碘油羟基磷灰石纳米颗粒介导对肝癌靶向基因治疗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分羟基磷灰石纳米颗粒作为基因载体可行性的研究
     目的对羟基磷灰石纳米材料颗粒(nHAP颗粒)的物理属性进行检验看其是否可能作为基因载体。
     方法利用了Ca~(2+)及左旋多聚赖氨酸(PLL)对其进行表面修饰;应用原子力学显微镜,透射电镜,Zeta电位分析仪分析羟基磷灰石纳米材料颗粒的颗粒大小,分布情况及颗粒表面的带电情况;应用琼脂糖凝胶电泳,兔血清消化法观察nHAP颗粒对质粒DNA的结合情况;利用了以上结果与目前基因转移到了最新理论要求比较,判断此材料是否可能作为基因转移载体并为基因转移提供科学依据。
     结果nHAP颗粒本身大小小于100nm,但由于颗粒表面本身带负电,不能包括有效地结合及保护DNA;经Ca~(2+)修饰后,颗粒可带正电,可一定程度地结合和保护DNA,但聚合物本身的中性电与带负电的细胞膜结合,而且本身的颗粒则变地容易聚集而成为很大的颗粒,也不利于细胞的吞噬;经PLL修饰后,颗粒溶解性提高,直径变小,表面带正电,电泳结果显示PLL-nHAP颗粒可包括有效地结合和保护DNA免受兔血清的破坏,而且复合物表面的正电也包括有利于与细胞膜的结合与吞噬。无论哪种修饰方法,nHAP颗粒与DNA质量比必须达到了15才能完全结合和保护DNA。
     结论nHAP颗粒本身不可作为基因转移到了载体。经过PLL修饰后可作为基因转移载体,nHAP颗粒与DNA质量比必须达到了15才能完全结合和保护DNA。
     第二部分野生型P53,Rb抑癌基因真核细胞表达载体的构建
     目的:利用了分子生物学的基本原理构建野生型P53,Rb抑癌基因真核细胞表达载体。
     方法:(1):Trizol法提取正常胎肝细胞L02 mRNA后,利用了RT-PCR克隆野生型P53基因的全长CDNA。利用了Xho和BamHⅠ分别酶切CDNA的两端后,与相同酶切的PEGFP-C2真核细胞表达载体连接后转化,提取重组质粒后进行酶切,PCR鉴定正确后,进行测序验证。(2):Trizol法提取正常足月胎盘组织mRNA后,利用了巢式RT-PCR克隆野生型Rb基因的全长CDNA。利用了Xho和BamHⅠ分别酶切CDNA的两端后,与相同酶切的PBK-CMV真核细胞表达载体连接后转化,提取重组质粒后进行酶切,PCR鉴定正确后,进行测序验证。结果:(1):成功克隆1.2kb野生型p53基因,并亚克隆到了4.7 kb真核细胞表达载体PEGFP-C2,p53基因与EGFP在一个阅读框内形成一个融合基因,其重组载体称为PEGFP-C2-p53。(2):成功克隆2.9 kb野生型Rb基因,并亚克隆到了4.5kb真核细胞表达载体PBK-CMV内,其重组载体称为PBK-CMV-Rb。
     结论:成功构建人携带野生型P53,Rb基因真核表达质粒PEGFP-C2-P53,PBK-CMV-Rb。
     第三部分羟基磷灰石纳米在体外基因转染的研究
     目的研究新型非病毒载体羟基磷灰石(hydroxyapatite,HAP)纳米颗粒在体外对肝细胞癌细胞基因治疗中的作用及机制。
     方法(1) MTT法评价各个浓度HAP纳米颗粒对肝细胞癌细胞HePG2及正常肝细胞L02生长的影响,从而选择合适的剂量使用范围用于后续实验。(2)应用氯化钙修饰HAP纳米颗粒,以增强型绿色荧光蛋白基因(PEGFP-N1)为报告基因,联合脂质体共同作为基因载体转染肝细胞癌细胞HePG2,荧光显微镜下观察转染成功后,流式细胞术测定转染效率和平均荧光值,并与传统脂质体方法进行比较。(3)应用PLL修饰HAP纳米颗粒,以增强型绿色荧光蛋白基因(PEGFP-N1)为报告基因,作为基因载体转染肝细胞癌细胞HePG2,荧光显微镜下观察转染成功后,流式细胞术测定转染效率和平均荧光值,并与传统脂质体方法进行比较。(4)应用PLL修饰HAP纳米颗粒,以p53基因(PEGFP-C2-p53)目的基因,作为基因载体转染肝细胞癌细胞HePG2,荧光显微镜下观察转染成功后,流式细胞术测定癌细胞的凋亡率和死亡率,并与传统脂质体方法进行比较。
     结果(1)体外应用nHAP颗粒不能超过终浓度20ug/ml,联合脂质体应用nHAP颗粒不能超过终浓度5ug/ml。由于第一部分研究结果提示nHAP颗粒与DNA质量比必须达到了15才能完全结合和保护DNA。故后续浓度选用nHAP颗粒与DNA各为15ug/ml及1ug/ml。(2)氯化钙修饰的HAP纳米颗粒单独应用无基因转移功能。联合HAP纳米颗粒与脂质体作为基因转染的载体成功将绿色荧光蛋白基因导入HePG2细胞,其转染效率和平均荧光强度显著高于单用脂质体组(P~(12h效率)=0.002,P~(36h效率)=0.000,P~(72h效率)=0.000,P~(36h强度)=0.000,P~(72h强度)=0.000,P~(all)<0.05)。(3) PLL修饰的nHAP颗粒可作为基因转移的载体。(4) PLL-nHAP颗粒可介导p53抑癌基因入进入癌细胞并促进其抑癌作用,由于纳米材料颗粒本身具包括有抗癌作用,其总体作用甚至高于传统脂质体法介导的基因治疗。
     结论(1) Ca~(2+)修饰后HAP具包括有结合和保护质粒DNA的作用,单纯应用无基因转移能力。可以作为脂质体的辅助载体,提高转染效率,但联合脂质体增加对正常肝细胞的毒性。(2)单纯PLL修饰的nHAP颗粒可在安全剂量范围内介导基因转染肝细胞癌细胞,最适合后续体内基因治疗。(3)在合适的量,nHAP颗粒(PLL)可以引起肝细胞癌HePG2凋亡和死亡而对正常细胞影响较小,nHAP颗粒(PLL)可以介导抑癌基因P53入胞,加上其本身的抗癌作用,其抑癌效比脂质体包括有延迟性但更好。nHAP颗粒(PLL)适合作为体外肝细胞癌基因治疗的载体
     第四部分超液化碘油羟基磷灰石纳米制作抗癌特异性基因转移载体在动物体内的研究
     目的研究新型非病毒载体羟基磷灰石(hydroxyapatite.,HAP)纳米颗粒在动物体对肝细胞癌模型的基因治疗中的作用及机制。
     方法(1)肝功能法评价各个剂量的nHAP-PLL-PLL颗粒纳米颗粒对兔正常肝脏的的影响,从而选择合适的剂量使用范围用于后续实验。(2)为了判断各组剂型组合,给药方式及脂质体对转染效率的影响。分别设立以下各组比较转染效率。每组3只兔子。A组:NS+PEGFPC2组(插管),B组:nHAP颗粒+PEGFPC2组(插管),C组:nHAP颗粒+PEGFPC2组(局部注射),D组:超液化碘油nHAP颗粒+PEGFPC2组(插管),E组:超液化碘油nHAP颗粒+PEGFPC2组(局部注射),F组:脂质体+PEGFPC2组(插管),G组:脂质体+PEGFPC2组(局部注射),H组:脂质体+超液化碘油nHAP颗粒+PEGFPC2组(插管)。灌注后三天后处死兔子消化法提取肿瘤细胞,流式细胞术检测转染效率。确定最高转染效率组为后续实验。(3)观察肝动脉灌注超液化碘油羟基磷灰石纳米粒(nHAP颗粒)与P53基因,Rb基因对兔VX2肝肿瘤生长,瘤兔生存期及肝功能的影响,同时观察其对p53,Rb,BCRP,G-pg,CD34,VEGF,TWIST及表达的影响。实验设生理盐水插管组26只(A组),nHAP颗粒超液化碘油插管组35只(B组),超液化碘油nHAP颗粒-P53复合物插管组40只(C组),超液化碘油nHAP颗粒-Rb复合物插管组35只(D组),超液化碘油nHAP颗粒+(Rb+P53)插管组35只(E组)。共171只兔子。
     结果(1) nHAP-PLL颗粒剂量在5-50mg/kg时,经肝动脉给药对兔肝VX2肿瘤的生长具包括有抑制作用,并能提高瘤兔的生存期,肝功能损害是可逆的。为了保证安全性,我们选择5mg/kg的nHAP颗粒与0.33mg/kg DNA用于后续实验(2)肝动脉插管时,单纯纳米材料颗粒没包括有肝脏肿瘤基因转移效应,必须配合超液化碘油发挥其阻滞作用,才能转移基因;局部注射无须超液化碘油即可发挥转移效应,联合超液化碘油效率可增加,但效率均极低(荧光显微镜下看不到);肝动脉插管效率明显高于局部注射,插管和超液化碘油包括有协同提高转染效率;联合脂质体不能提高超液化碘油nHAP颗粒的基因转染效率。(3)超液化碘油nHAP颗粒联合基因短期内可能影响肝功能,但一周内可以恢复。超液化碘油nHAP颗粒可携带抑癌基因入胞,短期内抑制肿瘤生长,两者包括有协同作用。长期作用不明显。超液化碘油nHAP颗粒联合抑癌基因可以提高瘤兔生存时间。联合双基因治疗效果更好。
     结论经肝动脉灌注超液化碘油nHAP颗粒可介导的p53和Rb可联合用于治疗兔VX2肝细胞癌,从而提高抗癌作用,延长瘤兔生存时间。其机制包括如利用下调多种肿瘤恶性行为相关基因来实现。
PartⅠThe study of the feasibility for the hydroxyapatite nanoparticleas the gene transfer vector
     Objective: To evaluate the physical characters of hydroxyapatite nanoparticle that arerelated to the gene delivery of sythenic material.
     Methods: The diameter, the surface zeta-pontential of the nanoparticle was investigatedby the atomic force microscope (AFM), transmission electron microscopy (TEM) andzeta-potential analyzer. The DNA combination and protection assay was evaluated by theagarose gel electrophoresis method.
     Results: The diameter of the nHAP is less than 100nm. However, the negative pontentialof its surface can't bind the DNA effectively. After the surface modification of nHAP byCa2+, the nanoparticle can indeed combine and protect the DNA, whereas, the morebigger diameter may also hinder the effective gene transfer through the cell membrane.PLL modification changed the very negative zeta-potential of nHAP into a positivelycharged nHAP-PLL nanoplex. The nanoplex were smaller than the unmodified nHAP; thelipiodol/nanoplex emulsion, with the mean diameter at 75±11.8nm can disperse moreuniformly and be more soluble and stable, contrary to the unmodified nHAP and nanoplex
     Conclusion: Nanoplex/pDNA mass ratios greater than 15 (w/w) had exhibited completepDNA absorption onto positive charged polyplex and pDNA protection from thedestruction of nucleinase in rabbit serum. Unmodified nHAP may can't induce effectivegene delivery.
     PartⅡThe construction of the recombint eukaryotic expressive vector ofwild-type human p53 and Rb
     Objective: To construct the recombint eukaryotic expressive vector of wild-type humanp53 and Rb by utilizing the theory of molecular medicine.
     Methods: (1) The p53 gene, cloned from normal L02 cells after the mRNA is extracted byTrizol, was subcloned into the C-terminal of EGFP in PEGFP-C2 (CMV promoter, BDBiosciences, USA) by using BamHI and XhoI restriction enzymes. Subsequent sequenceanalysis was done following the PCR and enzyme cutting indentification. (2) The Rb gene,cloned from the tissue of normal placenta by nest PCR after the mRNA is extracted byTrizol, was subcloned into the PBK-CMV by using BamHI and XhoI restriction enzymes.Subsequent sequence analysis was done following the PCR and enzyme cuttingindentification.
     Results: (1): The 1.2 kb wild-type p53 was cloned and subcloned to the 4.7 kbPEGFP-C2 vector, with the sequence reported in gene bank (No. AF307851), with theEGFP reading frame linked in frame to the p53 gene by intervening amino acids"QISSSSFEF". The recombinant vector was called PEGFP-C2-P53. (2): The 2.9Kb Rbgene, cloned from human placenta tissue successfully, was subcloned into the multiclonesite of PBK-CMV vector by using the same restriction enzyme followed by sequenceanalysis(Invitrogen, USA), which is completely same to the Pubmed. The recombinantvector is called PBK-CMV-Rb.
     Conclusion: The recombint eukaryotic expressive vector of wild-type human p53 and Rbwere constructed successfully.
     PartⅢThe in vitro study of gene delivery of hydroxyapatitenanoparticle to the HepG2 cell
     Objective (1): The effect of different concentration of nHAP, lipid and thecombination of the two above to the growth of the cells were studied by the method ofMTT. (2): Combining liposome and Calcium chloride modified hydroxyapatite (HAP)nanoparticles, the PEGFP-N1 plasmids were transfected into HepG2 cells. The genetransfering rate and the mean fluorescence intensity were observed by flow cytometry afterthe green fluorescence of the cells was seen under fluorescence microscope. (3): By usingliposome and poly-lysine (PLL) modified hydroxyapatite (HAP) nanoparticles, thePEGFP-N1 plasmids were transfected into HepG2 cells. The gene transfering rate and themean fluorescence intensity were observed by flow cytometry after the green fluorescenceof the cells was seen under fluorescence microscope. The two was compared after 12hs,36hs and 72hs incubation. (4): By using liposome and poly-lysine (PLL) modifiedhydroxyapatite (HAP) nanoparticles, the PEGFP-C2-P53 plasmids were transfected intoHepG2 cells. The apoptosis and necrosis rate of the cells were observed by flow cytometryafter. The two was compared after 36hs and 72hs incubation.
     Results (1) The maximal safe dose of nHAP is 20ug/ml while it is 5ug/ml while theliposme is used together. As the result of part 1 indacate, the weight ratio of nHAP andDNA must be more than 15, can the nHAP can complete combine and protect the DNA.So, the subsequent concentrations for the application in vitro are 15ug/ml and 1ug/ml fornHAP and DNA respectively. (2) The gene can't be transferred by the Ca2+ modified HAPnanoparticles alone. Combining the nanoparticles and liposome, the gene can be transferred very efficiently and the transfering rates were significantly higher than the lipid48 hours later (P~(12hR)=0.002, P~(36hR)=0.000, P~(72hR)=0.002, P~(36hI)=0.000, P~(72hI)=0.000,P~(all)<0.05). (3) The PLL modified nHAP can diliver the gene transfer to the HepG2 cells.(4) The PLL-nHAP nanoplex can diliver the p53 gene expression in the hepatoma cell lineand enhance the antitumor activity, even more effective than the traditional nonviralvector liposome due to the antirumoral effect of the nanoparticle itself.
     Conclusion: (1) The Ca2+ modified nHAP can't induce the gene delivery alone while canenhance the gene delivery of liposome when the combination of the nHAP and liposme.However, the combination can make more cytoxity to the nomal liver cell L02. (2) ThePLL modified nHAP can transfer the gene to the hepatoma cells within safe dosage of livercells. So, it is most suitable for the subsequent experiments of gene therapy. (3) The PLLmodified nHAP can induce the apoptosis and necrosis of the HepG2 while effect little tothe nomal cell L02 in some proper dosage, which can induce the p53 expession in thecancer cells. Moreover, the antitumoral effect of nHAP itself can add to that effect ofanti-oncogene though the effect is later than the liposme. PLL modified nHAP is suitablefor the gene therapy of hepatoma cell in vitro.
     PartⅣThe in vivo study of lipiodol-hydroxyapatite nanoparticle as thetumor specific gene transfer vector
     Objective To evaluate the application of hydroxyapatite nanoparticle as thetumor specific gene transfer vector and the possible mechanism.
     Methods (1) The safe dosage of the nHAP-PLL nanoparticle was evaluated by the effect ofdifferent concentration to the liver function of the rabbits. (2) To investigate the effect ofdifferent dosage form, different administrations and liposome on the transfection efficiency of nHAP, the group are set up as follows with each one including 3 animals: A:NS+PEGFPC2 group (transarterial), B: nHAP+PEGFPC2 group (transarterial), C:nHAP+PEGFPC2 group (local injection), D: lipodiol-nHAP+PEGFPC2 group(transarterial), E: lipodiol-nHAP+PEGFPC2 group (local injection), F: liposome+PEGFPC2 group (transarterial), G: liposome+ PEGFPC2 group (local injection), H:liposome+lipodoil-nHAP+PEGFPC2 group(transarterial)。The tumor cells were harvestedby the trypsinization method three days after the infusion or injection of the gene transfersystems. The tansfection efficiency of the cells was investigated by the flow cytometry. Thehighest system was applied in the subsequent test. (3) Recombinant expressing plasmidsharboring wild type p53 or Rb were cotransferred or transferred separately to the rabbithepatic VX2 tumor by the emulsion of Pll-nHAP nanoplex and lipodiol through the hepaticartery in a tumor target manner. Subsequent expressions of p53 and Rb protein within thetreated tumors were analyzed by western blotting. The therapeutic effect was evaluated bythe tumor growth velocity and the survival time of animals. Eventually, the realtimeRT-PCR and ECL western bolt were applied to investigate the expressive changes ofimportant genes related to the above. The group were set up as follows including 120animals: Lipoidol (A, 26), lipoidol/nanoplex (B, 35), lipoidol/nanoplex-p53 (C, 40),lipoidol/nanoplex-Rb(D, 35) and lipoidol/nanoplex-(p53+Rb, 35)(E).
     Results (1) The nanoplex was safe to the liver function of the animal when the dosage is5-50mg/kg, which can not only inhibit the growth of the tumor and prolong the thesurvival time of the animal, but also has reversible effect to the liver function. So, for thesafety of animal, the subsequent dosage we used is 5mg/kg and 0.33mg/kg for the nHAPand DNA respectively. (2) When the polyplex is infused through hepatic artery, the nHAPcan't induce the gene to the tumor in the liver, which can be achieved by thecombination of lipodiol and nHAP. When the polyplex is injected in the local tumor, thepolplex can induce the gene delivery alone, with the enhancement of transfectionefficiency by combing the lipodiol and polyplex. However, the injection groups all has very low transfecton activity (almost no green fluorescence under the fluorescencemicroscope). The transfection of the transarterial group is more than the local injectiongroup. There is synergism of gene delivery for the administration of transarterial infusionand the application of lipodoil. (3) The lipodiol-nHAP and the gene can affect the liverfunction in a shor time, which can recover within a week. The lipodiol-nHAP can diliverthe antioncogene to the tumor cells and inhibit the tumor growth in a shor time. However,the long-term effect has no significant difference to the control group. The lipodiol-nHAPand it induced antioncogene can prolong the survival of the anmimal, with the two genestherapy better result.
     Conclusion: Rb work synergistically with p53 in combined therapy mediated bytransaterial infusion of Pll-nHAP nanoplex and lipodoil to augment the antitumoral effectthrough the down regulated expression of important genes related to apoptosis andnecrosis, growth and differentiation, multidrug resistance of tumor cells.
引文
1 Bosch FX, Ribes J, Diaz M, et al. Primary liver cancer: worldwide incidence and
    trends. Gastroenterology, 2004, 127:S5-S16.
    2 Schafer DF, Sorrell MF. Hepatocellular carcinoma. Lancet, 1999, 353:1253-7.
    3 Bishop JM. Molecular themes in oncogenesis. Cell, 1991, 64:235-48.
    4 Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993, 75:805-16.
    5 Buetow KH, Murray JC, Israel JL, et al. Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci U S A, 1989, 86:8852-6.
    6 Wu MCH. The review of hepatology study in China. Shijie Huaren Xiaohua Zazhi,2000:1201-4.
    7 汪永录,周汉高,顾公望.肝细胞癌研究进展.第二版版.上海:上海科学技术文献出版社,1999.6-7.
    8 Drozdzik M, Qian C, Xie X, et al. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J Hepatol, 2000, 32:279-86.
    9 Yu AS, Keeffe EB. Management of hepatocellular carcinoma. Rev Gastroenterol Disord, 2003, 3:8-24.
    10 Okuda K, Ohtsuki T, Obata H, et al. Natural history ofhepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer, 1985, 56:918-28.
    11 Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: diagnosis and treatment.Gastroenterology, 2002, 122:1609-19.
    12 Okada S. Transcatheter arterial embolization for advanced hepatocellular carcinoma: the controversy continues. Hepatology, 1998, 27:1743-4.
    13 Hanazaki K, Matsushita A, Nakagawa K, et al. Risk factors of intrahepatic recurrence after curative resection of hepatocellular carcinoma. Hepatogastroenterology,2005, 52:580-6.
    14 Llovet JM, Real MI, Montana X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet, 2002, 359:1734-9.
    15 Lo CM, Ngan H, Tso WK, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology,2002, 35:1164-71.
    16 Doyon D, Mouzon A, Jourde AM, et al. L'embolisation arterielle hepatique dans les tumeurs malignes du foie. Ann Radiol (Paris), 1974, 17:593-603.
    17 Goldstein HM, Wallace S, Anderson JH, et al. Transcatheter occlusion of abdominal tumors. Radiology, 1976, 120:539-45.
    18 Lin DY, Liaw YF, Lee TY, et al. Hepatic arterial embolization in patients with unresectable hepatocellular carcinoma--a randomized controlled trial. Gastroenterology,1988, 94:453-6.
    19 Allison DJ, Modlin IM, Jenkins WJ. Treatment of carcinoid liver metastases by hepatic-artery embolisation. Lancet, 1977, 2:1323-5.
    20 Schepelmann S, Hallenbeck P, Ogilvie LM, et al. Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2. Cancer Res, 2005, 65:5003-8.
    21 Chen CA, Lo CK, Lin BL, et al. Application of doxorubicin-induced rAAV2-p53 gene delivery in combined chemotherapy and gene therapy for hepatocellular carcinoma.Cancer Biol Ther, 2007, 7.
    22 Nishiyama N, Iriyama A, Jang WD, et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater, 2005, 4:934-41.
    23 Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater, 2003, 2:668-71.
    24 Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev, 2002, 54:715-58.
    25 Ogris M, Wagner E. Targeting tumors with non-viral gene delivery systems. Drug Discov Today, 2002, 7:479-85.
    26 Anderson WF. Human gene therapy. Nature, 1998, 392:25-30.
    27 Fox JL. Gene therapy safety issues come to fore. Nat Biotechnol, 1999, 17:1153.
    28 Xiao W, Chirmule N, Schnell MA, et al. Route of administration determines induction of T-cell-independent humoral responses to adeno-associated virus vectors. Mol Ther, 2000, 1:323-9.
    29 Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther, 2005, 5:25-35.
    30 Check E. Safety panel backs principle of gene-therapy trials. Nature, 2002, 420:595.
    31 Pollack A. FDA halts 27 gene therapy trials after illness: leukemia-like cases in 2 children in France prompt the action. NY Times (Print), 2003:Al, Al7.
    32 Marwick C. FDA halts gene therapy trials after leukaemia case in France. BMJ,2003, 326:181.
    33 Fink TL, Klepcyk PJ, Oette SM, et al. Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther,2006, 13:1048-51.
    34 Itokazu M, Sugiyama T, Ohno T, et al. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res, 1998, 39:536-8.
    35 Benghuzzi H. Long-term sustained delivery of 3'-azido-2', 3'-dideoxythymidine in vivo by means of HA and TCP delivery devices. Biomed Sci Instrum, 2000, 36:343-8.
    36 Inhibition of HAP nanopartics on W-256 sarcoma of rats in vivo. Chin Biomed Engin,2001:302-4.
    37 Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol, 2003,9:1968-71.
    38 曹献英,李世普,任卫,等.纳米羟基磷灰石的表征及其对肝细胞癌抑制作用的研究.硅酸盐通报, 2003:21-4.
    39 齐志涛,曹献英,李世普,等.纳米磷灰石对肝细胞癌细胞端粒酶基因表达的影响.武汉理工大学学报, 2004,7:26.
    40 Xu J, Ji LD, Xu LH. Lead-induced apoptosis in PC 12 cells: involvement of p53,Bcl-2 family and caspase-3. Toxicol Lett, 2006, 166:160-7.
    1 Prabha S, Zhou WZ, Panyam J, et al. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles,Int J Pharm, 2002, 244:105-15.
    2 Wang Y, Boros P, Liu J, et al. DNA/dendrimer complexes mediate gene transfer into murine cardiac transplants ex vivo. Mol Ther, 2000, 2:602-8.
    3 Panyam J, Zhou WZ, Prabha S, et al. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J, 2002, 16:1217-26.
    4 Kabbaj M, Phillips NC. Anticancer activity of mycobacterial DNA: effect of formulation as chitosan nanoparticles. J Drug Target, 2001, 9:317-28.
    5 Reynolds AR, Moein Moghimi S, Hodivala-Dilke K. Nanoparticle-mediated gene delivery to tumour neovasculature. Trends Mol Med, 2003, 9:2-4.
    6 Boudreaux DS, Chance RR, Elsenbaumer RL, et al. New class of solitonsupporting polymers: Theoretical predictions. PHYSICAL REVIEW B. CONDENSED MATTER, 1985, 31:652-655.
    7 纳米磷灰石对人肝细胞癌细胞端粒酶基因表达的影响.武汉理工大学学报,2004,26:46-48.
    8 陈超,王慧明纳米羟基磷灰石溶胶对人舌癌细胞株的作用研究.实用肿瘤杂志2003:18:459-61
    9 Kannan TP, Nik Ahmad Shah NL, Azlina A, et al. In vivo chromosome aberration test for hydroxyapetite in mice. Med J Malaysia, 2004, 59 Suppl B:115-6.
    10 任卫,曹献英,冯凌云,等.纳米羟基磷灰石合成及表面改性的途径和方法.硅酸盐通报, 2002,21:38-43.
    11 杨菊云,刘霆,陈玉祥,等.一种新型基因传输载体-磷酸钙纳米颗粒用于肿瘤基因治疗的研究.中国现代医学杂志, 2005,15:2754-59.
    12 Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. 2002, 244:105-15.
    13 Mahato RI. Water insoluble and soluble lipids for gene delivery. Adv Drug Deliv Rev,2005, 57:699-712.
    14 Ozgel G, Akbuga J. In vitro characterization and transfection of IL-2 gene complexes.Int J Pharm, 2006, 315:44-51.
    15 Koping-Hoggard M, Varum KM, Issa M, et al. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther, 2004, 11:1441-52.
    16 Pouton CW, Seymour LW. Key issues in non-viral gene delivery. Adv Drug Deliv Rev, 2001, 46:187-203.
    17 Li Y, Pei Y, Zhang X, et al. PEGylated PLGA nanoparticles as protein carriers:synthesis, preparation and biodistribution in rats. J Control Release, 2001, 71:203-11.
    18 Cohen H, Levy RJ, Gao J, et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther, 2000, 7:1896-905.
    19 Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev, 2001, 47:99-112.
    20 Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther,1997, 4:823-32.
    21 Mozafari MR, Omri A. Importance of divalent cations in nanolipoplex gene delivery.J Pharm Sci, 2007, 96:1955-66.
    22 Bertoni E, Bigi A, Cojazzi G, et al. Nanocrystals of magnesium and fluoride substituted hydroxyapatite. J Inorg Biochem, 1998, 72:29-35.
    23 Hattori Y, Maitani Y. Low-molecular-weight polyethylenimine enhanced gene transfer by cationic cholesterol-based nanoparticle vector. Biol Pharm Bull, 2007,30:1773-8.
    24 Felgner PL, Ringold GM. Cationic liposome-mediated transfection. Nature, 1989,337:387-8.
    25 Koltover I, Wagner K, Satinya CR. DNA condensation in two dimensions. Proc Natl Acad Sci U S A, 2000, 97:14046-51.
    26 Nishiyama N, Iriyama A, Jang WD, et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater, 2005, 4:934-41.
    27 Liu Q, de Wijn JR, de Groot K, et al. Surface modification of nano-apatite by grafting organic polymer. Biomaterials, 1998, 19:1067-72.
    28 刘勤.羟基磷灰石纳米粒载体介导的大鼠肝细胞体内外基因转染实验 中南大学.
    29 Tanaka H, Futaoka M, Hino R. Surface modification of calcium hydroxyapatite with pyrophosphoric acid. J Colloid Interface Sci, 2004, 269:358-63.
    30 朱诗国,吕红斌,向娟娟,等.一种新型的非病毒DNA传递载体:多聚赖氨酸-硅纳米颗粒.科学通报, 2002,47:193-197.
    [1] Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci U S A 1993;90:10914-21
    [2] 刘栋才 杨竹林 李永国肝外胆管癌组织中细胞周期素D1、CDK4、Rb和p16的表达及其意义.中华实验外科杂志2000;17:273
    [3] Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta LA. Molecular aspects of tumor cell invasion and metastasis. Cancer 1993;71:1368-83
    [4] Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74:957-67
    [5] Bishop JM. Molecular themes in oncogenesis. Cell 1991;64:235-48
    [6] Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers.Science 1991;253:49-53
    [7] Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem 1999; 274:36031-4
    [8] Silva JM, Gonzalez R, Dominguez G, Garcia JM, Espana P, Bonilla F. TP53 gene mutations in plasma DNA of cancer patients. Genes Chromosomes Cancer 1999;24:160-1
    [9] Puisieux A, Ozturk M. TP53 and hepatocellular carcinoma. Pathol Biol (Paris)1997;45:864-70
    [10] Castillo JP, Kowalik TF. Human cytomegalovirus immediate early proteins and cell growth control. Gene 2002;290:19-34
    [11] Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol 2000;33:1-6
    [12] 黄洪莲,欧阳平,王小宁,钱其军,车小燕,崔贞福,等人肝癌细胞肿瘤抑制基因转染对阿霉素敏感性的影响.第一军医大学学报1998;18:168-71
    [13] Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005;16:1016-27
    [14] Xu HJ, Hu SX, Hashimoto T, Takahashi R, Benedict WF. The retinoblastoma susceptibility gene product: a characteristic pattern in normal cells and abnormal expression in malignant cells. Oncogene 1989;4:807-12
    [15] Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 1987;235:1394-9
    [16] Fujiwara Y, Sugita Y, Nakamori S, Miyamoto A, Shiozaki K, Nagano H, et al.Assessment of Stanniocalcin-1 mRNA as a molecular marker for micrometastases of various human cancers. Int J Oncol 2000;16:799-804
    [17] Bookstein R, Demers W, Gregory R, Maneval D, Park J, Wills K. p53 gene therapy in vivo of herpatocellular and liver metastatic colorectal cancer. Semin Oncol 1996;23:66-77
    [18] An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol
    1 Buchschacher GL Jr. Introduction to retroviruses and retroviral vectors. Somat Cell Mol Genet, 2001, 26:1-11.
    2 Anderson WF. Human gene therapy. Nature, 1998, 392:25-30.
    3 Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol, 2000,18:33-7.
    4 Fox JL. Gene therapy safety issues come to fore. Nat Biotechnol, 1999, 17:1153.
    5 Xiao W, Chirmule N, Schnell MA, et al. Route of administration determines induction of T-cell-independent humoral responses to adeno-associated virus vectors. Mol Ther 2000, 1:323-9.
    6 Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther, 2005, 5:25-35.
    7 Check E. Safety panel backs principle of gene-therapy trials. Nature, 2002, 420:595.
    8 Pollack A. FDA halts 27 gene therapy trials after illness: leukemia-like cases in 2 children in France prompt the action. NY Times (Print), 2003:A1, A1 7.
    9 Marwick C. FDA halts gene therapy trials after leukaemia case in France. BMJ,2003, 326:181.
    10 Fabre JW, Grehan A, Whitehorne M, et al. Hydrodynamic gene delivery to the pig liver via an isolated segment of the inferior vena cava. Gene Ther, 2008, 15:452-62.
    11 Liu F, Huang L. Noninvasive gene delivery to the liver by mechanical massage.Hepatology, 2002, 35:1314-9.
    12 Shen ZP, Brayman AA, Chen L, et al. Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther, 2008.
    13 Sawyer GJ, Dong X, Whitehorne M, et al. Cardiovascular function following acute volume overload for hydrodynamic gene delivery to the liver. Gene Ther, 2007,14:1208-17.
    14 Fink TL, Klepcyk PJ, Oette SM, et al. Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther,2006, 13:1048-51.
    15 Ogris M, Wagner E. Targeting tumors with non-viral gene delivery systems. Drug Discov Today, 2002, 7:479-85.
    16 Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater, 2003, 2:668-71.
    17 Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev, 2002, 54:715-58.
    18 Nishiyama N, Iriyama A, Jang WD, et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater, 2005, 4:934-41.
    19 Behr, J.P. The Proton Sponge: a Trick to enter Cells the Viruses did not exploit. Chimia, 1997, 51:34-36.
    20 Cao Xian-ying. Selective anti hepatoma with IIO2 nanop, wuhan university of technology, 2003, 18:52-54.
    21 Cao Xianying, Li Shipu, Zhang Ran, Yan Yuhu. effect on the Hepatocellular Carcinoma cell proliferation and cell cycle treated with Hydroxyapartite nonaparticles.Chian J Cancer erprev treat 2003;3: 256-258..
    22 杨国华,陈孝平,黄志勇,等.纳米羟基磷灰石超液化碘油混合物栓塞治疗兔VX2肝肿瘤.中华实验外科杂志.
    23 Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol, 2003,9:1968-71.
    24 纳米羟基磷灰石溶胶对人舌癌细胞株的作用研究.
    25 Kannan TP, Nik Ahmad Shah NL, Azlina A, et al. In vivo chromosome aberration test for hydroxyapetite in mice. Med J Malaysia, 2004, 59 Suppl B:115-6.
    26 Wu X, Li Y, Crise B, et al. Transcription start regions in the human genome are favored targets for MLV integration. Science, 2003, 300:1749-51.
    27 杨菊云,刘霆,陈玉祥,等.一种新型基因传输载体-磷酸钙纳米颗粒用于肿瘤基因治疗的研究.中国现代医学杂志, 2005,15:2754-59.
    28 Reynolds AR, Moein Moghimi S, Hodivala-Dilke K. Nanoparticle-mediated gene delivery to tumour neovasculature. Trends Mol Med, 2003, 9:2-4.
    29 Oh I, Lee K, Kwon HY, et al. Release of adriamycin from poly(gamma-benzyl- L-glutamate)/poly(ethylene oxide) nanoparticles. Int J Pharm, 1999, 181:107-15.
    30 张阳德 潘爱华.纳米技术-DNA操作.中国医学工程, 2003,11:22-9.
    31 江捍平.纳米羟基磷灰石的研究进展.中国医学工程, 2004,12:32-5.
    32 Frayssinet P, Rouquet N, Mathon D. Bone cell transfection in tissue culture using hydroxyapatite microparticles. J Biomed Mater Res A, 2006, 79:225-8.
    33 Caplen NJ, Kinrade E, Sorgi F, et al. In vitro liposome-mediated DNA transfection of epithelial cell lines using the cationic liposome DC-Chol/DOPE. Gene Ther, 1995,2:603-13.
    [1] Rustgi VK. Epidemiology of hepatocellular carcinoma. Gastroenterol Clin North Am 1987;16:545-51
    [2] Bishop JM. Molecular themes in oncogenesis. Cell 1991;64:235-48
    [3] Buetow KH, Murray JC, Israel JL, London WT, Smith M, Kew M, et al. Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci U S A 1989;86:8852-6
    [4] Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993;75:805-16
    [5] Kannan TP, Nik Ahmad Shah NL, Azlina A, Samsudin AR, Narazah MY, Salleh M. In vivo chromosome aberration test for hydroxyapetite in mice. Med J Malaysia 2004;59 Suppl B:115-6
    [6] 陈超,王慧明纳米羟基磷灰石溶胶对人舌癌细胞株的作用研究.实用肿瘤杂志2003;18:459-61
    [7] 杨国华,陈孝平,黄志勇,孙振纲,关键,胡道予纳米羟基磷灰石碘油混合物栓塞治疗兔VX2肝肿瘤.中华实验外科杂志
    [8] Cao Xianying, Li Shipu, Zhang Ran, Yan Yuhu. effect on the Hepatocellular Carcinoma cell proliferation and cell cycle treated with Hydroxyapartite nonaparticles.Chian J Cancer erprev treat 2003;3:256-258
    [9] 赵明,吴沛宏,曾益新,达到经肝动脉化疗栓塞序贯联合射频消融和细胞因子诱导的杀伤细胞治疗肝细胞癌的随机研究.中华医学杂志86:1823-28
    [10] Barroug A, Glimcher MJ. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res 2002;20:274-80
    [11] Honnorat-Benabbou VC, Lebugle AA, Sallek B, Duffaut-Lagarrigue D. Stability study of tetracyclines with respect to their use in slow release systems. J Mater Sci Mater Med 2001;12:107-10
    [12] Itokazu M, Sugiyama T, Ohno T, Wada E, Katagiri Y. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res 1998;39:536-8
    [13] Benghuzzi H. Long-term sustained delivery of 3'-azido-2',3'-dideoxythymidine in vivo by means of HA and TCP delivery devices. Biomed Sci Instrum 2000;36:343-8
    [14] Locardi B, Pazzaglia UE, Gabbi C, Profilo B. Thermal behaviour of hydroxyapatite intended for medical applications. Biomaterials 1993;14:437-41
    [15] Aoki H 1994 Medical applications of hydroxyapatite. Takayama Press, Tokyo
    [16] Inhibition of HAP nanopartics on W-256 sarcoma of rats in vivo. Chin B iomed Engin 2001:302-4
    [17] Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol 2003;9:1968-71
    [18] 曹献英,李世普,任卫,等纳米羟基磷灰石的表征及其对肝癌抑制作用的研究.硅酸盐通报2003:21-4
    [19] 齐志涛,曹献英,李世普,等纳米磷灰石对肝癌细胞端粒酶基因表达的影响.武汉理工大学学报2004;7:26
    [20] 无机纳米粒子抑制癌细胞的机理.稀有金属材料与工程2001:702-5
    [21] Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science 2003;300:1749-51
    [22] Oh I, Lee K, Kwon HY, Lee YB, Shin SC, Cho CS, et al. Release of adriamycin from poly(gamma-benzyl-L-glutamate)/poly(ethylene oxide) nanoparticles. Int J Pharm 1999;181:107-15
    [23] 关键,胡道予,孙振纲,杨国华,罗鸿昌兔VX2肝癌TAE实验方法改良及影像学 评价.临床放射学杂志2006;25:277-281
    [24] 孙振刚,陈孝平,黄志勇,李高鹏肝动脉灌注碘油羟基磷灰石纳米粒对兔VX2肝肿瘤凋亡、增生及血管形成的影响.中华医学杂志2007;87:409-12
    [25] Yu AS, Keeffe EB. Management of hepatocellular carcinoma. Rev Gastroenterol Disord 2003;3:8-24
    [26] Schafer DF, Sorrell MF. Hepatocellular carcinoma. Lancet 1999;353:1253-7
    [27] Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: diagnosis and treatment.Gastroenterology 2002;122:1609-19
    [28] Poon RT, Fan ST, Lo CM, Ng IO, Liu CL, Lam CM, et al. Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. Ann Surg 2001;234:63-70
    [29] Grazi GL, Ercolani G, Pierangeli F, Del Gaudio M, Cescon M, Cavallari A, et al.Improved results of liver resection for hepatocellular carcinoma on cirrhosis give the procedure added value. Ann Surg 2001;234:71-8
    [30] Maeda S, Fujiyama S, Tanaka M, Ashihara H, Hirata R, Tomita K. Survival and local recurrence rates of hepatocellular carcinoma patients treated by transarterial chemolipiodolization with and without embolization. Hepatol Res 2002;23:202-210
    [31] Llovet JM, Real MI, Montana X, Planas R, Coil S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002;359:1734-9
    [32] Lo CM, Ngan H, Tso WK, Liu CL, Lam CM, Poon RT, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma.Hepatology 2002;35:1164-71
    [33] Hanazaki K, Matsushita A, Nakagawa K, Misawa R, Amano J. Risk factors of intrahepatic recurrence after curative resection of hepatocellular carcinoma.Hepatogastroenterology 2005;52:580-6
    [34] Lu W, Li Y, He X, Chen Y. Transcatheter arterial chemoembolization for hepatocellular carcinoma in patients with cirrhosis: evaluation of two kinds of dosages of anticancer drugs and analysis of prognostic factors. Hepatogastroenterology 2003;50:2079-83
    [35] Kwok PC, Lam TW, Chan SC, Chung CP, Wong WK, Chan MK, et al. A randomized clinical trial comparing autologous blood clot and gelfoam in transarterial chemoembolization for inoperable hepatocellular carcinoma. J Hepatol 2000;32:955-64
    [36] Doyon D, Mouzon A, Jourde AM, Regensberg C, Frileux C. L'embolisation arterielle hepatique dans les tumeurs malignes du foie. Ann Radiol (Paris) 1974;17:593-603
    [37] Goldstein HM, Wallace S, Anderson JH, Bree RL, Gianturco C. Transcatheter occlusion of abdominal tumors. Radiology 1976;120:539-45
    [38] Lin DY, Liaw YF, Lee TY, Lai CM. Hepatic arterial embolization in patients with unresectable hepatocellular carcinoma--a randomized controlled trial. Gastroenterology 1988;94:453-6
    [39] Allison DJ, Modlin IM, Jenkins WJ. Treatment of carcinoid liver metastases by hepatic-artery embolisation. Lancet 1977;2:1323-5
    [40] 杨亚汝,许小云,张贵祥,等兔VX2肝癌模型的建立及超声评价.中国医学影像技术2003;19:1603-5
    [41] 孙诚,柳霞,黄鹤,等兔VX2肿瘤模型的建立及其在影像研究中的应用.中国医学影像学杂志2003;11:212-4
    [42] 王荞,王秩,王少春,等.兔VX2肝癌模型在建立及超声影像监测.重庆医科大学学报2003;28:585-7
    [43] Kan Z, Sato M, Ivancev K, Uchida B, Hedgpeth P, Lunderquist A, et al. Distribution and effect of iodized poppyseed oil in the liver after hepatic artery embolization:experimental study in several animal species. Radiology 1993; 186:861-6
    [44] Shipu Li. Effects of hydroxyapatite ultrafine powderon colony formation and cytoskeletons of MGc-803 cell. Bioceramics 1996;9:225-7
    [45]Matsumoto T, Okazaki M. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials 2004;25:3807-12
    [46] Huang J, Best SM, Bonfield W, Brooks RA, Rushton N, Jayasinghe SN, et al. In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci Mater Med 2004; 15:441-5
    [47]Hideki Aoki. Effects of HAP-sol on cell growth. Report of the institute for medical and Dental Engineering 1992;26:15-21
    [48] Smith RC, Wills KN, Antelman D, Perlman H, Truong LN, Krasinski K, et al.Adenoviral constructs encoding phosphorylation-competent full-length and truncated forms of the human retinoblastoma protein inhibit myocyte proliferation and neointima formation.Circulation 1997;96:1899-905
    [49]Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582-4
    [50]Toschi E, Rota R, Antonini A, Melillo G, Capogrossi MC. Wild-type p53 gene transfer inhibits invasion and reduces matrix metalloproteinase-2 levels in p53-mutated human melanoma cells. J Invest Dermatol 2000;l 14:1188-94
    [51] Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117:927-39
    [52] An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol
    [53] Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 2005;12:488-96
    1 Aznavoorian S, Murphy AN, Stetler-Stevenson WG, et al. Molecular aspects of tumor cell invasion and metastasis. Cancer, 1993, 71:1368-83.
    2 Zhao X, Li J, He Y, et al. A novel growth suppressor gene on chromosome 17p13.3 with a high frequency of mutation in human hepatocellular carcinoma. Cancer Res, 2001,61:7383-7.
    3 吴孟超.原发性肝细胞癌的诊断和治疗进展.中华外科杂志, 1998.
    4 Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci U S A, 1993,90:10914-21.
    5 Lowe SW, Ruley HE, Jacks T, et al. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell, 1993, 74:957-67.
    6 Castillo JP, Kowalik TF. Human cytomegalovirus immediate early proteins and cell growth control. Gene, 2002, 290:19-34.
    7 Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev OncolHematol, 2000, 33:1-6.
    8 Wang J, Bucana CD, Roth JA, et al. Apoptosis induced in human osteosarcoma cells is one of the mechanisms for the cytocidal effect of Ad5CMV-p53. Cancer Gene Ther, 1995, 2:9-17.
    9 Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993, 75:805-16.
    10 Bookstein R, Demers W, Gregory R, et al. p53 gene therapy in vivo of herpatocellular and liver metastatic colorectal cancer. Semin Oncol, 1996, 23:66-77.
    11 施明,王福生,刘明旭,等.腺病毒介导的人野生型P53,GM-CSF和B7-基因转移包括有效地诱导肝细胞癌细胞的生长抑制和凋亡.肝脏, 2001.
    12 黄洪莲,欧阳平,王小宁,等.人肝细胞癌细胞肿瘤抑制基因转染对阿霉素敏感性的影响.第一军医大学学报, 1998,18:168-71.
    13 Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum GeneTher, 2005, 16:1016-27.
    14 Xu HJ, Hu SX, Hashimoto T, et al. The retinoblastoma susceptibility gene product:a characteristic pattern in normal cells and abnormal expression in malignant cells. Oncogene, 1989, 4:807-12.
    15 Lee WH, Bookstein R, Hong F, et al. Human retinoblastoma susceptibility gene:cloning, identification, and sequence. Science, 1987, 235:1394-9.
    16 Fujiwara Y, Sugita Y, Nakamori S, et al. Assessment of Stanniocalcin-1 mRNA as a molecular marker for micrometastases of various human cancers. Int J Oncol, 2000,16:799-804.
    17 Bishop JM. Molecular themes in oncogenesis. Cell, 1991, 64:235-48.
    18 Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994, 264:436-40.
    19 光炜,王菁,杜传书,等.Wilm瘤中p6基因缺失一例报告.中华医学遗传学杂志,1997,14:28-30.
    20 Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993, 366:704-7.
    21 Chang AC, Janosi J, Hulsbeek M, et al. A novel human cDNA highly homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol, 1995, 112:241-7.
    22 De Niu P, Radman DP, Jaworski EM, et al. Development of a human stanniocalcin radioimmunoassay: serum and tissue hormone levels and pharmacokinetics in the rat. Mol Cell Endocrinol, 2000, 162:131-44.
    23 Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature, 1994, 368:753-6.
    24 程剑,冯振卿,苏长青.重组腺病毒载体转染p16基因对肝细胞癌细胞的生长抑制作用.南京医科大学学报(自然科学版), 2004,24:361-3.
    25 Qian C, Bilbao R, Bruna O, et al. Induction of sensitivity to ganciclovir in human hepatocellular carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase. Hepatology, 1995, 22:118-23.
    26 Dawson E, Chert Y, Hunt S, et al. A SNP resource for human chromosome 22:extracting dense clusters of SNPs from the genomic sequence. Genome Res, 2001, 11:170-8.
    27 Engelmann C, Heslan JM, Fabre M, et al. Importance, mechanisms and limitations of the distant bystander effect in cancer gene therapy of experimental liver tumors. Cancer Lett, 2002, 179:59-69.
    28 Mearadji A, Breeman W, Hofland L, et al. Somatostatin receptor gene therapy combined with targeted therapy with radiolabeled octreotide: a new treatment for liver metastases. Ann Surg, 2002, 236:722-8; discussion 728-9.
    29 Kuriyama S, Mitoro A, Yamazaki M, et al. Comparison ofgene therapy with the herpes simplex virus thymidine kinase gene and the bacterial cytosine deaminase gene for the treatment of hepatocellular carcinoma. Scand J Gastroenterol, 1999, 34:1033-41.
    30 孙文长,魏道严,唐展云,等.腺病毒介导的胞嘧啶脱氨酶基因对小鼠肝细胞癌的治疗.中华肝脏病杂志, 2000.
    31 何松青,陈彦,陈孝平,等.TRAIL的抗肝细胞癌作用研究.中华肝胆外科杂志,2003,9:670-3.
    32 赵旭,陈孝平,何松青,等.TRAIL联合阿霉素诱导肝细胞癌耐药株凋亡的实验研究.消化外科,2005,4:202-7.
    33 肖震宇,李莉,陈孝平.人TRAIL基因在COS-7细胞中的表达及在治疗肝细胞癌中的作用.中华外科杂志, 2003,41:673-5.
    34 Paillard F. Tumor-specific transgene expression: an application for hepatocarcinoma gene therapy. Hum Gene Ther, 1997, 8:2169-70.
    35 Wang X, Liu F, Li X, et al. [Inhibitory effect of endostatin mediated by retroviral gene transfer on human liver carcinoma SMMC7721 in vivo]. Zhonghua Wai Ke Za Zhi,2002, 40:692-5.
    36 Xu R, Sun X, Tse LY, et al. Long-term expression of angiostatin suppresses metastatic liver cancer in mice. Hepatology, 2003, 37:1451-60.
    37 Drixler TA, Borel Rinkes IH, Ritchie ED, et al. Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res, 2000, 60:1761-5.
    38 Luo C, Zhao D, Zeng S, et al. [Adenoviral transduction of endostatin gene prevents the liver metastasis of colorectal carcinoma in postoperation]. Zhonghua Wai Ke Za Zhi,2002, 40:375-8.
    39 He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science, 1998, 281:1509-12.
    40 Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 1996, 382:638-42.
    41 Luo D, Liu QF, Gove C, et al. Analysis of N-ras gene mutation and p53 gene expression in human hepatocellular carcinomas. World J Gastroenterol, 1998, 4:97-99.
    42 Hayashi D. [Study on the expression of oncogene mRNA in hepatocellular carcinoma using in situ hybridization technique]. Nippon Geka Gakkai Zasshi, 1994, 95:814-22.
    43 李林瑞!710068西安,党双锁,焦丽,等.反义c-myc寡核苷酸对人肝细胞癌细胞恶性表型的逆转作用.中华实验外科杂志, 2001,18:279.
    44 Beasley RP, Hwang LY, Lin CC, et al. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet, 1981, 2:1129-33.
    45 张文梁,王磊,李楠,等.N-ras和C-myc反义寡核苷酸与p53和p6基因联合抑制人肝细胞癌细胞生长的实验研究.白求恩医科大学学报, 2000,26:499-500.
    46 汪青,冯晓黎,林芷英.导入H-ras癌基因后肝细胞癌细胞转移特性的变化.中华肿瘤杂志, 1997,19:170-2.
    47 Liao Y, Tang Z, Sun F. [The effect of antisense H-ras on growth and metastasis of a high metastatic tumor model of human hepatoma in nude mice LCI-D20]. Zhonghua Yi Xue Za Zhi, 1996, 76:650-3.
    48 Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin,expressed in cancer and lymphoma. Nat Med, 1997, 3:917-21.
    49 Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396:580-4.
    50 Kim PJ, Plescia J, Clevers H, et al. Survivin and molecular pathogenesis of colorectal cancer. Lancet, 2003, 362:205-9.
    51 王颖, 王家.生存素反义寡核苷酸诱导肝细胞癌细胞凋亡的实验研究.中华消化杂志, 2003,23:11-4.
    52 陈涛,田伏洲,蔡忠红,等.Survivin反义寡核苷酸诱导肝细胞癌细胞凋亡及细胞结构的变化.中华普通外科杂志, 2003,18:676-9.
    53 王辉云,严瑞琪,龙江斌,等.肝细胞癌中cyclin D扩增与HBV感染及病理学的关系.世界华人消化杂志, 1999,7:98-100.
    54 肖震宇,陈孝平,黄志勇.反义细胞周期素D1基因对肝细胞癌细胞株HepG2的作用.中华肝脏病杂志, 2005,13:768-71.
    55 Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358, 774, an inhibitor of epidermal growth factor receptor tyrosine kinase.Cancer Res, 1997, 57:4838-48.
    56 高艳景,袁孟彪,辛华,等.EGFR反义寡脱氧核苷酸硫代修饰片段调节人肝细胞癌细胞中E-cadherin mRNA表达的研究.癌症, 2001,20:255-7.
    57 Lyons RM, Moses HL. Transforming growth factors and the regulation of cell proliferation. Eur J Biochem, 1990, 187:467-73.
    58 Cornwall MC, Fein A, MacNichol EF Jr. Cellular mechanisms that underlie bleaching and background adaptation. J Gen Physiol, 1990, 96:345-72.
    59 Spore MB, Roberts AB, Wakefield LM, et al. Transforming growth factor-beta:biological function and chemical structure. Science, 1986, 233:532-4.
    60 林文生,张农,张颂文,等.转化生长因子β_基因转染人肝细胞癌细胞及其对MMP-2,9表达的影响.上海医科大学学报, 2000,27:329-31.
    61 史丽云,陈智,何海根,等.转化生长因子β_正,反义基因对人肝细胞癌细胞SMMC-772增殖的影响.肝脏, 1999,4:18-20.
    62 Laird AD, Brown PI, Fausto N. Inhibition of tumor growth in liver epithelial cells transfected with a transforming growth factor alpha antisense gene. Cancer Res, 1994, 54:4224-32.
    63 Li X, Cui H, Sandstedt B, et al. Expression levels of the insulin-like growth factor-Ⅱ gene (IGF2) in the human liver: developmental relationships of the four promoters.J Endocrinol, 1996, 149:117-24.
    64 Nielsen FC, Ostergaard L, Nielsen J, et al. Growth-dependent translation of IGF-Ⅱ mRNA by a rapamycin-sensitive pathway. Nature, 1995, 377:358-62.
    65 Rogler CE, Hino O, Su CY. Molecular aspects of persistent woodchuck hepatitis virus and hepatitis B virus infection and hepatocellular carcinoma. Hepatology, 1987,7:74S-78S.
    66 Lin SB, Hsieh SH, Hsu HL, et al. Antisense oligodeoxynucleotides of IGF-Ⅱ selectively inhibit growth of human hepatoma ceils overproducing IGF-Ⅱ. J Biochem (Tokyo), 1997, 122:717-22.
    67 陈文生,刘为纹,周筱梅,等.IGF-Ⅱ受体(IGF-Ⅱ R)反义基因对肝细胞癌细胞癌基因转录及生物学行为的影响.重庆医学, 1997,26:79.
    68 陈文生,顾健人,房殿春,等.人胰岛素样因子Ⅱ型受体反义基因转染对肝细胞癌细胞生长的影响.中华消化杂志, 2001,21:263-6.
    69 Sun X, Kanwar JR, Leung E, et al. Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther,2001, 8:638-45.
    70 丁磊,陈孝平,王海平,等.封闭缺氧诱导因子作用位点对人肝细胞癌细胞生长抑制的研究.华中科技大学学报(医学版), 2005,34:750-753.
    71 李东华,陈孝平,张万广,等.缺氧诱导因子-1α反义寡核苷酸抑制HBx诱导的血管内皮生长因子的表达.华中科技大学学报(医学版), 2004,33:28-30.
    72 Chen XP, Wang Q, Guan J, et al. Reversing multidrug resistance by RNA interference through the suppression of MDR1 gene in human hepatoma cells. World J Gastroenterol, 2006, 12:3332-7.
    73 严斌,陈孝平,张万广,等.NF-κBdecoy寡核苷酸增强阿霉素对肝细胞癌耐药细 胞株HepG_2/ADM化疗敏感性的研究.中华肝胆外科杂志, 2004,10:691-5.
    74 Zhao SC, Banerjee D, Mineishi S, et al. Post-transplant methotrexate administration leads to improved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mutant human dihydrofolate reductase cDNA. Hum Gene Ther, 1997, 8:903-9.
    75 王海,陈孝平,裘法祖.核酶对人肝细胞癌细胞多药耐药性的逆转.中华外科杂志,2004,42:424-7.
    76 Kakiuchi Y, Sasaki N, Satoh-Masuoka M, et al. A novel pyrazolone, 4,4-dichloro-1-(2, 4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase. Biochem Biophys Res Commun, 2004, 320:1351-1358.
    77 Yin F, Liu J, Peng X. Effects of triethylene tetraamine on telomerase activity and proliferation in HeLa cells. Cell Biol Int, 2004, 28:287-91.
    78 Liu Y, Daley S, Evdokimova VN, et al. Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. J Immunol, 2006, 177:712-21.
    79 He P, Tang ZY, Ye SL, et al. The targeted expression of intefleukin-2 in human hepatocellular carcinoma cells. J Exp Clin Cancer Res, 2000, 19:183-7.
    80 Gibaldi M. Regulating angiogenesis: a new therapeutic strategy. J Clin Pharmacol,1998, 38:898-903.
    81 赖冠华,唐展云,陈诗书,等.IL-2基因修饰成纤维细胞对肝细胞癌荷瘤小鼠的治疗实验.中华微生物学和免疫学杂志, 1998.
    82 Barajas M, Mazzolini G, Genove G, et al. Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology,2001, 33:52-61.
    83 Cao G, Kuriyama S, Du P, et al. Complete regression of established murine hepatocellular carcinoma by in vivo tumor necrosis factor alpha gene transfer.Gastroenterology, 1997, 112:501-10.
    84 丁磊,陈孝平,张志伟,等.人肿瘤坏死因子α逆转原发性肝细胞癌耐药性体内外实验研究.中华肿瘤防治杂志, 2006,13:257-262.
    85 Kroger A, Ortmann D, Krohne TU, et al. Growth suppression of the hepatocellular carcinoma cell line Hepal-6 by an activatable interferon regulatory factor-1 in mice. Cancer Res, 2001, 61:2609-17.
    86 钱书兵,钱关祥,陈诗书.γ-干扰素基因修饰人肝细胞癌细胞的免疫原性研究.中华微生物学和免疫学杂志, 1998.
    87 Nabel GJ, Chang AE, Nabel EG, et al. Immunotherapy for cancer by direct gene transfer into tumors. Hum Gene Ther, 1994, 5:57-77.
    88 Hsu IC, Metcalf RA, Sun T, et al. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature, 1991, 350:427-8.
    89 Buetow KH, Murray JC, Israel JL, et al. Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci U S A, 1989, 86:8852-6.
    90 王磊,王春丽,李包括有柱,等.P53,P6基因联合抑制人肝细胞癌细胞生长的实验研究.白求恩医科大学学报, 2000,26:42-3.
    91 丁庆,吴在德,陈立波,等.单纯疱疹病毒胸苷激酶基因,野生型p53基因联合治疗裸鼠肝细胞癌.中华实验外科杂志, 2002,19:345-7.
    92 Tamura T, Nishi T, Goto T, et al. Combination of IL-12 and IL-18 of electro-gene therapy synergistically inhibits rumor growth. Anticancer Res, 2003, 23:1173-9.
    93 Hirschowitz EA, Naama HA, Evoy D, et al. Regional treatment of hepatic micrometastasis by adenovirus vector-mediated delivery of interleukin-2 and interleukin-12 cDNAs to the hepatic parenchyma. Cancer Gene Ther, 1999, 6:491-8.
    94 贺平,汤钊猷,刘彬彬,等.人IL-2/IFNα2b融合基因在肝细胞癌细胞中靶向表达.中国生物化学与分子生物学报, 1999.
    95 Sun X, Kanwar JR, Leung E, et al. Angiostatin enhances B7.1-mediated cancer immunotherapy independently of effects on vascular endothelial growth factor expression. Cancer Gene Ther, 2001, 8:719-27.
    96 Heise C, Hermiston T, Johnson L, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med, 2000,6:1134-9.
    97 Drozdzik M, Qian C, Xie X, et al. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J Hepatol, 2000, 32:279-86.
    98 Toda M, Martuza RL, Rabkin SD. Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Ther, 2001,8:332-9.
    99 何松青,陈彦,陈孝平,等.白细胞介素12利用抑制survivin表达加强肿瘤坏死因子相关凋亡诱导配体诱导的肝细胞癌细胞凋亡.中华外科杂志, 2003,41:453-7.
    100 刘志鹏,杨建民,陈文生,等.IGF-ⅠR,IGF-ⅡR反义基因对SMMC-772肝细胞癌细胞生物学行为的影响.第三军医大学学报, 2001,23:1061-4.
    101 Huh JJ, Wolf JK, Fightmaster DL, et al. Transduction of adenovirus-mediated wild-type p53 after radiotherapy in human cervical cancer cells. Gynecol Oncol, 2003,89:243-50.
    102 Wen SF, Xie L, McDonald M, et al. Development and validation of sensitive assays to quantitate gene expression after p53 gene therapy and paclitaxel chemotherapy using in vivo dosing in tumor xenograft models. Cancer Gene Ther, 2000, 7:1469-80.
    103 Ding L, Chen XP, Zhang ZW, et al. Synergistic effect of bromocriptine and tumor necrosis factor-alpha on reversing hepatocellular carcinoma multidrug resistance in nude mouse MDR1 model of liver neoplasm. World J Gastroenterol, 2005, 11:5621-6.
    104 Buchschacher GL Jr. Introduction to retroviruses and retroviral vectors. Somat Cell Mol Genet, 2001, 26:1-11.
    105 Nielsen LL, Gurnani M, Syed J, et al. Recombinant E1-deleted adenovirus-mediated gene therapy for cancer: efficacy studies with p53 tumor suppressor gene and liver histology in tumor xenograft models. Hum Gene Ther, 1998, 9:681 -94. 106 Kremer EJ, Perricaudet M. Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull, 1995, 51:31-44.
    107 Xiao W, Chirmule N, Schnell MA, et al. Route of administration determines induction of T-cell-independent humoral responses to adeno-associated virus vectors. Mol Ther, 2000, 1:323-9.
    108 Liu SC, Minton NP, Giaccia AJ, et al. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis.Gene Ther, 2002, 9:291-6.
    109 Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A, 2000, 97:12846-51.
    110 Benedetti S, Pirola B, Polio B, et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med, 2000, 6:447-50.
    111 Rubin J, Galanis E, Pitot HC, et al. Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7. Gene Ther, 1997, 4:419-25. 112 Gerolami R, Cardoso J, Bralet MP, et al. Enhanced in vivo adenovirus-mediated gene transfer to rat hepatocarcinomas by selective administration into the hepatic artery.Gene Ther, 1998, 5:896-904.
    113 Boudreaux DS , Chance RR , Elsenbaumer RL , et al. New class of soliton-supporting polymers: Theoretical predictions. PHYSICAL REVIEW B.CONDENSED MATTER, 1985, 31:652-655.
    114 Wang Y, Boros P, Liu J, et al. DNA/dendrimer complexes mediate gene transfer into murine cardiac transplants ex vivo. Mol Ther, 2000, 2:602-8.
    115 Panyam J, Zhou WZ, Prabha S, et al. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J, 2002, 16:1217-26.
    116 Kabbaj M, Phillips NC. Anticancer activity of mycobacterial DNA: effect of formulation as chitosan nanoparticles. J Drug Target, 2001, 9:317-28.
    117 Reynolds AR, Moein Moghimi S, Hodivala-Dilke K. Nanoparticle-mediated gene delivery to tumour neovasculature. Trends Mol Med, 2003, 9:2-4.
    118 杨菊云,刘霆,陈玉祥,等.一种新型基因传输载体-磷酸钙纳米颗粒用于肿瘤基因治疗的研究.中国现代医学杂志, 2005,15:2754-59.
    119 陆东东.肝细胞癌免疫治疗及基因治疗进展.中国肿瘤, 1999.
    120 Gerolami R, Cardoso J, Lewin M, et al. Evaluation of HSV-tk gene therapy in a rat model of chemically induced hepatocellular carcinoma by intratumoral and intrahepatic artery routes. Cancer Res, 2000, 60:993-1001.
    121 Taniyama Y, Tachibana K, Hiraoka K, et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther, 2002, 9:372-80.