MUC1模拟表位疫苗筛选和治疗小鼠膀胱癌效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:从噬菌体随机12肽库中筛选新的MUC1的模拟表位,观察其免疫学特性,以及诱导机体产生特异性免疫应答和对小鼠膀胱癌的治疗作用。构建MUC1模拟表位原核表达载体,获得特异、纯化的模拟表位融合蛋白。本研究为研制针对MUC1为靶点的肿瘤疫苗奠定基础,为膀胱癌治疗提供新方法。
     方法:1.选用抗MUC1多肽表位的单克隆抗体BC2为筛选配基,利用噬菌体展示技术,从噬菌体随机12肽库中,通过3轮生物淘洗、测定噬菌体滴度、扩增噬菌斑、挑选特异性阳性噬菌体克隆,通过ELISA实验鉴定阳性噬菌体克隆与单克隆抗体BC2结合活性;抽提阳性噬菌体克隆的插入肽ssDNA模板,测定其DNA序列,按遗传密码表推导出插入肽的氨基酸序列,同MUC1核心肽表位序列APDTR进行比较,从中选出与原表位序列不同的模拟表位。利用表位预测专用数据库SYFPEITHI database进行氨基酸序列的表位预测,根据抗原肽的基序特征计算其积分,判断其与MHCⅠ类分子结合能力,合成相应的模拟表位肽,通过竞争ELISA实验判断模拟表位肽能否特异性抑制单克隆抗体BC2与MUC1抗原结合,进一步鉴定筛选出的MUC1模拟表位活性。2.利用阳离子脂质体介导转染方法,将人MUC1全长cDNA转入T739小鼠膀胱癌细胞BST739中,经G418筛选和克隆化培养,基因组PCR、RT-PCR、免疫组化、流式细胞仪从不同水平检测MUC1的表达,建立稳定表达人MUC1T739小鼠膀胱癌细胞株,观察转入人MUC1肿瘤细胞体内外生长特性和体内致瘤性。3.无菌取T739小鼠股骨和胫骨,PBS冲出骨髓细胞,红细胞裂解液裂解红细胞,按2×106/ml的细胞密度加入含有树突状细胞(DC)专用培养基塑料培养皿,同时加入细胞因子rmGM-CSF,rmIL-4 1000U/ml,37℃,5% CO2体外培养,第6天加入LPS(1μg/ml)刺激DC成熟,第7天收集细胞,显微镜下观察成熟DC形态,流式细胞仪检测成熟DC标记33D1单抗的表达以判断DC纯度。4.体外用合成的模拟表位肽刺激成熟DC,PBS洗涤三次,然后分别用PBS,未刺激的DC,MUC1模拟表位肽刺激的DC,通过小鼠尾静脉注射,免疫T739小鼠,每只注射2×105细胞,每周免疫一次,共三次。
Objective: To acquire new MUC1 mimic peptide epitopes by biospanning in phage random 12 peptide library and preliminarily investigate the functional immunological responses and effectiveness in treatment of MUC1-positive T739 mouse bladder cancer induced with the mimic peptide epitopes. To construct a recombinant plasmid expressing MUC1 antigen mimic epitope and acquire the specific purified fusion protein induced with IPTG. Based on our preliminary data, MUC1 mimic peptide epitopes will act as an important tumor-vaccine candidates for bladder cancer therapy.
     Methods: Monoclonal antibody BC2 which aims at MUC1 peptide epitopes was used as a ligand to screen MUC1 antigen mimic epitopes by phage display peptide library technology. Specific positive phage clones which can specifically recognize MUC1 monoclonal antibody Were screened after 3 rounds of biospanning, phage titer determination and plaque amplification in phage random 12 peptide library. Their banding capacity to BC2 antibody were tested by ELISA assay, then their DNA sequences were determined by rapid purification of sequencing templates and amino acid sequences were deducted by reduced genetic codes. Two MUC1 mimic epitopes were acquired comparing with MUC1 core sequence. Predictions of the two epitopes binding to MHC classⅠmolecules and its scores evaluated the peptide’s binding capacity based on the feature of motif were given from SYFPEITHI databases and competitive inhibition ELISA assay were taken to confirm the specificity of the synthetized epitope peptides. T739 mouse bladder cancer cell lines expressing human MUC1, named BST739-MUC1, were established by Lipofectamine-mediated transfection of human MUC1 full length cDNA into BST739 cells, followed by G418 selection and clonal culture. PCR, RT-PCR and immunohistochemistry were carried out to confirm the stable integration of MUC1 cDNA into the mouse genome and expression of MUC1 mRNA and proteins in the cells. The growth characteristics of
引文
1. Taylor padadimitrious J, Burchell J, Miles DW, et al. MUC1 and Cancer [J]. Biochim Biophy Acta, 1999,1455(2-3):301-313
    2. Melissa B, Rayman Amantha T, Daniel D, et al. MUC1:A multifunctional cell surface component of reproductive tissue epithelia Carson [J].Reprod Biol Endocrinol. 2004,2(1): 4-9
    3. Baldus SE, Goergen D, Hanisch FG, et al. Epitope-dependent differential immunoreactivities of anti-MUC1 monoclonal antibodies in human carcinomas [J].Int J Oncol 2001, 18(3): 507-12
    4. Soares MM, Mehta V, Finn OJ et al.Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. [J].J Immunol, 2001, 166(11): 6555-63
    5. Rahn JJ, Dabbagh L, Pasdar M, et al. The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature [J]. Cancer, 2001, 91(11):1231-1234.
    6. Langer C, Ratschek M, Rehak P, et al. Expression of MUC1 (EMA) and E-cadherin in renal cell carcinoma: a systematic immunohistochemical analysis of 188 cases [J]. Mod Pathol adv, 2003, 10(12):1032-1038.
    7. Hughes OD, Perkins AC, Frier M, et al. Imaging for staging bladder cancer: a clinical study of intravenous 111indium-labelled anti-MUC1 mucin monoclonal antibody C595 [J]. BJU Int, 2001 ,87(1):39-46.
    8. 张立新, 李春海, 陆雅芬, 等. 血清 MUC1 黏蛋白 IRMA 及其初步临床应用 [J]. 中华核医学杂志,1997,17(4):211-213.
    9. Rammensee HG, Bachmann J, Emmerich NPN, et al. SYFPEITHI: database for MHC ligands and peptide motifs [J]. Immunogenetics, 1999, 50(2):213-219.
    10. Imai M, Hwang HY, Norris JS, et al. The effect of dexamethasone on human mucin 1 expression and antibody-dependent complement sensitivity in a prostate cancer cell line in vitro and in vivo [J]. Immunology, 2004,111(3):291-297.
    11. Johnen H, Kulbe H, Pecher G, et al. Long-term tumor growth suppression in miceimmunized with naked DNA of the human tumor anti-gene mucin(MUC1) [J].Cancer,Immunol,Immunother,2001;50(7):356-360.
    12. Mukherjee P, Ginardi AR, Tinder TL, et al. MUC1 specific cytotoxic T lymphocytes eradicate tumors when adoptively transferred in vivo [J]. Clin Cancer Res, 2001; 7 (3Suppl):848s-855s.
    13. Brossart P, Heinrich KS, Stubler G, et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies [J]. Blood, 1999,93(12):4309-4317.
    14. Werdelin O, Medal M, Jensen T. Processing of glycans on glycoprotein and glycopeptide antigens in antigen-presenting cells [J]. Proc Natl Acad Sci USA, 2002,99(12):9611-9613.
    15. Romagnoli G.,Poloni F, Flego M, et al. Epitope mapping of the monoclonal antibody MM12.10 to external MDR1 P-glycoprotein domain by synthetic peptide scanning and phage display technologies [J]. Biol Chem,1999,380(5):553-559.
    16. Maraveyas A, Snook D, Hird V, et al. Pharmacokinetics and toxicity of an yttrium-90-CITC-DTPA-HMFG1 radioimmunoconjugate for intraperitoneal radioimmunotherapy of ovarian cancer. [J].Cancer. 1994,73(3 Suppl):1067-75
    17. Reddish M, MacLean GD, Koganty RR, et al. Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC1 peptide. [J]. Int J Cancer. 1998,76(6):817-23.
    18. Ragupathi G, Howard L, Cappello S, et al. Vaccines prepared with sialyl-Tn and sialyl-Tn trimers using the 4-(4-maleimidomethyl)cyclohexane-1-carboxyl hydrazide linker group result in optimal antibody titers against ovine submaxillary mucin and sialyl-Tn-positive tumor cells. [J].Cancer Immunol Immunother. 1999,48(1):1-8
    19. Sandmaier BM, Oparin DV, Holmberg LA, et al. Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STn-KLH cancer vaccine. [J].J Immunother. 1999,22(1):54-66.
    20. Apostolopoulos V, Karanikas V, Haurum JS, et al. Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen [J].J Immunol. 1997 ,159(11):5211-8
    21. Scholl SM, Balloul JM, Le Goc G, et al. Recombinant vaccinia virus encoding humanMUC1 and IL2 as immunotherapy in patients with breast cancer. [J]. J Immunother. 2000,23(5):570-80
    22. Kontani K, Taguchi O, Narita T, et al. Modulation of MUC1 mucin as an escape mechanism of breast cancer cells from autologous cytotoxic T-lymphocytes. [J]. Br J Cancer. 2001,84(9):1258-64
    23. Imura J, Ichikawa K, Takeda J, et al. Multilocular cystic renal cell carcinoma: a clinicopathological, immuno- and lectin histochemical study of nine cases.[J].APMIS, 2004,112(3):183-191
    24. Hughes O, Perkins A, Frier M, et al. Imaging for staging bladder cancer A clinical study of intravenous 111indium-labelled anti-muc1 mucin monoclonal antibody C595.[J].BJU Int ,2001,87(1):39-46
    25. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on virion surface. [J].Science 1985,228:1315-1317.
    26. Sibille P ,Strosberg AD. A FIV epitope defined by a phage peptide library screened with a monoclonal anti-FIV antibody. [J].Immunol Lett 1997,59: 133-137
    27. Ke S, Qi ZT, Yang ZY, et al. Biopanning of HGV epitope from a phage display library [J]. Prog Nat Sci, 2000,10(6):446-450.
    28. Doorbar J, Winter J. Isolation of a peptide antagonist to the thrombin receptor using phage display. [J].J Mol Biol, 1994;244:361-369.
    29. Goodson RJ. High affinity urokinase receptor antagonists identified with bacteriophage peptide display. [J].Proc Natl Acad Sci USA, 1994; 91:7129- 7133.
    30. Barry MA, Dower WJ, Johnson SA. Toward cell-targeting gene therapy vector: selection of cell-binding peptides from randem peptide-presenting phage libraries. [J].Nat Med 1996,2:299-305.
    31. Szardenings M. Phage display selection on whole cells yields a peptide specific for melanocortin receptor 1. [J].J Biol Chem 1997,272:27943-27948.
    32. Lowman HB. Phage display of peptide libraries on protein scaffolds. [J].Methods in molecular biology 1998,87:249
    33. Van Regenmortel MHV. Structural and functional approaches to the study of protein antigenicity [J]. Immunol Today,1989,10:266-271 .
    34. Lenstra JA, Kusters JG, Van der Zeijst BAM. Mapping of viral epitopes withprokaryotic expression products. [J].J Arch Virol 1990,110 :1-24
    35. Sem DS, Baker BL, Victoria EJ, et al . Structural characterization and optimization of antibody-selected phage library mimotopes of an antigen associated with autoimmune recurrent thrombosis. [J].Biochemistry 1998,37: 16069-16081
    36. Kim JH, Lee JH, Kim J, etal. Identification of phage- display peptides which bind to the human Hn RNP A1 protein- specificmonoclonal antibody. [J].J Mol Cells,1999, 9(4) : 452-454.
    37. Tseng LJ, Szalay P, Guillermo R, etal. Identification of a peptide directed against the anti-CD 4 antibody, 9C5,by phage display and its use in hematopoietic stem cell selection [J].J Exp Hematol,1999,27(5) :936-945
    38. Koster HS, Amons R, Benckhuijsen WE, et al. The use of dedicated peptide libraries permits the discovery of high affinity binding peptides. [J]. J Immunol Methods, 1995, 187 (1): 179-88
    39. Germaschewski V, Murray K. Identification of polyclonal serum specificities with phage-display libraries. [J].J Virol Methods 1996,58(1-2): 21-32.
    40. Wu Y, Wan Y, Bian J, et al. Phage display particles expressing tumor-specific antigens induce preventive and therapeutic anti-tumor immunity in murine p815 model [J]. Int J Cancer,2002,98(5):748-753.
    41. Zhong G, Smith GP, Berry J, et al. Conformational mimicry of a chlamydial neutralization epitope on filamentous phage. [J]. J Biol Chem, 1994,269(39):24183-8.
    42. Stolz J, Ludwig A, Stadler R, et al. Structural analysis of a plant sucrose carrier using monoclonal antibodies and bacteriophage lambda surface display. [J].FEBS Lett, 1999, 453(3):375-9.
    43. Fack F, Hugle-Dorr B, Song D, et al. Epitope mapping by phage display: random versus gene-fragment libraries. [J]. J Immunol Methods 1997,206 (1-2):43-52.
    44. Ferrer M, Sullivan BJ, Godbout KL, et al. Structural and functional characterization of an epitope in the conserved C- terminal region of HIV-1 gp120. [J]. J Pept Res 1999, 54(1):32-42.
    45. Wells JA.Binding in the growth hormone receptor complex. [J]. Proc Natl Acd Sci USA 1996,93:1-6
    46. Ring D. What makes a binding site? [J].Curr Opin Struct Biol, 1995, 5: 825- 829
    47. Dente L,Cesareni G, Micheli G, et al.Monoclonal antibodies that recognize filamentous phage: tools for phage display technology. [J].Gene 1994,148:7-13
    48. Kola A, Baensch M, Bautsch W, et al. Epitope mapping of a C5a neutralizing mAb using a combined approach of phage display, synthetic peptides and site-directed mutagenesis. [J].Immunotechnology 1996,2(2):115 -26.
    49. Cook AD, Davies JM, Myers MA, et al. Mimotopes identified by phage display for the monoclonal antibody CII-C1 to type II collagen. [J].J Autoimmun 1998,11(3):205-11.
    50. Kaufman DB, Hentsch ME,Baumbach GA ,et al . Affinity purification of fibrinogen using a ligand from a peptide library. Biotechnol Bioeng 2002;77:278-289
    51. Stephen B, Gershoni JM. Construction and use of a 20-mer phage display epitope library . [J].Methods Mol Bio 1998,87:137-154
    52. Devlin JJ, Panganiban LC, Devlin PE, et al.Random peptide library:a source of specific protein binding molecule. [J].Science 1990,249(96):404-406
    53. Szardenings M, Tornroth S, Mutulis F, et al. Phage display selection on whole cells yields a peptide specific for melanocortin receptor 1. [J].J Biol Chem. 1997, 272 (44): 27943-8
    54. Platsoucas CD,Fincke JE,Pappas J,et al. Immune responses to human tumors: development of tumor vaccines. [J].Anticancer Res, 2003, 23(3A): 1969-96
    55. Berinstein N .Overview of therapeutic vaccination approaches for cancer. [J].Semin Oncol, 2003, 30(3 Suppl 8): 1-8
    56. Yang L, NgK Y, Lillehei KO. Cell-mediated immunotherapy: a new approach to the treatment of malignant glioma. [J].Cancer Control 2003, 10(2): 138-47
    57. Parney IF, Chang LJ. Cancer immunogene therapy: a review. [J].J Biomed Sci 2003, 10(1): 37-43
    58. Ayyoub M, Brehm M, Metthez G, et al. SSX antigens as tumor vaccine targets in human sarcoma. [J].Cancer Immun, 2003, 3(1): 13-17
    59. Buchler T, Hajek R, Bourkova L, et al .Generation of antigen-loaded dendritic cells in a serum-free medium using different cytokine combinations. [J].Vaccine 2003, 21(9-10): 877-82
    60. Hoffmann TK,Nakaano K,Elder EM,et al.Generation of T cells specific for the wide-type sequence P53peptide in cancer patients. [J].J Immuol,2000,165(10):5938-5944.
    61. Jager E,KarbachJ. Identification of a naturally processed NY-ESO-1peptide recognized by CD8 + T cells in the context of HLA-B51. [J].Cancer Immu,2002,19(2):12-16.
    62. Chaux P,Vantomme V,Stroobant V. Identification of MAGE-3epitopes presented by HLA-DR molecules to CD4+T lymphocytes. [J].J Exp Med,1999,189(5):767-778.
    63. Gonsogno G,Manici S,Facchinetti V. Identification of immunodominant regions among promiscuous HLA-DR-restricted CD4 + T-cell epitopes on the tumor antigen MAGE-3. [J].Blood,2003,101(3):1038-1044.
    64. Campoli M, Chang CC, Ferrone S. HLA class I antigen loss, tumor immune escape and immune selection. [J].Vaccine 2002, 20 (Suppl 4): 40-5
    65. Plautz GE, Cohen PA, Shu S. Considerations on clinical use of T cell immunotherapy for cancer. [J].Arch Immunol Ther Exp (Warsz). 2003; 51(4): 245-57
    66. Schirmbeck R, Fissolo N, Chaplin P, et al. Enhanced priming of multispecific, murine CD8+ T cell responses by DNA vaccines expressing stress protein-binding polytope peptides. [J].J Immunol, 2003,171(3): 1240-6
    67. Zeng G,li Y,Gamil E.Generation of NY-ESO-1-specific CD4 + and CD8 + T cells by a single peptide with dual MHC classⅠand classⅡspecificities,a new strategy for vaccine design. [J].Res,2002,62(13):3630-3635.
    68. Rotzschke O, Falk T, Stevanivic S, et al. Peotide motifs of closely related HLA classⅠmolecules encompass substrantial differences [J] Euro J Immu 1992,22:2453-2456
    69. Rammensee HG, Fride T, Stevanovic S, et al. MHC ligands and peptide motifs:first listing.[J] Immunogenetics 1995,50:213-219
    70. Gulukota K, Sidney J, Sette A, et al. Two complementary methods for predicting peptides binding major histocompatibility complex molecules. [J] Mol Bio 1997,267:1258-1267
    71. Honeyman M, Brusic V, Stone N, et al. Neural network based prediction of candidate t-cell epitopes.[J]Nature Biotechnology 1998,16:966-969
    72. Mamitsuka H MHC molecules using supervised learning of hidden Markov models.[J] Pro Stru Func Genetics 1998,33:460-474
    73. Schueler FO, Altuvia Y, Sette A, et al. Structure-based prediction of binding peptides to MHC classⅠmolecules: application to a broad range of MHC alleles. [J] ProteinScience 2000,9:1838-1846
    74. Brown M, Grundy WN, Lin D, et al. Genetics knoeledg-based analysis of microarray gene expression data by using support vector machines [J] Proc Natl Acad Sci USA 2000,97:262-267
    75. Sette A, Chesnut R, Fikes J. HLA expression in cancer: implications for T cell-based immunotherapy. [J] Immunogenetics 2001,53:255-263
    76. Meloen RH, Langeveld JP, Schaaper WM, et al.Synthetic peptide vaccines: unexpected fulfillment of discarded hope? [J].Biologicals, 2001, 29(3-4): 233-6
    77. Partidos CD .Peptide mimotopes as candidate vaccines. [J].Curr Opin Mol Ther 2000, 2(1): 74-9
    78. Meloen RH, Puijk WC, Slootstra JW. Mimotopes: realization of an unlikely concept. [J].J Mol- Recognit 2000, 13(6): 352-9
    79. Apostolopoulos V, Sandrin MS, McKenzie IF. Mimics and cross reactions of relevance to tumour immunotherapy. [J].Vaccine1999,18(3-4): 268-75
    80. Carr Brendel V, Markovic D, Ferrer K, et al. Immunity to murine breast cancer cells modified to express MUC-1, a human breast cancer antigen, in transgenic mice tolerant to human MUC-1. [J].Cancer Res 2000, 60(9): 2435-43
    81. He J, Shen D, O'Donnell MA, et al.Induction of MUC1-specific cellular immunity by a recombinant BCG expressing human MUC1 and secreting IL2. [J]. Int J Oncol 2002, 20(6): 1305-11
    82. Klein J, Sato A. The HLA system. First of two parts. [J].N Engl J Med. 2000,343(10):702-9
    83. Klein J, Sato A. The HLA system. Second of two parts. [J].N Engl J Med. 2000,343(11):782-6
    84. Huang AY, Golumbek P, Ahmadzadeh M, et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. [J].Science. 1994,264(5161):961-5
    85. Pittet MJ, Zippelius A, Speiser DE, et al. Ex vivo IFN-gamma secretion by circulating CD8 T lymphocytes: implications of a novel approach for T cell monitoring in infectious and malignant diseases. [J].J Immunol. 2001,166(12):7634-40.
    1. Gabrilovich DI, Drechsler K, Hansich FG, et al. Decreased antigen presentation by dendritic cells in patients with breast cancer.[J].Clinic Cancer Research,1997, 3:483-490
    2. James W, Hodge S, Davidson PJ, etal. Carcinoembryonic antigen as a target for cancer vaccines. [J].Cancer Immunol Immunother, 1996, 43:127
    3. Soares MM, Mehta V, Finn OJ. Three different vaccines based on the 140- amino acid MUC1 peptide with seven tandemly repeated tumor specific epitopes elicit distinct immune effector mechanisms in wild type versus MUC1 transgenic mice with different potential for tumor rejection [J]. JImmunol, 2001, 166(11): 6555-6563.
    4. Spicer AP, Parry G, Patton S, et al. Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. [J].J Biol Chem. 1991,266(23):15099-109.
    5. Wei MX, Tamiya T, Hurford RK, et al. Enhancement of interleukin-4-mediated tumor regression in athymic mice by in situ retrov iralgene transfer. [J].Hum Gene Ther, 1995,6(4): 437-43
    6. Hart SL, Arancibia CV, Wolfert MA, et al. Lipid mediated enhancement of transfection by anonviral integrin targeting vector [J]. Hum GeneTher,1998,9(4): 575- 585.
    7. Ropert C. Liposomes as a gene delivery system [J].BrazJ Med Biol Res, 1999,32(2): 163- 169.
    8. Gao X, Huang L. Cationic liposome mediated gene transfer[J]. Gene Ther,1995,2 (10):710- 722.
    9. Lee ER, Marshall J, Siegel CS, et al. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung[J]. Hum Gene Ther, 1996, 7 (14):1701- 1717.
    10. Tang F, Hughes JA. Introduction of a disulfide bond into a cationic lipid enhances transgene expression of plasmid DNA [J]. Biochem Biophys Res Commun,1998, 242 (1):141- 145.
    11. Gershon H, Gh irlando R, Gut tman SB, et al. Modeof formation and structural features of DNA caionic liposome complexes used for transfection [J]. Biochemistry, 1993, 32 (28): 7143- 7151.
    12. Sternberg B, So rgi FL , Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freeze fracture electron microscopy [J]. FEB SLett, 1994,356(2~3):361 -366.
    13. Radler JO, Koltover I, Salditt T, et al. Structure of DNA cationic liposome complexes: DNA inter calation in multilamellar membranes in distinct interhelical packing regimes[J]. Science, 1997, 275 (5301):810- 814.
    14. Spector MS, Schnur JM. DNA ordering on a lipidmembrane [J]. Science, 1997, 275 ( 5301):791 -792.
    15. Nily D. Multilamellar structures of DNA complexes with cationic liposomes [J]. Biophys J, 1997, 73(4): 1842- 1846.
    16. Eastman SJ, Tousignant JD, Lukason MJ, et al.Optimization of formulations and conditions for the aerosol delivery of functional caionic lipid: DNA complexes [J]. Hum Gene Ther, 1997, 8 (3): 313-322.
    17. Eastman SJ, Lukason MJ, Tousignant JD, et al. A concenrated and stable aerosol formulation of caionic lipid:DNA complexes giving high level gene expression in mouse lung [J]. Hum Gene Ther,1997, 8(6): 765- 773.
    18. Eastman SJ , Tousignant JD, Lukason MJ , et al. A erosolization of cationic lipid: DNA complexes invitro optimization of nebulizer parameters for human clinical studies [J] . Hum Gene Ther, 1998, 9 (1):43- 52.
    19. Schwarz LA, Johnson JL, Black M, et al. Delivery of DNA cationic liposome complexes by small particle aerosol[J]. Hum Gene Ther, 1996, 7 (6):731-741.
    20. Blezinger P, Freimark BD, Matar M, et al. Intratracheal administration of interleuk in plasmid cationic lipid complexes inhibits murine lung metastases[J]. Hum Gene Ther, 1999, 10 (5):723-731.
    21. Lee RJ, Huang L. Lipidic vector system for gene transfer [J]. Crit Rev Ther Drug Carrier Syst , 1997,14 (2):173.
    22. Griesenbach U, Chonn A, Cassady R, et al. Comparison between intratracheal and intravenous administration of liposome DNA complexes for fibrosis lung gene therapy[J] Gene Ther ,1998 ,5(2) :181.
    23. Zou YY, Zong G, Li YH, et al. Effective treatment of early endobronchial cancer with regional administration of liposome p53 complexes [J] J Natl Cancer Inst ,1998 ,90 (15) :1130.
    24. Felgner JH, Kumar R, Sridhar CN, et al. Enhancedgene delivery and mechanism studies with a novel series of cationic lipid formulations [J]. J Biol Chem , 1994 ,269 (4) :2556.
    25. Zelphat O, Nguyen C, Ferrati M, et al. Stable andmonodisperse lipoplex formulations for gene delivery [J] .Gene Ther ,1998 ,5(9) :1271.
    26. Ferrari ME, Nguyen CM, Zelphat O, et al. Analytical methods for the characterization of cationic lipid nucleicacid complexes [J]. Hum Gene Ther ,1998 ,9(3) :341.
    27. Heo DS, Yoon SJ, Kim WS, et al. Locoregional response and increased natural killer activity after intratumoral injection of HLA2B7/ B22 Microglobulin gene inpatients with cancer [J]. Gene Ther , 1999 , 9 (14) :2031.
    28. Mahato RI, Anwer K, Tagliaferri F, et al. Biodistribution and gene expression of lipid/ plasmid complexes after systemic administration [J]. Hum Gene ther, 1998, 9(4) :2083.
    29. Scheule RK. Gene therapy for lung cancer : an application for cationic lipid mediated gene delivery [J]. J Natl Cancer Inst ,1998 ,90(15): 1118.
    30. Friend DS, Papahadjopoulos D, Debs RJ, et al. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes [J]. Biochem Biophys Acta ,1996 ,1278(1):41.
    31. Xu L, Huang CC, HuangWQ, et al. Systemic tumor targeted gene delivery by antitransferrin receptor scFv2 immunoliposomes[J]. Molecular Cancer Therapeutics, 2002, 1: 337 - 346.
    32. Nakase M, Inui M,Okumura K, et al. p53 gene therapy of human osteosarcoma using a transferrin modified cationic liposome [J]. Mol Cancer Ther, 2005, 4: 625 - 631.
    33. Xiao HZ, Huang L. DNA transfection mediated by cationic liposomes containing lipopolylyine characterization and mechanism of action[J]. BBA, 1994, 1189:195- 203.
    34. Smith JG, Walzem RL, German JB, et al. Liposomes as agent forDNA gene transfer[J].BBA, 1993, 1154: 327 - 340.
    35. Hollon T, Youshimura FK. Variation in enzymatic transient gene expression assays[J]. Ana J Biochem, 1989, 182: 411 - 418.
    36. Hawley NP, Ciccarone V, Gebeyehu G, et al. Lipofect AMINE reagent: a new, higher efficiency polycationic liposometransfection regent[J]. Focus, 1993, 15: 73 - 79.
    37. FerrariM E, Nguyen CM, Zelphati O, et al. A nalytical methods for the characterization of cationic lipidnucleic acid complexes [J]. Hum Gene Ther, 1998,9(3): 341- 351.
    38. Wasan EK, Fairchild A , Bally MB. Cationic liposome plasmid DNA complexes used for gene transferretain a significant trapped volume [J]. J P harm Sci, 1998,87(1):9- 14.
    39. Welsh MJ, Ramsey BW. Research on cystic fibrosis:a journey from the Heark House [J]. Am J R espirCrit Care Med , 1998, 157 (4):S148- S154.
    40. Knowles MR, Noone PG, Hohneker K, et al. Adouble blind placebo controlled, dose ranging study to evaluate the safety and biological efficacy of the lipid DNA complex GR213487B in the nasalepithelium of adult patients with cysticfibrosis [J]. Hum Gene Ther, 1998, 9 (2) : 249- 269.
    41. Wheeler CJ , Felgner PL , Tsai YJ , et al. A novel cationic lipid greatly enhances plasm id DNA delivery and expression in mouse lung [J]. Proc Natl Acad Sci USA , 1996, 93 (21) : 11454- 11459
    42. .Hege KM,Carbone DP.Lung cancer vaccines and gene therapy. [J].Lung Cancer,2003,41 (suppl1):5103-5113.
    43. Kawano K , Gomi S , Tanaka K. Indentification of a new endoplasmic reticulum-resident protein recognized by HLA-A24-restricted tumor-infiltrating lymphocytes of lung cancer. [J].Cancer Res,2000,60(13):3550-3558.
    44. Akira Y,Kouichiro K,Makoto K,et al.Multidrug Resistance-associated Protein is a tumor rejection antigen recognized by HLA-A2402-restricted Cytotoxic T Lymphocytes. [J].Cancer Research,2001,61: 6459-6466.
    45. Young LC,Campling BG,Cole SP. Multidrug resistance proteins MRP3,1,and 2 in lung cancer. [J].Clin Cancer Res,2001,7(6):1798-1804.
    46. Gohara R,Imai N,Rikimaru T. Phase1 clinical study of cyclophilin B peptide vaccinefor patients with lung cancer. [J].J Immunoother,2002,25(5):439-444.
    47. Gerold S, Beatrice ST, Ralph MS. The use of dendritic cells in cancer immunotherapy. [J]. Current Opinion in immunology, 2003,15(1):138-147
    48. Shortman K, Caux C. Dendritic cell development: multiple pathways to nature's adjuvants. [J].Stem Cells. 1997,15(6):409-19.
    49. Cella M, Scheidegger D, Palmer-Lehmann K, et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. [J]. J Exp Med. 1996,184(2): 747-52
    50. Albert ML, Pearce SF, Francisco LM, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. [J].J Exp Med. 1998,188(7):1359-68
    51. Fadok VA, Bratton DL, Rose DM, et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. [J].Nature. 2000,405:85-90
    52. Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. [J].Int Immunol. 2000,12(11):1539-46
    53. Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. [J].Nat Immunol. 2000,1(2):151-5.
    54. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. [J].Nature. 1998,392:86-9.
    55. Norbury CC, Chambers BJ, Prescott AR, et al. Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. [J].Eur J Immunol. 1997,27(1):280-8.
    56. Adema GJ, Hartgers F, Verstraten R, et al. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. [J].Nature. 1997, 387(6634): 713-7
    57. Thery C, Regnault A, Garin J, et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. [J].J Cell Biol. 1999,147(3):599-610
    58. Lespagnard L, Gancberg D, Rouas G, et al. Tumor-infiltrating dendritic cells inadenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. [J]. Int J Cancer. 1999,84(3):309-14
    59. Troy AJ, Summers KL, Davidson PJ, et al. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. [J].Clin Cancer Res. 1998, 4(3): 585-93
    60. Troy AJ, Davidson PJ, Atkinson CH, et al. CD1a dendritic cells predominate in transitional cell carcinoma of bladder and kidney but are minimally activated. [J].J Urol. 1999,161(6):1962-7
    61. Pirtskhalaishvili G, Shurin GV, Gambotto A, et al. Transduction of dendritic cells with Bcl-xL increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice. [J].J Immunol. 2000,165(4):1956-64
    62. Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. [J].Proc Natl Acad Sci U S A. 2001,98(15):8809-14.
    63. Kono K, Takahashi A, Sugai H, et al. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. [J].Clin Cancer Res. 2002,8(11):3394-400
    64. Bhardwaj NA, Bender N, Gonzalez LK, et al. Stimulation of human anti-viral CD8+ cytolytic T lymphocytes by dendritic cells. [J].Adv. Exp. Med. Biol. 1995, 378:375–379
    65. Mullins, DW, Bullock TA, Colella VV, et al. Immune responses to the HLA-A*0201-restricted epitopes of tyrosinase and glycoprotein 100 enable control of melanoma outgrowth in HLA-A*0201- transgenic mice. [J].J. Immunol. 2001,167:4853–4860
    66. Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future. [J].Int. J. Cancer. 2001,94:459–473
    67. Steinman RM, Inaba S, Turley P, et al. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. [J].Hum. Immunol. 1999,60:562–567
    68. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. [J].Cell. 2001,106:255–258.
    69. Cyster, JG. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. [J].J. Exp. Med. 1999,189:447–450
    70. Sallusto F, Lanzavecchia A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. [J].Immunol. Rev. 2000, 177:134–140.
    71. Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment- specific lymphocyte homing. [J].Curr. Opin. Immunol. 2000, 12: 336–341
    72. Rott LS, Briskin DP, Andrew EL, et al. A fundamental subdivision of circulating lymphocytes defined by adhesion to mucosal addressin cell adhesion molecule-1. Comparison with vascular cell adhesion molecule-1 and correlation with ?7 integrins and memory differentiation. [J].J. Immunol. 1996, 156:3727–3736.
    73. Gunzer, M, Grabbe S. Dendritic cells in cancer immunotherapy. [J].Crit. Rev. Immunol. 2001,21:133–145.
    74. Eggert AA, Schreurs OC, Boerman WJ, et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. [J].Cancer Res. 1999,59:3340–3345
    75. Okada NM, Tsujino Y, Hagiwara A, et al. Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. [J].Br. J. Cancer. 2001, 84:1564–1570
    76. Fong LD, Brockstedt C, Benike L, et al. Dendritic cells injected via different routes induce immunity in cancer patients. [J].J. Immunol. 2001, 166:4254–4259
    77. Serody JS, Collins RM, Tisch JJ, et al. T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. [J].J. Immunol. 2000, 164:4961–4967
    78. Kaplan JM, Yu Q, Piraino ST, et al. Induction of anti-tumor immunity using dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. [J].J. Immunol. 1999, 163:699–707
    79. Boczkowski D, Nair JH, Nam HK, et al. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. [J].Cancer Res. 2000, 60:1028–1034
    80. Russo VS, Tanzarella P, Dalerba D, et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. [J].Proc. Natl. Acad. Sci. USA. 2000, 97:2185–2190
    81. Kotera Y, Shimizu K, Mule JJ. Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. [J].Cancer Res. 2001, 61:8105–8109
    82. Lambert LA, Gibson M, Maloney B, et al. Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity. [J].Cancer Res. 2001,61:641–646.
    83. Bullock TN, Mullins TA, Colella VH. Manipulation of avidity to improve effectiveness of adoptively transferred CD8+ T cells for melanoma immunotherapy in human MHC class I-transgenic mice. [J].J. Immunol. 2001, 167:5824–5831.
    84. Hanisch FG, Schwientek T, Von Bergwelt-Baildon MS, et al. O-Linked glycans control glycoprotein processing by antigen-presenting cells: a biochemical approach to the molecular aspects of MUC1 processing by dendritic cells. [J]. Eur J Immunol, 2003,33(12):3242-3254
    85. Vlad AM, Muller S, Cudic M, et al. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. [J]. J Exp Med,2002,196(11):1435-1446
    86. Hiltbold EM, Vlad AM, Ciborowski P, et al. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. [J].J Immunol,2000,165(7):3730-3741
    87. Kontani K, Taguchi O, Ozaki Y, et al. Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin. [J]. Int J Mol Med,2003,12(4):493-502
    88. Vaquerano JE, Peng M,Chang JW, et al.Digital quantification of the enzyme-linked immunospot(ELISPOT). [J].Biotechniques,1998,25(5):4830-4836.
    89. Clay TM, Hobeika AC, Mosca PJ, et al. Assays for monitoring cellular immuneresponses to active immunotherapy of cancer [J].Clin Cancer Res,2001,7: 1127-1135.
    90. Schmittel A, Keilholz U, Scheibenbogen C. Evaluation of the interferon-Gamma ELISPOT assay for quantification of peptide specific T lymphocytes from peripheral blood [J].J Immunol Methods,1997,210(2):167-174.
    91. Scheibenbogen C, Romero P, Rivoltini L, et al. Quantitation of antigen reactive T cellsin peripheral blood by IFNgamma ELISPOT assay and chromium release assay:A four centre comparative trial[J].J Immunol Methods, 2000, 244(122): 81-89.
    92. Yang J, Victor ML, Ian WF, et al. Application of the ELISPOT assay to thecharacterization of CD8+ responses to Epstein Barr virus antigens[J]. Blood, 2000,95(1):241-248.
    93. Asai T, Storkus WJ, Whiteside TL. Evaluation of the modified ELISPOT assay for gamma interfer on production in monitoring of cancer patients receiving antitumor vaccines [J].Clin Diagn Lab Immunol,2000,7:145-154.
    94. Campoli M, Chang CC, Ferrone S. HLA class I antigen loss, tumor immune escape and immune selection. [J].Vaccine 2002; 20 (Suppl 4): 40-5
    95. Plautz GE, Cohen PA, Shu S. Considerations on clinical use of T cell immunotherapy for cancer. [J].Arch Immunol Ther Exp (Warsz). 2003, 51(4): 245-57
    96. Schirmbeck R, Fissolo N, Chaplin P, et al. Enhanced priming of multispecific, murine CD8+ T cell responses by DNA vaccines expressing stress protein- binding polytope peptides. [J].J Immunol 2003,171(3): 1240-6
    97. Meloen RH, Puijk WC, Slootstra JW. Mimotopes: realization of an unlikely concept. [J].J Mol- Recognit 2000, 13(6): 352-9
    98. Apostolopoulos V, Sandrin MS, McKenzie IF. Mimics and cross reactions of relevance to tumour immunotherapy. [J].Vaccine1999,18(3-4): 268-75
    99. Carr Brendel V, Markovic D, Ferrer K, et al. Immunity to murine breast cancer cells modified to express MUC-1, a human breast cancer antigen, in transgenic mice tolerant to human MUC-1. [J].Cancer Res 2000, 60(9): 2435-43
    100. He J, Shen D, O'Donnell MA, et al. Induction of MUC1-specific cellular immunity by a recombinant BCG expressing human MUC1 and secreting IL2. [J].Int J Oncol 2002, 20(6): 1305-11
    101. Ayyoub M, Brehm M, Metthez G, et al. SSX antigens as tumor vaccine targets in human sarcoma. [J].Cancer Immun 2003, 3: 13
    102. Buchler T, Hajek R, Bourkova L, et al. Generation of antigen-loaded dendritic cells in a serum-free medium using different cytokine combinations. [J].Vaccine 2003, 21(9-10): 877-82
    103. Timmerman JM. Immunotherapy for lymphomas. [J].Int J Hematol 2003, 77(5):444-55
    104. Muehlbauer PM, Schwartzentruber DJ. Cancer vaccines. [J].Semin Oncol Nurs 2003, 19(3): 206-16
    105. LeP IC, Bommiasamy H, Bocchetta M, et al. Advances in prophylactic cancer vaccine research. [J].Expert Rev Anticancer Ther 2003, 3(4): 537-45
    106. Lysaght J, Todryk S. Developments in cancer vaccination. [J].Curr Opin Investig Drugs 2003, 4(6): 716-21
    107. Meloen RH, Langeveld JP, Schaaper WM, et al. Synthetic peptide vaccines: unexpected fulfillment of discarded hope? [J].Biologicals 2001, 29(3-4): 233-6
    108. Partidos CD. Peptide mimotopes as candidate vaccines. [J].Curr Opin Mol Ther 2000, 2(1): 74-9
    1. Wei YQ, Wang QR, Zhao X, et al. Immunotherapy of tumors with xenogeneic endothelial cell sasa vaccine. [J].Nat Med,2000;6(10)∶1160
    2. Dufour JH, Dziejman M, Liu MT, et al. IFN-C-inducible protein10 (IP-10;CXCL10) -deficient micerevealarole for IP-10 ineffectort cell generation and trafficking [J].J Immunol,2002,168(169)∶3195
    3. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1(adipose most abundant gene transcript 1). [J].Biochem Biophys Res Commun, 1996, 221(2): 286-289
    4. LaVallie ER, DiBlasio EA, Kovacic S, et al. Athior edoxingene fusion expression system that circum vents inclusion body formation in the E.coli cytoplasm. [J]. Bio Technology, 1993,11(35)∶187
    5. Takashi Y, Chie K, Toshio M, et al. Increase of solubility off oreign proteins in Escherichiacoli by coproduction of the bacterial thioredoxin. [J].J Bio Chem,1995,270∶25328
    6. Sambroo kJ, Russel DW. Molecular cloning: A-laboratory manual, 3rd ED. New York: Cold Spring Harbor Laboratory Press,2001∶68-71
    7. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. [J].Nature, 1994, 372: 425-432
    8. Mori Y, Iwama S. Mori T, et al. Liver specific Fantigen in the serum of patients with liver diseases and the detection of early stage hepatocellular carcinoma. [J].Chin Chim Acta, 1987,164:127
    9. Parmley SF, Sgarlato GD, Mark J, et al. Expression, characterization and serologic reactivity of recombinant surface antigen P22 of Toxoplasma gondii [J].J Clin Micro biol, 1992,30(5):1127-1133.
    10. Mori Y, Iesato K, Ueda S, et al. Purification and immunological characterization of human liver specific Fantigen. [J].Clin Chim Acta, 1981,112(2):125~134
    11. Sugamura K, Smith JB. Purification and characterization of human liver specific Fantigen. [J].Clin Exp Immunol, 1976,26(1):28~346
    12. Sinacola JR, Robinson AS. Rapid refoldin gandpolishing of single_chain antibodiesfrom Escherichiacoli in clusion bodies. [J]. Protein Expr Purif, 2002,26(2):301-308
    13. Rudolph R, Lilie H. Invitro folding of inclusion body proteins. [J].FAS EB J,1996, 10(1):49-56
    14. Li M, Su ZG, Janson JC. Invitroprotein refolding by chromatographic procedures. [J].Protein Expr Purif, 2004,33(1):1-10
    1. Taylor-padadimitrious J, Burchell J, Miles DW, et al. MUC1 and Cancer[J]. Biochim Biophy Acta, 1999,1455(2-3):301-313
    2. Werdelin O, Medal M, Jensen T. Processing of glycans on glycoprotein and glycopeptide antigens in antigen-presenting cells.[J].Proc Natl Acad Sci USA , 2002, 99:9611-9613
    3. Von mensdorff-ponilly S, Snijdewint FG, Verstraeter AA, et al. Human MUC1 mutin: a multifaceted glyciprotein.[J]. Int J Bio Markers, 2000,15:343-356
    4. Leroy X, Zini L, Leteurtre E.Morphologic subtyping of papillary renal cell carcinoma: correlation with prognosis and differential expression of MUC1 between the two subtypes. [J].Mod Pathol. 2002,15(11):1126-30.
    5. Denda NK, Fujita K, Fujime M, et al. Absence of correlation of MUC1 expression to malignant behavior of renal cell carcinoma in experimental systems. [J].Clin Exp Metastasis. 2000,18(1):77-81.
    6. Cao Y, Karsten U, Zerban H, et al. Expression of MUC1, Thomsen-Friedenreich-related antigens, and cytokeratin 19 in human renal cell carcinomas and tubular clear cell lesions. [J].Virchows Arch. 2000,436(2):119-26.
    7. Leroy X, Copin MC, Devisme L, et al. Expression of human mucin genes in normal kidney and renal cell carcinoma.[J]. Histopathology,2002 ,40(5):450-457
    8. Leroy X, Zerimech F, Zini L, et al. MUC1 expression is correlated with nuclear grade and tumor progression in pT1 renal clear cell carcinoma.[J]. Am J Clin Pathol, 2002 ,118(1):47-51
    9. Fujica K, Denda k,Yamamoto M, et al. Expression of MUC1 mucins inversly correlated with post-surgical survival of renal cell carcinoma patients.[J]. Br J cancer,1999, 80(3):301-308
    10. Kraus S, Abel PD, Nachtmann C, et al. MUC1 mucin and trefoil factor 1 protein expression in renal cell carcinoma: correlation with prognosis.[J].Hum Pathol, 2002, 33(1):60-67
    11. Langer C, Ratschek M, Rehak P, et al. Expression of MUC1 (EMA) and E-cadherin in renal cell carcinoma: a systematic immunohistochemical analysis of 188 cases.[J]. ModPathol adv , 2003, 10(12):1032-1038
    12. Imura J, Ichikawa K, Takeda J, et al. Multilocular cystic renal cell carcinoma: a clinicopathological, immuno- and lectin histochemical study of nine cases.[J].APMIS, 2004,112(3):183-191
    13. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. [J].Nat Med. 2000,6(3):332-6
    14. Simms MS, Murray A, Denton G, et al Bishop MC.Production and characterisation of a C595 antibody-99mTc conjugate for immunoscintigraphy of bladder cancer. [J].Urol Res. 2001,29(1):13-9
    15. Hughes OD, Bishop MC, Perkins AC, et al.Targeting superficial bladder cancer by the intravesical administration of copper-67-labeled anti-MUC1 mucin monoclonal antibody C595. [J].J Clin Oncol. 2000,18(2):363-70.
    16. Retz M, Lehmann J, Roder C, et al. Differential mucin MUC7 gene expression in invasive bladder carcinoma in contrast to uniform MUC1 and MUC2 gene expression in both normal urothelium and bladder carcinoma. [J].Cancer Res. 1998,58(24):5662-6.
    17. LaRue H, Parent-Vaugeois C, Bergeron A, et al. Influence of spatial configuration on the expression of carcinoembryonic antigen and mucin antigens in human bladder cancer. [J].Int J Cancer. 1997,71(6):986-92.
    18. Hughes OD, Bishop MC, Perkins AC, et al. Preclinical evaluation of copper-67 labelled anti-MUC1 mucin antibody C595 for therapeutic use in bladder cancer. [J].Eur J Nucl Med. 1997,24(4):439-43.
    19. Bergeron A, Champetier S, LaRue H, et al. MAUB is a new mucin antigen associated with bladder cancer. [J].J Biol Chem. 1996,271(12):6933-40.
    20. Simms MS, Hughes OD, Limb M. MUC1 mucin as a tumour marker in bladder cancer.[J].BJU Int,1999,84(3):350-352
    21. Manami K, Takatsugu O, Shigeo H, et al. Detection of circulating MUC7-positive cells by reverse transcription-polymerase chain reaction in bladder cancer patients. [J].International journal of urology, 2004,11(1): 38-43
    22. Hughes O, Perkins A, Frier M, et al. Imaging for staging bladder cancer A clinical study of intravenous 111indium-labelled anti-muc1 mucin monoclonal antibodyC595.[J].BJU Int ,2001,87(1):39-46
    23. Hughes O, Bishop M, Perkins A, et al. Targetting superficial bladder cancer by the intravesical administration of 67copper-labelled anti-muc1 mucin monoclonal antibody C595.[J]. J Clin Oncol, 2000,18(3):363-370
    24. Hughes OD, Perkins AC, Frier M, et al. Imaging for staging bladder cancer: a clinical study of intravenous 111indium-labelled anti-MUC1 mucin monoclonal antibody C595.[J].BJU Int, 2001 ,87(1):39-46
    25. Murray A, Simms MS, Scholfield DP, et al. Production and characterization of 188Re-C595 antibody for radioimmunotherapy of transitional cell bladder cancer. [J].J Nucl Med,2001 ,42(5):726-732
    26. Simms MS, Perkins AC, Price MR, et al. 99mTechnetium-C595 radioimmuno- scintigraphy: a potential staging tool for bladder cancer.[J].BJU Int, 2001,88(7): 686-691
    27. Doehn C, Jocham D.Technology evaluation: TG-1031, Transgene SA. [J].Curr Opin Mol Ther. 2000,2(1):106-11.
    28. Zhang S, Zhang HS, Reuter VE, et al. Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. [J].Clin Cancer Res. 1998,4(2):295-302.
    29. Devine PL, Walsh MD, McGuckin MA, et al. Prostate-specific antigen (PSA) and cancer-associated serum antigen (CASA) in distinguishing benign and malignant prostate disease. [J].Int J Biol Markers. 1995,10(4):221-5.
    30. Kirschenbaum A, Itzkowitz SH, Wang JP, et al. MUC1 Expression in Prostate Carcinoma: Correlation with Grade and Stage.[J].Mol Urol,1999,3(3):163-168
    31. Schut IC, Waterfall PM, Ross M, et al. MUC1 expression, splice variant and short form transcription (MUC1/Z, MUC1/Y) in prostate cell lines and tissue.[J].BJU Int, 2003 ,91(3):278-283
    32. Mitchell S, Abel P, Madaan S, et al. Androgen-dependent regulation of human MUC1 mucin expression.[J].Neoplasia, 2002 ,4(1):9-18
    33. Legrier ME, de Pinieux G, Boye K, et al. Mucinous differentiation features associated with hormonal escape in a human prostate cancer xenograft. [J].Br J Cancer. 2004,90(3):720-7.
    34. Mollick JA, Hodi FS, Soiffer RJ, et al. MUC1-like tandem repeat proteins are broadly immunogenic in cancer patients. [J]. Cancer Immun. 2003, 17(3):3-6.
    35. Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer.[J].Proc Natl Acad Sci U S A, 2004,101(3):811-816
    36. Papadopoulos I, Sivridis E, Giatromanolaki A, et al. Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. [J].Clin Cancer Res, 2001,7(6):1533-1538
    37. Imai M, Hwang HY, Norris JS, et al. The effect of dexamethasone on human mucin 1 expression and antibody-dependent complement sensitivity in a prostate cancer cell line in vitro and in vivo.[J].Immunology, 2004,111(3):291-297
    1. Gerold S, Beatrice ST, Ralph MS. The use of dendritic cells in cancer immunotherapy. [J]. Current Opinion in immunology, 2003,15(1):138-147
    2. Von mensdorff-ponilly S, Snijdewint FG, Verstraeter AA, et al. Human MUC1 mutin: a multifaceted glyciprotein.[J]. Int J Bio Markers, 2000,15(3):343-356
    3. McDermott RS, Beuvon F, Pauly M, et al. Tumor antigens and antigen-presenting capacity in breast cancer. [J]. Pathobiology,2002- 2003,70(6):324-332
    4. Hanisch FG, Schwientek T, Von Bergwelt-Baildon MS, et al. O-Linked glycans control glycoprotein processing by antigen-presenting cells: a biochemical approach to the molecular aspects of MUC1 processing by dendritic cells. [J]. Eur J Immunol, 2003,33(12):3242-3254
    5. Vlad AM, Muller S, Cudic M, et al. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. [J]. J Exp Med,2002,196(11):1435-1446
    6. Hiltbold EM, Vlad AM, Ciborowski P, et al. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. [J].J Immunol,2000,165(7):3730-3741
    7. Monti P, Leone BE, Zerbi A, et al. Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell. [J].J Immunol,2004,172(12):7341-7349
    8. Kontani K, Taguchi O, Narita T, et al. Autologous dendritic cells or cells expressing both B7-1 and MUC1 can rescuetumor-specific cytotoxic T lymphocytes from MUC1-mediated apoptotic cell death. [J]. J Leukoc Biol. 2000,68(2):225-32.
    9. Lappin MB, Weiss V, Delattre B, et al. Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. [J]. Immunol. 1999, 98:181–188
    10. Brossart P. Dendritic cells in vaccination therapies of malignant diseases. [J].Transfus Apheresis Sci. 2002,27(2):183-6.
    11. Gunzer MS, Janich G, Varga S. Dendritic cells and tumor immunity. [J].Semin. Immunol. 2001, 13:291–302
    12. Gunzer M, Grabbe S. Dendritic cells in cancer immunotherapy. [J].Crit. Rev. Immunol. 2001,21:133–145.
    13. Bullock, TNJ, Colella TA, Engelhard VH. The density of peptides displayed by dendritic cells affects immune responses to human tyrosinase and gp100 in HLA-A2 transgenic mice. [J]. J. Immunol. 2000,164:2354–2361.
    14. Kaplan, JM, Yu Q, Piraino ST, et al. Induction of anti-tumor immunity using dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. [J].J. Immunol. 1999,163:699–707
    15. Fong LD, Brockstedt C, Benike L, et al. Dendritic cells injected via different routes induce immunity in cancer patients. J. [J].Immunol. 2001, 166:4254–4259
    16. Eggert AA, Schreurs OC, Boerman WJ, et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. [J].Cancer Res. 1999,59:3340–3345
    17. Gong J, Apostolopoulos V, Chen D, et al. Selection and characterization of MUC1-specific CD8+ T cells from MUC1 transgenic mice immunized with dendritic-carcinoma fusion cells. [J].Immunology,2000,101(3):316-324
    18. Tanaka Y, Koido S, Chen D, et al. Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice. [J]. Clin Immunol,2001,101(2):192-200
    19. Xia J, Tanaka Y, Koido S, et al. Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. [J].J Immunol,2003, 170(4):1980-1986
    20. Chen D, Xia J, Tanaka Y, et al. Immunotherapy of spontaneous mammary carcinoma with fusions of dendritic cells and mucin 1-positive carcinoma cells. [J].Immunology,2003,109(2):300-307
    21. Koido S, Tanaka Y, Chen D, et al. The kinetics of in vivo priming of CD4 and CD8 T cells by dendritic/tumor fusion cells in MUC1-transgenic mice. [J]. J Immunol,2002, 168(5):2111-2117
    22. Maruyama K, Akiyama Y, Nara-Ashizawa N, et al. Adenovirus-Mediated MUC1 gene transduction into human blood-derived dendritic cells. [J].J Immunother, 2001, 24(4): 345-353
    23. Pecher G, Spahn G, Schirrmann T, et al. Mucin gene (MUC1) transfer into human dendritic cells by cationic liposomes and recombinant adenovirus. [J]. Anticancer Res,2001,21(4A):2591-2596
    24. Trevor KT, Hersh EM, Brailey J, et al. Transduction of human dendritic cells with a recombinant modified vaccinia Ankara virus encoding MUC1 and IL-2. [J].Cancer Immunol Immunother,2001,50(8):397-407
    25. Pecher G, Haring A, Kaiser L, et al. Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial. [J]. Cancer Immunol Immunother,2002,51(11-12):669-673
    26. Kontani K, Taguchi O, Ozaki Y, et al. Novel vaccination protocol consisting of injecting MUC1 DNA and nonprimed dendritic cells at the same region greatly enhanced MUC1-specific antitumor immunity in a murine model. [J]. Cancer Gene Ther, 2002, 9(4):330-337
    27. Koido S, Kashiwaba M, Chen D, et al. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. [J]. J Immunol, 2000, 165(10): 5713-5719
    28. Soares MM, Mehta V, Finn OJ, et al. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. [J].J Immunol, 2001,166(11):6555-6563
    29. Brossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. [J]. Blood, 2000, 96(9): 3102-3108
    30. Kontani K, Taguchi O, Ozaki Y, et al. Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin. [J]. Int J Mol Med,2003,12(4):493-502
    31. Brugger W, Schneider A, Schammann T, et al. Dendritic cell-based vaccines in patients with hematological malignancies. [J]. Ann N Y Acad Sci,2001,938(3):359-362
    32. Lambert LA, Gibson M, Maloney B, et al. Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity. [J].Cancer Res. 2001,61:641–646.
    33. Kotera YK, Shimizu JJ, Mule. Comparative analysis of necrotic and apoptotic tumorcells as a source of antigen(s) in dendritic cell-based immunization. [J].Cancer Res. 2001, 61:8105–8109.
    34. Okada NM, Tsujino Y, Hagiwara A, et al. Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. [J].Br. J. Cancer. 2001,84:1564–1570.
    35. Serody JS, Collins RM, Tisch JJ, et al. T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. [J].J. Immunol. 2000,164:4961–4967.