脂质体药物和生物佐剂在肿瘤治疗中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分聚乙二醇修饰的柔红霉素脂质体治疗小鼠白血病模型的研究
     目的探讨聚乙二醇(polyethylene glycol,PEG)修饰的柔红霉素(Daunorubicin,DNR)脂质体(PL-DNR)治疗小鼠白血病模型的疗效及毒副作用。
     方法采用薄层水化法和主动载药法制备PL-DNR,测定脂质体药物的理化指标,进行体外L1210细胞增殖抑制实验,体内实验主要包括L1210实体瘤模型、P388肿瘤腹水模型、L615肿瘤血液系统模型治疗实验和药物对小鼠心肌毒性实验,心肌毒性实验采用原位末端标记法(TUNEL)标记凋亡心肌细胞的方法。
     结果应用激光粒径散射仪测量PL-DNR粒径大小在(110±10)nm,柔红霉素药物包封率在94.21%。L1210实体瘤模型治疗实验中PL-DNR组抑瘤率为77.59%,DNR组为57.56%,两组间有统计学差异(P<0.05)。DNR组心肌细胞凋亡指数明显高于PL-DNR组(P<0.05)。P388肿瘤腹水模型、L615肿瘤血液系统模型治疗实验中均观察到PL-DNR组相比对照组都能改善治疗效果,并有效延长小鼠生存期。
     结论聚乙二醇修饰的柔红霉素脂质体在L1210荷瘤鼠模型、P388肿瘤腹水模型、L615肿瘤血液系统模型中的治疗效果均好于柔红霉素组,并且降低了毒副作用。
     第二部分CpG ODN与Poly(I:C)在肿瘤免疫中联合应用的研究
     目的选择两种新型的生物型免疫刺激剂CpG ODN和poly(I:C)联合作为MUC-1多肽抗原佐剂,通过体外及体内多种免疫功能指标检测,探讨二者联合应用的免疫增效作用,并制备抗MUC-1的单克隆抗体。
     方法体外实验中用CpG ODN和poly(I:C)单独或联合与正常小鼠脾细胞混合培养,24小时后检测细胞培养上清中细胞因子分泌情况;体内实验中用CpG ODN和poly(I:C)单独或者联合作为MUC1多肽抗原的佐剂免疫小鼠,通过ELISA方法检测免疫血清中抗体效价,以及应用细胞毒性T淋巴细胞杀伤实验方法,对各组间免疫水平的差别进行评价。采用单克隆抗体制备方法制备抗MUC-1的单克隆抗体。
     结果CpG ODN与poly(I:C)联合应用能体外有效诱导脾细胞分泌IL-12p40和TNF-α。体内实验联合组小鼠血清中TNF-α和IFN-γ水平显著升高,IL-4水平明显降低。小鼠血清中抗MUC1多肽抗体效价各组间无明显差异,但细胞毒性T淋巴细胞(CTL,cytotoxicity T lymphocyte)杀伤实验显示联合组能有效杀伤靶细胞。成功制备出一株效价比达到1/106的抗MUC-1单克隆抗体。
     结论CpGODN和poly(I:C)联合作为可溶性多肽MUC1的免疫佐剂,与单用相比能有效地增强机体的抗肿瘤免疫应答反应。
Objective To explore anti-tumor effects and toxicity responses of pegylated liposomal daunorubicin(PL-DNR) for curing leukemia in mouse model.Methods PL-DNR was prepared using methods of dry lipid hydration and remote loading,then physiochemical index was analysed.The in vitro cytotoxicity experiment and the in vivo therapeutic trial using animal model were performed.The apoptotic cardiomyocytes were detected using the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling method(TUNEL).Results Average diameter of PL-DNR was(110±10)nm.The encapsulation efficiency was 94.21%.The growth of tumors in PL-DNR and DNR therapy group was obviously suppressed,which reached 77.59%and 57.56%respectively with a significant difference between them (P<0.05).Compared with PL-DNR group,DNR group had significantly higher index of apoptotic cardiomyocytes(P<0.05).The same results can be obtained in the therapeutic models of P388 and L615.Conclusion In treatment of the leukemia three models in mice,pegylated liposomal daunorubicin can improve therapeutic effects and reduce cardiomyocyte apoptosis in daunorubicin-induced cardiomyopathy.
     Objective poly(I:C) and CpG ODN can activate immunological reactions respectively.In the experiment,we combinate CpG ODN and poly(I:C) as the adjuvant of tumor associated antigen MUC-1 to oberserve whether enhanced stimulation of innate immunological response and adaptive immunological response can be induced.Methods In vitro,murine splenocytes were incubated with poly(I:C) alone,CpG ODN alone or the combination of the two agents.Then the levels of cytokine production of splenocytes were examined including Interleukin(IL)-12p40, tumor necrosis factor-α(TNF-α),IFN-γand IL-4 by the method of ELISA.In vivo,to detect if there is synergetic effect of the combination of two immunological stimulator as adjuvant of MUC-1 peptide,C57BL/6 were immunized with MUC1 plus poly(I:C) and/or CpG ODN.Then the serum levels of cytokines were detected including.We use the CTL test to evaluate the cellular immune response,and use the serum level of MUC-1 antibody to evaluate the humoral immune response.At last we ultilize several mice to produce the monoclonal antibody of MUC-1.Results In vitro,the combination of CpG ODN and poly(I:C) demonstrated synergetic effect for the increased levels of IL-12p40,TNF-αproduction.The same result can be observed in vivo experiment,that is,immunization of mice with the combination of poly(I:C) and CpG ODN demonstrated synergy for the increased serum levels of IL-12p40,TNF-α. Then we obtained a strain of monoclonal anti-MUC-1 antibody with high titer. Conclusions The combination of poly(I:C) and CpG ODN as the adjuvant of peptide MUC1,resulted in an enhanced innate and adaptive immune response that could be used for tumor vaccination or immunotherapy.
引文
1. Young RC, Ozols RF, Myers CE. The anthracycline antineoplastic drugs. N Engl J Med, 1981,305:139-53.
    2. Minotti G Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev, 2004, 56:185-229.
    3. Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol, 1992 Dec; 19(6):670-86.
    4. Bhalerao SS, Raje HA. Preparation, optimization, characterization, and stability studies of salicylic acid liposomes. Drug Dev Ind Pharm, 2003 Apr;29(4):451-67.
    5. Rahman YE, Cerny EA, Tollaksen SL, et al. Liposome-encapsulated actinomycin D: potential in cancer chemotherapy. Proc Soc Exp Biol Med, 1974,146: 1173-1176.
    6. Atadja P. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res, 2004, 64: 689-95.
    7. Dandamudi S, Campbell RB. Development and characterization of magnetic cationic liposomes for targeting tumor microvasculature. Biochim Biophys Acta, 2007,1768:427-38.
    8. Ryan SM, Mantovani G, Wang X, et al. Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv, 2008 Apr;5(4):371-383.
    9. Yuan F. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res, 1994,54: 3352-6.
    10. Ergun S, Tilki D, Oliveira-Ferrer L, et al. Significance of vascular stabilization for tumor growth and metastasis. Cancer Lett, 2006 Jul 18;238(2):180-7.
    11. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science, 2004,303:1818-22.
    12. Colbern GT, Musterer RS, Pegg E, et al. Significant increase in antitumor potency of doxorubicin HCI by its Encapsulation in pegylated liposomes. J Liposome Res, 1999, 9:523-538.
    13. Colbern GT, Donovan D, Uster P, et al. Tumor uptake and therapeutic effects of drugs encapsulated in long-circulation pegylated stealth liposomes. J Liposome Res, 2000,10:81-92.
    14. Eckardt JR, Campbell E, Burris HA, et al. A phase II trial of DaunoXome, liposome-encapsulated daunorubicin, in patients with metastatic adenocarcinoma of the colon. Am J Clin Oncol, 1994,17:498-501.
    15. Eucker J, Eikel D, Heider U, et al. Liposome daunorubicin (DaunoXome) in multiple myeloma:a modified VAD regimen using short-term infusion. Anticancer Drugs, 2003,14:793-799.
    16. Fassas A,Buffels R, Anagnostopoulos A, et al. Safety and early efficacy assessment of liposomal daunorubicin (DaunoXome) in adults with refractory or relapsed acute myeloblastic leukaemia:a phase I -II study.Br J Haematol, 2002,116:308-315.
    17. Hempel G, Reinhardt D, Creutzi U, et al. Population pharmacokinetics of liposomal daunorubicin in children. Br J Clin Pharmacol, 2003,56:370-377.
    18. Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A, 1991 Dec 15;88(24): 11460-4.
    19. Parr MJ, Ansell SM, Choi LS, et al. Factors influencing the retention and chemical stability of polyethylene glycol-lipid conjugates incorporated into large unilamellar vesicles. Biochim Biophys Acta, 1994 Oct 12;1195(1):21-30.
    20. Haran G. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta, 1993, 1151:201-15.
    21. Suzuki Y, Wakita D, Chamoto K, et al. Liposome-encapsulated CpG oligodeoxynucleotides as a potent adjuvant for inducing type 1 innate immunity. Cancer Res, 2004 Dec l;64(23):8754-60.
    22. Cory AH. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun, 1991, 3:207-12.
    23. Otsuki Y, Li Z, Shibata MA. Apoptotic detection methods-from morphology to gene. Prog Histochem Cytochem, 2003,38(3):275-339.
    24. Song H, Lin C, Ma J. Pharmacokinetic and cytotoxic studies of pegylated liposomal daunorubicin. Cancer Chemother Pharmacol, 2006, 57: 591-8.
    25. Yu NY. STEALTH liposomal CKD-602, a topoisomerase II inhibitor, improves the therapeutic index in human tumor xenograft models. Anticancer Res, 2007, 27:2541-5.
    26. Immordino ML, Dosio F, Cartel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine, 2006,1:297-315.
    27. Hatziantoniou S, Dimas K, Georgopoulos A, et al. Cytotoxic and antitumor activity of liposome-incorporated sclareol against cancer cell lines and human colon cancer xenografts. Pharmacol Re, 2006 Jan;53(1):80-7.
    28. Yuan F. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res, 1995, 55: 3752-6.
    29. Ambegia E, Ansell S, Cullis P, et al. Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim Biophys Acta, 2005 May 20; 1669(2): 155-63.
    30. Bandak S. Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models. Anticancer Drugs, 1999, 10:911-20.
    31. Newman MS. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol, 1999, 4:1-7.
    32. Drummond DC. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev, 1999, 51: 691-743.
    33. Horowitz AT, Barenholz Y, Gabizon AA. In vitro cytotoxicity of liposome-encapsulated doxorubicin: dependence on liposome composition and drug release. Biochim Biophys Acta, 1992, 1109: 203-9.
    1. Elkord E, Hawkins RE, Stern PL. Immunotherapy for gastrointestinal cancer: current status and strategies for improving efficacy. Expert Opin Biol Ther. 2008 Apr;8(4):385-95.
    2. Cebon J, Gedye C, John T, Davis ID. Immunotherapy of advanced or metastatic melanoma. Clin Adv Hematol Oncol. 2007 Dec;5(12):994-1006.
    3. Guinn BA, Mohamedali A, Thomas NS, Mills KI. Immunotherapy of myeloid leukaemia. Cancer Immunol Immunother. 2007 Jul;56(7):943-57.
    4. Yang MY, Zetler PM, Prins RM, et al. Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications. Expert Rev Neurother. 2006 Oct;6(10): 1481-94.
    5. Zhai Z, Liu Y, Wu L, et al. Enhancement of innate and adaptive immune functions by multiple Echinacea species. J Med Food. 2007 Sep;10(3):423-34.
    6. Hwang SA, Dasgupta A, Actor JK. Cytokine production by non-adherent mouse splenocyte cultures to Echinacea extracts. Clin Chim Acta. 2004 May ;343(1-2): 161-6.
    7. Fasching G, Sinzig M. OK-432 as a sclerosing agent to treat wound-healing impairment. Eur J Pediatr Surg. 2007 Dec;17(6):431-2.
    8. Mazza C, Malissen B. What guides MHC-restricted TCR recognition? Semin Immunol. 2007 Aug;19(4):225-35.
    9. Brophy SE, Jones LL, Holler PD, et al. Cellular uptake followed by class I MHC presentation of some exogenous peptides contributes to T cell stimulatory capacity. Mol Immunol. 2007 Mar;44(9):2184-94.
    10. Anikeeva N, Lebedeva T, Clapp AR, et al. Quantum dot/peptide-MHC biosensors reveal strong CD8-dependent cooperation between self and viral antigens that augment the T cell response. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16846-51.
    11. Zehn D, Cohen CJ, Reiter Y, et al. Efficiency of peptide presentation by dendritic cells compared with other cell types: implications for cross-priming. Int Immunol. 2006 Dec;18(12): 1647-54.
    12. Ahmad R, Raina D, Trivedi V, et al. MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling. Nat Cell Biol, 2007, 9(12): 1419-1427.
    13. Kwong YT, Claudia P, James G, et al. A Human Cytotoxic T-Lymphocyte Epitope and Its Agonist Epitope from the Nonvariabie Number of Tandem Repeat Sequence of MUC-1. Clinical Cancer Research, 2004, 10(15): 2139-2149.
    14. Nagata Y, Furugen R, Hiasa A, et al. Peptides derived from a wild-type murine proto-oncogene c-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts. J Immunol, 1997, 159(3): 1336-1343.
    15. Devine PL, McKenzie IF. Mucins: structure, function, and associations with malignancy. Bioessays, 1992, 14(9): 619-625.
    16. Kondo H, Hazama S, Kawaoka T, et al. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res. 2008 Jan-Feb;28(1B):379-87.
    17. Sangha R, North S. L-BLP25: a MUC1-targeted peptide vaccine therapy in prostate cancer. Expert Opin Biol Ther. 2007 Nov;7(11):1723-30.
    18. Radziejewska I, Kisiel DG, Borzym-Kluczyk M, et al. MUC 1 mucin content in gastric juice of duodenal ulcer patients: effect of Helicobacter pylori eradication therapy. Clin Exp Med. 2007 Jun;7(2):72-6.
    19. Loveland BE, Zhao A, White S, et al. Mannan-MUC 1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res. 2006 Feb 1; 12(3 Pt 1):869-77.
    20. Chhieng DC, Benson E, Eltoum I, et al. MUC1 and MUC2 expression in pancreatic ductal carcinoma obtained by fine-needle aspiration. Cancer. 2003 Dec 25;99(6):365-71.
    21. Orr MK, Burnside JS, Phillips CA, et al. MHC-restricted presentation of a single repeat of MUC1 mucin. Immunol Invest. 2007;36(3):271-83.
    22. Kodama H, Suzuki M, Katayose Y, et al. Mutated SEA-D227A-conjugated antibodies greatly enhance antitumor activity against MUC1 -expressing bile duct carcinoma. Cancer Immunol Immunother. 2001 Dec;50(10):539-48.
    23. Singh R, Bandyopadhyay D. MUC1: a target molecule for cancer therapy. Cancer Biol Ther. 2007 Apr;6(4):481-6.
    24. Cheuk AT, Guinn BA. Immunotherapy of acute myeloid leukaemia: development of a whole cell vaccine. Front Biosci. 2008 Jan 1; 13:2022-9.
    25. Jurk M, Vollmer J. Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs. 2007;21(6):387-401.
    26. Holmgren J, Adamsson J, Anjuere F, et al. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol Lett. 2005 Mar 15;97(2): 181-8.
    27. Singh M, Srivastava I. Advances in vaccine adjuvants for infectious diseases. Curr HIV Res. 2003 Jul;1(3):309-20.
    28. Hansen JS, Larsen ST, Poulsen LK, et al. Adjuvant effects of inhaled mono-2-ethylhexyl phthalate in BALB/cJ mice. Toxicology. 2007 Mar 22;232(1-2):79-88.
    29. Jurk M, Vollmer J. Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs. 2007;21(6):387-401.
    30. Vollmer J, Jurk M, Samulowitz U, et al. CpG oligodeoxynucleotides stimulate IFN-gamma-inducible protein-10 production in human B cells. J Endotoxin Res. 2004; 10(6):431-8.
    31. Ahmad-Nejad P HH, Rutz M, et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol, 2002, 32(7): 1958-1968.
    32. Yokoyama WM. Production of monoclonal antibodies. Curr Protoc Cell Biol. 2001 May;Chapter 16:Unit 16.1.
    33. Davis JM, Pennington JE, Kubler AM, et al. A simple, single-step technique for selecting and cloning hybridomas for the production of monoclonal antibodies. J Immunol Methods. 1982;50(2):161-71.
    34. Thompson KM, Hough DW, Maddison PJ, et al. The efficient production of stable, human monoclonal antibody-secreting hybridomas from EBV-transformed lymphocytes using the mouse myeloma X63-Ag8.653 as a fusion partner. J Immunol Methods. 1986 Nov 20;94(1-2):7-12.
    35. Yokoyama WM, Christensen M, Santos GD, et al. Production of monoclonal antibodies. Curr Protoc Immunol. 2006 Sep;Chapter 2:Unit 2.5.
    36. Arancibia SA, Beltran CJ, Aguirre IM, et al. Toll-like receptors are key participants in innate immune responses. Biol Res. 2007;40(2):97-112.
    37. Tsan MF, Baochong G. Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J Endotoxin Res. 2007;13(1):6-14.
    38. Elson G, Dunn-Siegrist I, Daubeuf B, et al. Contribution of Toll-like receptors to the innate immune response to Gram-negative and Gram-positive bacteria. Blood. 2007 Feb 15; 109(4): 1574-83
    39. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature, 2000,408(6813): 740-745.
    40. Krieg AM, Hartmann G, Yi AK. Mechanism of action of CpG DNA. Curr Top Microbiol Immunol, 2000, 247: 1-21.
    41. Krieg AM. CpG motifs: the active ingredient in bacterial extracts? Nat Med, 2003, 9(7): 831-5.
    42. Matsumoto M, Kikkawa S, Kohase M, et al. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Commun, 2002, 293(5): 1364-1369.
    43. Meusel TR, Kehoe KE, Imani F. Protein kinase R regulates double-stranded RNA induction of TNF-alpha but not IL-1 beta mRNA in human epithelial cells. J Immunol, 2002, 168(12): 6429-6435.
    44. Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 2001, 413(6857): 732-738.
    45. Verdijk RM, Mutis T, Esendam B, et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol, 1999,163(1): 57-61.
    46. Salem ML, Kadima AN, Cole DJ, et al. Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother, 2005, 28(3): 220-228.
    47. Senik A, Gresser I, Maury C, et al. Enhancement by interferon of natural killer cell activity in mice. Cell Immunol, 1979,44(1): 186-200.
    48. Smialowicz RJ, Rogers RR, Riddle MM, et al. In vitro augmentation of natural killer cell activity by manganese chloride. J Toxicol Environ Health, 1986, 19(2): 243-254.
    49. Lieberman LA, Hunter CA. Regulatory pathways involved in the infection-induced production of IFN-gamma by NK cells. Microbes Infect, 2002, 4(15): 1531-1538.
    50. Banchereau J, Paczesny S, Blanco P, et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci, 2003, 987: 180-187.
    51. Whitmore MM, DeVeer MJ, Edling A, et al. Synergistic activation of innate immunity by double- stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res, 2004, 64(16): 5850-5860.
    52. Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons. Annu Rev Biochem, 1998, 67: 227-264.
    53. Brittenden J, Heys SD, Ross J, et al. Natural killer cells and cancer. Cancer, 1996, 77(7): 1226-1243.
    54. Herberman RB. Cancer immunotherapy with natural killer cells. Semin Oncol, 2002, 29(3 Suppl 7): 27-30.
    55. Tsan MR Toll-like receptors, inflammation and cancer. Semin Cancer Biol. 2006 Feb;16(1):32-7.
    1.Agrawal B,Longenecker BM.MUC1 mucin-mediated regulation of human T cells.Int Immunol.2005 Apr;17(4):391-9.
    2.Vlad AM,Kettel JC,Alajez NM,et al.MUC1 immunobiology:from discovery to clinical applications.Adv Immunol.2004;82:249-93.
    3.Karsten U,von Mensdorff-Pouilly S,Goletz S.What makes MUC1 a tumor antigen? Tumour Biol.2005 Jul-Aug;26(4):217-20.
    4.Mitsuta K,Yokoyama A,Kondo K,et al.Polymorphism of the MUC 1 mucin gene is associated with susceptibility to lung adenocarcinoma and poor prognosis.Oncol Rep.2005 Jul;14(1):185-9.
    5.Baldus SE,Engelmann K,Hanisch FG.MUC1 and the MUCs:a family of human mucins with impact in cancer biology.Crit Rev Clin Lab Sci.2004;41(2):189-231.
    6.Emad AR,Richard WG,Dalia AE,et al.Expression of mucins(MUC1,MUC2,MUC3,MUC4,MUC5AC and MUC6) and theirprognostic significance in humanbreast cancer.Modem Pathology.2005,18:1295-1304.
    7.Moniaux N,Brand RE,et al.Multiple roles of mucins in pancreatic cancer,a lethal and challenging malignancy.Br J Cancer.2004 Nov 1;91(9):1633-8.
    8.Stepensky D,Tzehoval E,Vadai E,et al.O-glycosylated versus non-glycosylated MUC1-derived peptides as potential targets for cytotoxic immunotherapy of carcinoma.Clin Exp Immunol.2006 Jan;143(1):139-49.
    9.Hilkens J,Vos HL,Wesseling J,et al.Is episialin/MUC1 involved in breast cancer progression? Cancer Lett.1995 Mar 23;90(I):27-33.
    10. Nitta T, Sugihara K, Tsuyama S, et al. Immunohistochemical study of MUC1 mucin in premalignant oral lesions and oral squamous cell carcinoma: association with disease progression, mode of invasion, and lymph node metastasis. Cancer. 2000 Jan 15;88(2):245-54.
    11. Wang JY, Chang CT, Hsieh JS, et al. Role of MUC1 and MUC5AC expressions as prognostic indicators in gastric carcinomas. J Surg Oncol. 2003 Aug;83(4):253-60.
    12. Nakagawa K, Akagi J, Takai E, et al. Prognostic values of MUC-1 molecule expressing cytokine receptor-like epitope and DF3 in patients with gastric carcinoma. Int J Oncol. 1999 Mar;14(3):425-35.
    13. Brayman M, Thathiah A. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod Biol Endocrinol. 2004 Jan 7;2:4.
    14. Li X, Wang L, Nunes DP, Troxler RF, et al. Suppression of MUC1 synthesis downregulates expression of the epidermal growth factor receptor. Cancer Biol Ther. 2005 Sep;4(9):968-73.
    15. Li YS, Kaneko M, Sakamoto DG, et al. The reversed apical pattern of MUC1 expression is characteristics of invasive micropapillary carcinoma of the breast. Breast Cancer. 2006;13(1):58-63.
    16. Imbert Y, Darling DS, Jumblatt MM, et al. MUC1 splice variants in human ocular surface tissues: Possible differences between dry eye patients and normal controls. Exp Eye Res. 2006 Sep;83(3):493-501.
    17. Danielczyk A, Stahn R, Faulstich D, et al. A potent new generation anti-tumour MUC1 antibody. Cancer Immunol Immunother. 2006 Feb 17:16-33.
    18. Apostolopoulos V, Yuriev E, Ramsland PA, et al. A glycopeptide in complex with MHC class I uses the GalNAc residue as an anchor. Proc Natl Acad Sci. 2003 Dec 9; 100(25): 15029-34.
    19. Barnd DL, Lan MS, Metzgar RS, et al. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci. 1989 Sep;86(18):7159-63.
    20. Akewanlop C, Watanabe M, Singh B,et al. Phagocytosis of breast cancer cells mediated by anti-MUC-1 monoclonal antibody, DF3, and its bispecific antibody. Cancer Res. 2001 May 15;61(10):4061-5.
    21. Chan AK, Lockhart DC, von Bernstorff W, et al. Soluble MUC1 secreted by human epithelial cancer cells mediates immune suppression by blocking T-cell activation. Int J Cancer. 1999 Aug 27;82(5):721-6.
    22. Mukherjee P, Ginardi AR, Madsen CS, et al. MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment. Glycoconj J. 2001 Nov-Dec;18 (11-12): 931-42.
    23. Agrawal B, Longenecker BM. MUC1 mucin-mediated regulation of human T cells. Int Immunol. 2005 Apr;17(4):391-9.
    24. Koido S, Nikrui N, Ohana M, et al. Assessment of fusion cells from patient-derived ovarian carcinoma cells and dendritic cells as a vaccine for clinical use. Gynecol Oncol. 2005 Nov;99(2):462-71.
    25. Burke PA, Gregg JP, Bakhtiar B, et al. Characterization of MUC1 glycoprotein on prostate cancer for selection of targeting molecules. Int J Oncol. 2006 Jul;29(1):49-55.
    26. Apostolopoulos V, Pietersz GA, Tsibanis A, et al. Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1. Breast Cancer Res. 2006 Jun 15;8(3):R27.
    27. Nicholson S, Bomphray CC, Thomas H, et al. A phase I trial of idiotypic vaccination with HMFG1 in ovarian cancer. Cancer Immunol Immunother. 2004 Sep;53(9):809-16.
    28. Agrawal B, Krantz MJ, Reddish MA, et al. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat Med. 1998 Jan;4(1):43-9.
    29. Agrawal B, Krantz MJ, Parker J, et al. Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res. 1998 Sep 15;58(18):4079-81.
    30. Agrawal B, Gendler SJ, Longenecker BM. The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol Med Today. 1998 Sep;4(9):397-403.