. Mazzucotelli E, Tartan A, Cattivelli L, Forlani G (2006) Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat.J Exp Bot.,57:3755-3766.
    146.MacGregor KB,Shelp BJ,Peiris S,Bown AW(2003)Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae.J Chem Ecol.,29:2177-2182.
    147.Ramputh AI,Bown AW(1996)Rapid γ-ammobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae.Plant Physiol.,111:1349-1352.
    148.Baum G,Lev-Yaduns,Fridmann Y,Arazi T,Katsnelson H,Zik M,Fromm H.(1996)Calmodulut binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants.EMBO J.,15:2988-2996.
    149.Tokunaga M,Nakano Y,Kitaoka S(1976)The GABA shunt in the callus cells derived from soybean cotyledon.Agr Biol Chem.,40:115-120.
    150.Van Cauwenberghe OR,Shelp BJ(1999)Biochemical characterization of partially purified GABA:pyruvate transaminase from Nicotiana tabacum.Phytochem.,52:575-581.
    151.Solomon PS,Oliver RP(2002)Evidence that gamma-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato.Planta,214:414-420.
    152.Palanivelu R,Brass L,EdlundAF,Preuss D(2003)Pollen tube growth and guidance is regulated by POP2,an Arabidopsis gene that controls GABA levels.Cell,114:47-59.
    153.Wu C,Zhou S,Zhang Q,Zhao W,Peng Y(2006)Molecular cloning and differential expression of an gamma-aminobutyrate transaminase gene,OsGABA-T,in rice(Oryza sativa)leaves infected with blast fungus.J Plant Res.,119:663-669.
    154.Busch KB,Fromm H(1999)Plant succinic-semialdehyde dehydrogenase.Cloning,purification,localization in mitochondria,and regulation by adenine nucleotides.Plant Physiol.,121:589-597.
    155.Bouche N(2003)Mitochondrial succinic-semialdehyde dehydrogenase of the gama-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants.Proc Natl Acad Sci USA.,100:6843-6848.
    156.Snedden WA,Arazi T,Fromm H,Shelp BJ(1995)Calcium/Calmodulin activation of soybean glutamate decarboxylase.Plant Physiol.,108:543-549.
    157.Snedden WA,Koutsia N,Baum G(1996)Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain.J Biol Chem., 271:4148-4153.
    158.Johanson BS,Singh NK,Cherry JH,Locy RD(1997)Purification and characterization of glutamate decarboxylase from cowpea.Phytochem.,46:39-44.
    159.Crawford LA,Bown AW,Breitkreuz KE,Guinel FC(1994)The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH.Plant Physiol.,104:865-871.
    160.Davies DD(1980)Anaerobic metabolism and the production of organic acids.In Davies DD(ed),Biochemistry of Plants.Vol.2,pp581-611,Academic Press,New York.
    161.Roberts JKM,Callis J,Wemmer D,Walbot V,Jardetzky O(1984)Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia.Proc Natl Acad Sci USA.,81:3379-3383.
    162.Zielinski RE(1998)Calmodulin and calmodulin-binding proteins in plants.Annu Rev Plant Physiol Plant Mol Biol.,49:697-725.
    163.Cholewa E,Cholewinski AJ,Shelp BJ,Snedden WS,Bown AW(1997)Cold shock-stimulated γ-aminobutyric acid synthesis is mediated by an increase in cytolic Ca~(2 ),not by an increase in cytosolic H~ .Can J Bot.,75:375-382.
    164.Arazi T,Baum G,Snedden WA(1995)Molecular and biochemical analysis of calmodulin interactions with the calmodulin binding domain of plant.Plant Physiol.,108:551-561.
    165.Kinnersley AM(2000)Gamma amminobutyric acid and plant response to stress.CRC Crit Rev Plant Sci.,19:479-509.
    166.Shelp BJ,Walton CS,Snedden WA,Tuin LG,Oresnik IJ,Layzell DB(1995)GABA shunt in developing soybean seeds is associated with hypoxia.Physiol Plant,94:219-228.
    167.Bown AW,Shelp BJ(1989)The metabolism and physiological roles of 4-aminobutyric acid.Biochem.,8:21-25.
    168.田小磊,吴晓岚,张蜀秋,娄成后(2002)γ-氨基丁酸在高等植物逆境反应中的作用.生命科学,14:215-219.
    169.Bouche N(2003)GABA signaling:a conserved and ubiquitous mechanism.Trends Cell Biol.,13:607-610.
    170.Smimof N,Cumbes QJ(1989)Hydroxyl radical scavenging activity of compatible solutes.Phytochem.,28:1057-1060.
    171.赵炳超,石波,李秀波,梁平,刘一峰(2004)新型饲料添加剂—γ-氨基丁酸的制备及应用研究进展.中国畜牧兽医,31:13-14
    172.Johnson BS,Singh NK,Cherry JH,Locy RD(1997)Purification and characterization of glutamate decarboxylase from cowpea.Phytochem.,46:39-44.
    173.Bradford MM(1976)A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding.Anal Biochem.,72:248-54.
    174.Zik M,Arazi T,Snedden WA,Fromm H(1998)Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution.Plant Mol Biol.,37:967-975.
    175.ChenY,Baum G,Fromm H(1994)The 58-kilodahon calmodulin binding glutamate decarboxylase is a ubiquitous protein in petunia organs and its expression is developmentally regulated.Plant Physiol.,106:1381-1387.
    176.Finkelstein RR,Gampalas SL,Rock CD(2002)Abscisic acid signaling in seeds and seedlings.Plant Cell,14:S15-S45.
    177.Reggiani R,Aurisano N,Mattana M,Bertani A(1993)ABA induces 4-aminobutyrate accumulation in wheat seedlings.Phytochem.,34:605-609.
    178.Irving SN,Osborne MP,Wilson RG(1979).Studies on L-glutamate in insect haemolymph.I.Effect of injected L-glutamate.Physiol Entomol.,4:139-146.