普通小麦(Triticum aestivum L.)与黑麦(Secale cereale L.)异源多倍体及异染色体系的分子细胞学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是世界上重要的粮食作物之一。然而由于长期小麦品种间的杂交选育,使小麦栽培种对生物和非生物胁迫的抗耐能力严重下降。小麦的野生近缘植物中往往含有栽培小麦所短缺的优良性状,如对病虫害的高度抗性、对逆境的更强耐受力,巨大的产量潜力等,因此,植物遗传育种工作者都致力于将这些外源有益性状导入到栽培种中。目前,将小麦近缘物种优良性状导入普通小麦主要通过小麦远缘杂交途径来实现。远缘杂交是作物品种改良的重要途径,同时也是研究物种间亲缘关系、系统发育、进化程度的常用方法。而黑麦(Secale cereals L.)是最早也是最成功地用于改良小麦的近缘植物之一。
     本实验用普通小麦品种“中国春”(Chinese Spring)和“绵阳11”(Mianyang11)与二倍体黑麦AR106BONE、Kustro、荆州黑麦(Jinzhou)以及Secale.Vavilorii进行杂交,获得Chinese Spring×AR106BONE(CA),Chinese Spring×Jinzhou(CJ),Mianyang11×AR106BONE(MA),Mianyang11×Kustro(MK)和Mianyang11×S.vavilovii(MSV)这五个组合的双二倍体和一些回交后代。采用细胞学和分子生物学方法对这五个组合的杂种F1代,以及加倍后的自交S1代,自交S2代和S3代分单株进行染色体结构和基因组序列变化分析,得到以下一些新的结果:
     1.用黑麦端部/亚端部特异重复序列pSc200为探针,与黑麦亲本及其自交世代的根尖细胞中期染色体进行荧光原位杂交,发现黑麦染色体端部或亚端部结构从S1代就开始发生剧烈改变,在不同的组合中,表现为pSc200序列的增加或减少,这表明在新合成的小麦-黑麦异源多倍体中,染色体端部结构的变化一方面是为了增大部分同源染色体之间的差异以保证正常的二倍体减数分裂行为,另一方面也要防止两个不同的基因组之间差异过大,以保证两个基因组在同一个核中协调存在。
     2.本研究观察到在小麦-黑麦异源多倍体中,小麦与黑麦基因组间发生了低频率的染色体片段易位的现象。可分为以下三种类型:(1)黑麦染色体端部DNA片段易位到小麦着丝粒区域;(2)黑麦染色体端部DNA片段易位到小麦端部区域:(3)小麦黑麦染色体发生臂间易位。而这些易位现象很可能发生在体细胞中。这种现象在前人的这类研究中还未见报道。
     3.在MSV,MK及CA这三个组合的杂交后代植株中,发现了小麦-黑麦杂交后代染色体的不均等分离。主要有以下三种情况:(1)在小麦-黑麦杂交后代减数分裂过程中,小麦染色体和黑麦染色体都可能发生不均等分离;(2)对于来自不同杂交组合的后代,发生减数不均等分离的时期不同;(3)在MSV的后代中还发现了根尖细胞染色体的不均等分离现象。这种现象在前人的这类研究中还未见报道。
     4.本研究中,从MK回交后代中准确鉴定出了2R、4R、5R单体附加系。其中,4R单体附加系表现出高抗蚜虫特性、5R单体附加系表现出对白粉病免疫,因此确定这两条黑麦染色体上分别带有蚜虫抗性基因和白粉病抗性基因,且抗性基因能在小麦遗传背景中表达。本研究所鉴定的材料为小麦育种提供了新的病虫害抗源。
     5.本研究对随机挑选的8对小麦EST-SSR引物在F1、S1和S2植株及其亲本植株中的扩增产物进行测序,获得两种结果:(1)两亲本编码序列都出现在杂交后代植株中;(2)亲本编码序列在杂交后代中缺失:在各杂交组合中,有的位点缺失了黑麦亲本编码序列,有的位点则缺失小麦亲本编码序列;并且,这种缺失在时间上也有所不同,有的缺失从加倍前的F1代开始,有的则在加倍后的自交S1代才开始。这可能是两个亲缘关系较远的基因组为在同一核中协调共存的需要。
     此外,通过序列比较发现,杂交后代植株在继承亲本编码序列的同时,也发生了序列变异,且在少数位点发生了两亲本编码序列的重组,这表明在小麦-黑麦异源多倍化过程中或在异源多倍体形成后,产生了新的编码序列。产生新编码序列的方式包括碱基替换,序列重复和序列重组。这一现象可能意味着异源多倍化是促进新基因产生的一个重要动力。
     本研究对于理解异源多倍体物种形成及进化提供了一定的理论参考意义,在应用上,则为小麦育种提供新的病虫害抗源。
Wheat(Triticum aestivum L.) is one of the most important crops worldwide. Nowadays,the wheat cultivars have been lossing the tolerance to biotic and abiotic stresses because of the inter-hybridization among the wheat cultivars.Wild relatives of common wheat carry plenty of valuable genes for improvement of cultivated wheat,such as disease resistance,insect resistance,broad adaptation,high yields,and yield stability,etc.Wheat breeders have been trying their best to introduc alien elite gene into wheat cultivars.Wide hybridization is an important way by which wheat cultivars are improved.In addition,wide hybrids are useful for the study on species evolution and phylegenesis.Of these wide relatives,rye(Secale cereale L.) is the earliest and extensively used alien introgressions in wheat breeding programs.
     In present study,two common wheat 'Chinese Spring' and 'Miangyangl l'were used to hybrid to diploid rye 'AR106BONE','Kustro','Jingzhou-heimai'and S.Vavilovii. Molecular and cytologic methods were used to analysis the F1 plants,the first generation plants after chromosome boubling(S1),the second generation plants after chromosome boubling(S2) and the third generation plants(S3),which were derived from five combinations including Chinese Spring×AR106BONE(CA),Chinese Spring×Jinzhou (CJ),Mianyangll×AR106BONE(MA),Mianyangll×Kustro(MK) and Mianyangll×S.vavilovii(MSV).The following new results were obtained:
     1.Rye telomeric/subtelomeric repeat DNA pSc200 was used to hybridize root-tip metaphase cells of parental rye,S1 paints,S2 plants and S3 plants.The drastic variation of rye telomere/subtelomere initiated in S1 plants.Both elimination and expansion of pSc200 can occur during allopolyploidization,and the genetic backgrounds of parents determine which one will occur.A possible role for the alteration of parental-specific DNA repeats upon allopolyploids is to satiafy with diploid-like meiosis and to mitigate the genomic incompatibility of parental genomes that would otherwise be too divergent for harmonious coexistence and coordination.
     2.Low-frequency cheomosome translocation between wheat and rye was observed in wheat-rye allopolyploids.Three translocation patterns occurred:(1) rye-telomeric segments were translocated to wheat centromere;(2) rye-telomeric segments were translocated to wheat telomere;(3) translocation occurred on intercalary regions of chromosomal arm between wheat and rye.These translocation events perhaps occurred in somatic cells and this phenomenon was not reported before.
     3.Unbalanced segregation of chromosomes in wheat-rye allopolyploids derived from MSV,MK and CA combinations occurred.Three unbalanced segregation pattern were observed:(1) both wheat and rye chromosomes underwent unbalanced segregation during meiosis;(2) for different combination,unbalanced segregation occurred in different generation;(3)unbalanced segregation of rye chromosome also occurred in root-tip cells of allopolyploids derived from MSV combination and this phenomenon was not reported before.
     4.2R,4R and 5R monosomic addition lines were detected from backcross plants derived from MK combination.4R monosomic addition line exhibited aphid resistance and 5R monosomic addition line was immune to powdery mildew.These results indicate the chromosomes 4R and 5R carry resistance gene to aphid and powdery mildew, respectively.These monosomic addition lines are useful for wheat improvement.
     5.Some sequences amplified by eight randomly selected wheat EST-SSR from F1,S1 and S2 allopolyploidy plants were sequenced.Two results were obtained:(1) both wheat and rye parental coding sequences were transfen'ed into F1,S1 and S2 plants;(2) parental coding sequences were eliminated from progeny:in different combination, only rye parental coding sequences eliminated at some loci,or only wheat parental coding sequences eliminated at the other loci;some sequence elimination initiated in F1 generation and some sequence elimination initiated in S1 generation.This kind of sequence elimination is to mitigate the genomic incompatibility of different parental genomes for harmonious coexistence and coordination.In addition,sequence alignment revealed that parental coding sequences have altered in progeny and a few sequences have recombined between wheat and rye.These results indicate that new coding sequences were produced during allopolyploidization.New coding sequences were produced by base substitution,sequence repeat and recombination.This phenomenon may imply that allopolyploidization can promote the production of new gene.
     The results obtained in present offer some new references for the study on allopolyploidy evolution and provide some new resistance resources to wheat breeding program.
引文
蔡得田,袁隆平,卢兴桂.二十一世纪水稻育种新战略Ⅱ.利用远缘杂交和多倍体双重优势进行超级稻育种.作物学报,2001,27(1):110-116.
    陈佩度.植物染色体工程.植物遗传理论与应用研讨会文集.1990,pp26-33.
    陈佩度,王兆悌,王苏玲等.将大赖草种质转移给普通小麦的研究Ⅲ.抗赤霉病异附加系的选育,遗传学报,1995,22(3):206-210.
    董玉琛.中国小麦遗传资源.中国农业出版社.1998.
    樊路,李军辉.普通小麦外源有益基因易位导入不同方法的评述.北京农业科学,1999,17(2):1-5.
    傅杰,陈漱阳,张安静等.八倍体小滨麦与普通小麦杂交后代的细胞遗传学研究.1996,23(1):24-31.
    桂琴,徐延浩,王建波.多倍体植物中基因表达模式的变化.武汉植物学研究.2007,25(2):198-202.
    胡含.非Robertsonian类型小黑麦易位系的研究.遗传,2001,23(1):62-63.
    李爱霞,亓增军,裴自友等.普通小麦辉县红-荆州黑麦异染色体系的选育及其梭条花叶病抗性鉴定.作物学报.2007,33(4):639-645.
    李军辉,李思敏,樊路.远缘杂交在转移有益基因创造小麦新种质中的潜力.植物遗传资源科学.2002,3(1):61-64.
    李晓燕,王曙光,李瑞等.黑麦优良基因在小麦育种中的应用.山西农业科学,2007,35(10):15-19.
    李振声,容珊,钟冠昌等.小麦远缘杂交,科学出版社.1985.
    梁正兰.棉花远缘杂交的遗传与育种.北京:科学出版社.1999,1-17.
    刘大钧.外源基因在小麦育种中的利用.作物杂志,1994,(6):1-7.
    刘大钧,齐莉莉,陈佩度等.导入小麦的外源染色体片段的准确鉴定及外源抗性基因的稳定性分析.遗传学报,1996,23(1):18-23.
    刘登才.将秦岭黑麦遗传物质导入普通小麦的研究,四川农业大学学报,2002,20(2):75-77.
    刘文轩,陈佩度,刘大钧.利用减数分裂期成株电离辐射选育小麦-大赖草易位系的研究.植物学报,1999,41:463-467.
    卢宝荣,刘继红.染色体组分析及小麦族的系统学.植物学通报,1992,9(1):26-31.
    陆瑞菊,陈佩度,刘大均.将大赖草种质转移给普通小麦的研究Ⅳ:通过花药培养选育双重二体异附加系和代换-附加系.南京农业大学学报,1995,18(4):1-6.
    牟金川,李集临,王献平等.异源细胞质小麦一中间偃麦草易位系的培育与荧光原位杂交鉴定,科学通报,2000,45:297-300.
    亓增军,庄丽芳,刘大钧等.将荆州黑麦种质导入栽培小麦的研究.南京农业大学学报,2000,23(4):1-4.
    任正隆.遗传转移的MADI过程,四川农业大学学报,1990,8(1):1-8.
    任正隆.黑麦种质导入小麦及其在小麦育种中的利用方式,中国农业科学,1991,24(3):18-25
    任正隆,张怀琼.一个改良的染色体C带技术,四川农业大学学报,1995,13(1):1-5.
    任正隆,张怀琼.小麦-黑麦染色体小片段易位的诱导.中国科学(C辑),1997,27(3):258-263.
    任正隆,张怀琼,付体华等.高产、抗病、抗衰老的小麦新品种--川农12和川农17。麦类作物学报.2003,23(3):97.
    沈季孟,樊路,邓景扬.带有中间偃麦草抗白粉病基因的普通小麦一中间偃麦草单体异附加系的培育。北京农业科学,1996,14(1):19-21.
    石丁溧,傅体华,任正隆.抗条锈病小麦中间偃麦草二体异附加系的选育和鉴定.西南农业学报.2008,21(5):1308-1312.
    唐宗祥,符书兰,任正隆等.黑麦端部特异重复序列pSc200在新合成的不同小麦-黑麦双二倍体中的变异.中国农业科学,2008,41(11):3477-3481.
    吴金华,吉万全,李凤珍.黑麦在小麦改良中的应用研究进展.麦类作物学报,2005,25(1):115-119.
    吴金华,王长有,王秋英等.小麦-黑麦二体异附加系分子细胞遗传学鉴定.西北植物学报.2008,28(1):59-64.
    王静,王献平,纪军等.小麦-黑麦1RS/1BL新易位系的创制和分子细胞遗传学鉴定.作物学报.2006,32(1):30-33.
    王美芳,原国辉,陈巨莲等.麦蚜发生危害特点及小麦抗蚜性鉴定的研究.河南农业科学.2006,(7):58-60.
    王志国,安调过,李俊明等.小偃6号背景下黑麦遗传物质的荧光原位杂交分析.植物学报.2004,46(4):436-442
    薛秀庄,王翔正,许喜堂等.利用染色体工程选育抗条锈小麦新种质.《中国小麦育种研究进展》,庄巧生,杜振华主编,农业出版社.1996,pp361-366.
    张怀琼,任正隆.黑麦抗条锈基因对小麦高产品种绵阳11的直接转移.四川农业大学学报,2001,19(3):193-196.
    张怀渝、任正隆.黑麦染色质诱导小麦群体数量性状变异及特异株系的选育.四川大学学报,2001,19(4):415-418.
    张怀渝,任正隆.威岭栽培黑麦抗白粉病特性导入小麦的研究.分子细胞生物学报.2007,40(1):31-40.
    张学勇.普通小麦外源易位系的产生及利用.遗传,1991,13(5):39-44.
    张文俊.分子标记技术定位黑麦6R染色体上的抗小麦白粉病基因.科学通报.1995,40(24):2274-2276.
    张正斌.小麦遗传学,北京:中国农业出版社.2001.
    钟少斌,徐杰.用C-带技术识别小麦21对染色体及染色体结构变异.遗传学报,1989,16(6):415-419.
    庄勇,陈龙正,杨寅桂等.植物异源多倍体进化中基因表达的变化.植物学通报2006,23(2):207-214.
    Adams KL,Cronn R,Percifield R et al.Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing.Proc Natl Acad Sci USA.2003,100:4649-4654.
    Adams KL,Percifield R,Wendel JF.Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid.Genetics,2004,168:2217-2226.
    Adams KL,Wendel JF.Polyploidy and genome evolution in plants.Curr Opin Plant B iol.2005,8:135-141.
    Alkhimova OG,Mazurok NA,Potapova TA et al.Diverse patterns of the tandem repeats organization in rye chromosomes.Chromosoma,2004,113:42-52.
    Anderson GR,Papa D,Peng J et al.Genetic mapping of Dn7,a rye gene conferring resistance to the Russian wheat aphid in wheat.Theor.Appl.Genet.2003,107:1297-1303.
    Arnold M1.Natural hybridization and evolution.1997,Oxford Univ.Press.New York.
    Blanc G,Hokamp K,Wolfe KH.A recent polyploidy superimposed on older large-scale duplications in the Arabldopsis genome.Genome Res.2003,13:137-144.
    Brettell RIS,Banks PM,Cauderon Y et al.A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol. 1988,113:599 - 603.
    Cai XW, Jones SS, Murray TD. Characterization of an Agropyrum elongatum chromosome conferring resistance to cephalosporium stripe in common wheat. Genome, 1996, 39:56-62.
    Carver BF and Rayburn AL. Comparison of Related Wheat Stocks Possessing 1B or 1RS. 1BL Chromosomes: Agronomic Performance. Crop Science, 1994, 34: 1505-1510.
    Chen JF, Luo XD, Qian CT et al. Cucumis monosomic alien addition lines: morphological,cytological, and genotypic analyses. 2004, 108: 1343-1348.
    Chen X, Salamini R, Gebhardt C. A potato molecularfunction map for carbohydrate metabolism and transport. Theor. Appl. Genet. 2001,102: 284-295.
    Comai L, Anand P, Tyagi AP et al. Phenotypic instability and rapid gene silencing in newly formed arabidopsis allotetraploids. The Plant Cell,2000,12: 1551-1567.
    Cordeiro GM, Casu R, McIntyre CL et al. Microsatellite markers from sugarcane(Saccharum spp.) ESTs cross transferable to etianthus and sorghum . Plant Sci, 2001,160: 1115-1123.
    Decroocq V, Fave MG, Hagen L et al. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet. 2003,10 6: 912-922.
    Dong ZY, Wang YM, Zhang ZJ et al. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor. Appl. Genet. 2006, 113: 196-205.
    Driscoll CJ and Jensen NF. Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistance. Crop Sci. 1965, 5: 279-280.
    Dubcovsky J, Lukaszewski AJ ,Echhaide M et al. Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and green bug resistance genes. Crop Sci. 1998 ,381: 1655-1660.
    Du Toit F. Resistance in wheat {Triticum aestivum) to Diuraphis noxia (Homoptera:Aphididae). Cereal Res. Commun. 1987, 15: 175-179.
    Du Toit F, Wessels WG, Marais GF. The chromosome arm location of the russian wheat aphid resistance gene, Dn5. Cereal Res. Commun. 1995, 23: 15-17.
    Endo TR. Chromosome mutations induced by gametocidal chromosomes in common wheat. In Proc 7th Intern. Wheat Genet Symp. 1988, Cambridge, UK, 259-265.
    Feldman. Cytogenetics and molecular approaches to alien gene transfer in wheat. In Proc 7th Intern. Wheat Genet Symp. 1988, Cambridge, England, pp23-32.
    Feldman M , Liu B , Segal G et al. Rapid elimination of low-copy DNA sequencesIn polyploidy wheat: A possible mechanism for differentiation of homoeologous chromosomes. Genetics,1997, 147: 1381-1387.
    Friebe B, Jiang JM, Raupp WJ et al. Characterization of wheat-alien translocations conffering resistance to diseases and pests: current status, Euphytica, 1996, 91:59-87.
    Friebe B, Jiang JM, Gill BS et al. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet. 1993, 86: 141-149.
    Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Br(?)β, Kumlehn J, Matzk F,Houben A. Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millt crosses involves micronucleus formation, progressive heterochromatinization, and fragmentation. The Plant Cell. 2005, 17: 2431-2438.
    Gleba YY, Parokonny A, Kotov V, Negrutiu I, Momot V. Spatial separation of parental genomes in hybrids of somatic plants cells. Proc. Natl. Acad. Sic. USA, 1987, 84:3709-3713.
    Gill BS, Friebe B, Endo TR. Standard karyo type and nomenclature system for discription of chromosome band and structural aberrations in wheat (Triticum aestivum). Genome,1991, 34: 830-839.
    Gustafson JP, Dera AR. Alien gene manipulation and expression in wheat. Genome, 1989,31:134-136.
    Han FP, Fedak G, Quellet T et al. Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome, 2003, 46: 716-723.
    Han FP, Liu B, Fedak G et al. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor. Appl. Genet. 2004, 109: 1070-1076.
    Han FP, Fedak G, Guo W et al. Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics,2005,170:1230-1245.
    Harvey TL,Martin TJ.Resistance to Russian wheat aphid,Diuraphis noxia,in wheat (Triticum aestivum).Cereal Res.Commun.1990,18:127-129.
    He P,Friebe BR,Gill BS et al.Allopolyploidy alters gene expression in the highly stable hexaploid wheat.Plant Mol Biol.2003,52:401-414.
    Holton TA,Christopher JT,Meclure L et al.Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat.Mot.Breed.2002,9:63-71.
    Hua YW,Liu M,Li ZY.Parental genome separation and elomination of cells and chromosomes revealed by AFLP and GISH analyses in a Brassica napus × Orychophragmus violceus cross.Ann.Bot.2006,97:993-998.
    Jiang J,Chen P,Friebe B.Alloplasmic w heat-Elymus ciliaris chromosome addition lines.Genome,1993,37:327-333.
    Jiang JM,Friebe B,Gill BS.Recent advances in alien gene transfer in wheat.Euphytica,1994,73:119-122.
    Kashkush K,Feldman M,Levy AA.Gene loss,silencing and activation in a newly synthesized wheat allotetraploid.Genetics,2002,160:1651-1659.
    Kishii M,Yamada T,Sasakuma T et al.Production of wheat-Leymus racemosus chromosome addition lines.Theor Appl Genet.2004,109(2):255-260.
    Knott DR.The inheritance from Agropyron elongatum to common wheat.Can J Plant Sci.1961,41:109-123.
    Lapitan NLV,Peng JH,Sharma V.A high-density map and PCR markers for Russian wheat aphid resistance gene Dn7 on chromosome 1RS/1BL.Crop Sci.2007,47:811-820.
    Lapitan NLV,Sears RG,Gill BS.Translocations and other kayrotypic structural changes in wheat×rye hybrids regenerated from tissue culture.Theor.Appl.Genet.1984,68:547-554.
    Lee HS,Chen J.Protein-coding genes are epigenetically regulated in Arabidopsis polyploids.Proc.Natl.hcad.Sci.USA.2001,98:6753-6758.
    Lee M,Phillips RL.The chromosomal basis of somaclonal variation.Annu Rev Plant Physiol.Plant Mol.Biol.1988,39:413-437.
    Leighty CE and Taylor JW. "Hairy neck" wheat segregated from wheat-rye hybrids. J Agr.Res. 1924, 28: 567-576.
    
    Leitch HS, Bennett MD. Polyploid in angiosperms. Trends Plant Sci. 1997, 2: 470-476.
    Levy AA, Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc. 2004, 82: 607-613.
    Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome, 1998, 41: 272-277.
    Liu B, Wendel JF. Epigenetic phenomena and the evolution of plant allopolyp loids. Mol Phylogenet Evol. 2003, 29: 365-379.
    Liu B, Wendel JF. Non-mendelian phenomena in allopolyploid genome evolution. Current Genomics. 2002, 3:489-505.
    Lukaszewski AJ, Porter DR, Baker CA et al. Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian Triticales to wheat. Crop Sci. 2001, 41:1743-1749
    Ma XF, Fang P, Gustafson JP. Polyploidization-induced genome variation in triticale.Genome, 2004, 47: 839-848.
    Ma XF, Gustafson JP. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet. Genome Res. 2005, 109: 236-249.
    Ma XF, Gustafson JP. Timing and rate of genome variation in triticale following allopolyploidization. Genome, 2006, 49: 950-958.
    Madlung A, Masuelli RW, Watson B et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol.2002, 129: 733-746.
    Marais GF,Horn M, Du Toit F. Intergeneric transfer (rye to wheat) of a gene (s) for Russian wheat aphid resistance. Plant Breed. 1994, 113:265-271.
    Masterson J. Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science. 1994, 264:421-424.
    McClintock B. The significance of responses of the genome to challenge. Science. 1984,226: 792-801.
    McIntosh RA, hart GE, Gale MD. Catalogue of gene symbols for wheat. In Proc 8th Intern.Wheat Genet Symp. 1993, Beijing, PP1333-1500.
    McKnight, TD, RihaK, ShippenDE. Telomeres, telomerase, and stability of the plant genome.Plant Mol. Biol. 2002, 48: 331-337.
    Mettin D, BluthnerWD, Schlegel G. Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations , In Proc 4th Intern. Wheat Genet Symp. Alien genetic material. 1973, Columbia, USA, ppl79-184.
    Mujeeb KA., Roldan S, Suh DY et al. Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome, 1987,29(4): 537-553.
    Mukai Y, EndoTR, Gill BS. Physical mapping ofth e 18S. 26S rRNA multigene family in common wheat: Identification o f a new locus. Chormosoma, 1991,100: 71-78.
    Newbury HJ. plant molecular breeding,Blackwell publishing Ltd. 2003,144.
    Nkongolo KK, Quick JS, Limin AE, et al. Sources and inheritance of resistance to Russian wheat aphid in Triticum species amphiploids and Triticum tauschii. Can. J. Plant Sci.1991a, 71:703-708.
    Nkongolo, K. K., Quick JS, Peairs FB, et al. Inheritance of resistance of PI372129 wheat to the Russian wheat aphid. Crop Sci. 1991b, 31:905-907.
    
    Nkongolo KK, Quick JS, Peairs FB, et al. Gene location for Russian aphid resistance of 'Imperial' rye using wheat-rye addition lines. Cereal Res Commun 1990, 18: 307-313.
    O'mara JG. Cytogenetic Studies on Triticale. I. A Method for Determining the Effects of Individual Secale Chromosomes on Triticum. Genetics. 1940, 25: 401-408.
    Ozkan H, Levy AA, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13:1735-1747.
    Pikaard CS . Genomic change and gene silencing in polyploids. Trends Genet. 2002, 17:657-677.
    Pires JC, Zhao JW, Schranz ME et al. Flowering time divergence and genomic rearrangements in resynthesized polyploids (Brassica ). Biol. J Linn Soc. 2004, 82: 675-688.
    Pontes O, Neves N, Silva M et al. Chromosomal locus rearrangements are a rapid response to formation of the allotetrap loid Arabidopsis suecica genome. Proc. Natl. Acad.Sci. USA. 2004, 101: 18240-18245.
    Riley R, Miller TE. Meiotic chromosome paring in Triticale. Nature, 1970, 227: 82-83.
    Roose ML and Gottlieb LD. Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution, 1976,30: 817-830.
    Roy AK, Malaviya DR, Kaushal P et al. Interspecific hybridization of Trifolium alexandrinum with T. constantinopolitanum using embryo rescue. Plant Cell Rep. 2004,22: 705-710.
    Sachs L. Chromosome mosaics in experimental amphiploids in the Triticinae. Heredity,1952, 6, 157-170.
    Salina EA, Numerova OM, Ozkan H et al. Alteration in subtelomeric tandem repeats during early atages of allopoplyploidy in wheat. Genome. 2004, 47: 860-867.
    Scherthan H, Weich S, Schwegler H et al. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing.J. Cell Biol. 1996, 134:1109-1125.
    Schwarzacher T, Anamthawar-Jons son K, Harrison GE et al. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor. Appl. Genet. 1992,84: 778-786.
    Schwarzacher T, Heslop-Harrison JS, Ananthawat-Jonsson K et al. Parental genome separation in reconstructions of somatic and premeiotic metaphases of Hordeum vulgare X H. bulbosum. J. Cell Sci. 1992, 101: 13-24.
    Sears ER. The transfer of leaf rust resistance from Aegilops umbellulata to wheat .Brookhaven Symp. Biol. 1956 ,9 .1-21.
    Sears ER. Transfer of alien genetic material to wheat. Wheat science - today and tomorrow.Cambridge University Press., Cambridge, UK: 1981. 75-89.
    Seoighe C. Turning the clock back on ancient genome duplication. Curr Opin Genet Dev.2003, 13: 636-643.
    
    Shaked H, Kashkush K, Ozkan H et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant J. 2001, 13: 1749-1759.
    Shan XH, Liu ZL, Dong YZ et al. Mobilization of the active MITE transposons mPing and Pong in rice by Introgression from wild rice(Zizania latifolia griseb.). Mol. Biol. Evol. 2005, 22: 976-990.
    ShigyoM, WakoT, Kojima A et al. Transmission of alien chromosomes from selfed progenies of a complete set of Allium monosomic additions: the development of a reliable method for the maintenance of a monosomic addition set. Genome. 2003. 46: 1098-1103.
    Soltis DE, Soltis PS. The dynamic nature of polyploidy genomes. Proc. Natl. Acad. Sci.USA. 1995, 92(18): 8089-8091.
    Soltis DE, Soltis PS, Tate JA. Advances in the study of polyploidy since Plant speciation.New Phytologist. 2003,161: 173-191.
    Song KM, Liu P, Tang KL et al. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. USA. 1995, 92(17):7719-7723.
    Taylor C, MadsenK, BorgS et al. The development of sequence-tagged sites(STSs) in Lolium perenne L. :the applacation of primer sets derived from other genera. Theor. Appl. Genet.2001,103:648-658.
    Thiel T, Michalek W ,Varshney RK et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor.Appl. Genet. 2003,106: 411-422.
    Vershinin AV, Schwarzacher T, Heslop-Harrison JS. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. The Plant Cell, 1995,7: 1823-1833.
    Villareal RL, Rajaram S, Mujeeb KA et al. The effect of chomosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breeding,1991, 106: 77-81.
    Wang J, Tian L, Madlung A et al. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics, 2004, 167: 1961-1973.
    Wendel JF. Genome evolution in PolyPloids. Plant Mol Biol. 2000, 42: 225-249.
    
    Xue SL, Zhang ZZ, Lin F et al. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet. 2008,117: 1432-2242.
    
    Zeller, FJ. 1B/1R wheat-rye chromosome substitutions and translocations. In Proc 4th Intern. Wheat Genet Symp. Alien genetic material. 1973, Columbia, USA, pp209-221.
    Zhang P, Li WL, Friebe B et al. The origin of a "Zebra" chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromsonie evolution and step changes in chromosome number. Genetics. 2008, 179:1169-1177.
    
    Zhao ZG, Ma N, Li ZY. Alteration of chromosome behavior and synchronization of parental chromosomes after successive generations in Brassica napus X Orychophragmus violceus hybrids. Genome. 2007, 50: 226-233.
    
    Zhong SB, Zhang DY, Li HB et al. Identification of Haynaldia villosa chromosomes added to wheatusing a sequential C-banding and genomic in situ hybridization technique.Theor.Appl. Genet. 1996, 92: 116-120.