乙烯调控对大豆营养生长与生殖生长影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要以大豆(Glycine max(L.)merrill)品种铁丰31为试验材料,研究了大豆生长发育过程中内源乙烯释放规律和乙烯生物合成限速酶1-氨基环丙烷-1-羧酸合酶(ACS)基因的表达特征,并通过乙烯生成的促进剂1-氨基环丙烷1-羧酸(ACC)和抑制剂氨基乙氧基乙烯甘氨酸(AVG)的处理,以及利用线性基因的瞬时表达体系和RNA干扰技术研究了乙烯在大豆生长发育过程中的生理功能。
     (1)对大豆不同生长发育时期和盛花期不同组织器官乙烯释放量及其生物合成限速酶ACS基因的表达特征的研究表明,ACS基因在大豆的整个生命周期和不同组织器官中都有表达,但其表达量存在着明显的差异。乙烯释放特征研究的结果表明,乙烯释放量在大豆开花后期高于大豆营养生长期,在大豆花荚脱落期,乙烯释放量明显增加,在大豆的完熟期,乙烯的释放量达到最大值;大豆植株相对衰老的组织较幼嫩的组织或器官乙烯释放量更大。乙烯生物合成限速酶ACS基因的表达丰度和乙烯生成呈明显正相关。利用乙烯合成的促进剂ACC和抑制剂AVG对大豆苗期喷施的结果表明,AVG可促进大豆植株的营养生长,且大豆的生育期被提前。AVG处理明显提高了大豆幼苗叶片净光合速率、蒸腾速率和气孔导度,降低了胞间CO_2浓度;明显提高了光饱和点、光饱和光合速率、表观量子效率、CO_2饱和点、羧化效率、RuBP最大再生速率,同时,降低了光补偿点和CO_2补偿点。此外,AVG处理还提高了生物量和叶面积,但降低了叶绿素含量与气孔密度。以上结果表明,外源AVG处理能改善大豆幼苗叶片的光合性能。ACC处理的效果则与AVG相反。
     (2)在大豆种子萌发过程中,胚根突破种皮和下胚轴伸长的两个关键时期,ACS基因大量表达,酶活相应提高,乙烯大量释放。乙烯促进剂和抑制剂对大豆种子萌发的研究结果表明,AVG处理后乙烯的释放被显著抑制,同时能够促进下胚轴的伸长生长,但是对于大豆的干重没有显著影响,同时下胚轴组织中Zn~(2+)的含量明显增加;而ACC处理的效果与AVG相反。
     (3)通过不同浓度乙烯抑制剂AVG和促进剂ACC对大豆花形态、花粉性状及单株产量特征等的研究结果表明,供试品种经AVG处理后,与对照相比,成花量、花的长度、花瓣长度、雄蕊柱长、花粉量、花粉管长度、秸杆重、单株荚数和单株产量有明显增加,花粉败育率下降,ACC处理的效果与AVG相反。两种处理对大豆花粉萌发率无明显影响。花粉扫描电镜结果显示,AVG处理的花粉长度增加,ACC处理的花粉部分出现扭曲与变形。
     (4)通过洋葱下表皮和大豆子叶节部位最小线性表达框的直接转化,实现了线性元件在洋葱下表皮和大豆子叶节部位的基因瞬时表达。GUS基因的瞬时表达和5'-FITC标记DNA的示踪,表明外植体的高渗预处理有利于线性DNA的直接转化和瞬时表达;向转化缓冲液中添加包括Ca~(2+),表面活性剂和农杆菌LBA4404的细胞培养物也有利于提高基因的瞬时表达效率。FITC-DNA的荧光显微镜观察结果表明,外植体于黑暗培养3h后通过线性DNA基本转化缓冲液的转化,共培养72h后,细胞核中能观察到较强的荧光强度。流式细胞技术检测表明在以MS液体培养基为基本转化缓冲液的条件下,线性DNA的入核效率仅为0.02%,当基本缓冲液同时添加Ca~(2+)、Dow Corning Q2-5211和农杆菌细胞培养物时,入核效率由0.02%增加至54.85%。
     (5)构建大豆ACC合酶基因GMACS保守区域的RNA干扰(RNAi)载体,进行了大豆子叶节部位线性ACS-RNAi基因表达框的转化和瞬时表达研究,PCR、RT-PCR检测和瞬时表达结果表明,线性ACS基因的表达框转化进入大豆子叶节部位。转化后子叶节部位乙烯的释放和ACS基因的表达被抑制,形态学观察发现,与对照相比,转化处理的大豆子叶节部位能够分化出更多花芽。
     综上结果表明,乙烯直接影响大豆生长发育的全过程。大豆种子萌发过程中,乙烯的三重反应主要与乙烯调控的无机离子特别是Zn~(2+)的转运和生物有效性相关。抑制乙烯生成可以增强大豆的光合性能、促进营养生长、增加大豆的成花数量、提高大豆的产量,为大豆的高产栽培和育种提供了重要依据。
Plant growth and development have been affected by a wide range of environmental conditions.In order to meet the complex and ever-changing external conditions,the plant in the long-term evolution has developed a variety of gene expression system to regulate and adopt to cope with the challenge from environment.Modulation of ethylene biosynthesis of the plant is a fundamental physiological response to the fluctuations in the internal or external cues.The soybean cultivar Tiefeng-31 was used to study the effects of ethylene on the growth and development of soybean.Ethylene emission and the relative gene expression of 1-aminocyclopropane- 1-carboxylate synthase gene(ACS) were detected during the soybean growth and development;on the other hand,RNAi technology as well as ethylene regulator aminoethoxyvinylglycine(AVG) and 1-aminocyclopropane-1-carboxylic acid(ACC) were used to study the physiological function of ethylene during soybean seed germination and plant growth.
     (1) The ethylene production and the ACS gene expression were detected at different development stages and multiple soybean tissues,including vegetative and reproductive abscission zones and flanking tissues during full flowering stage of soybean.There is a significantly differences of ACS gene expression and ethylene emission at the different stages and different organs of soybean.The results showed that ethylene emission was at the late stage of the plant life cycle,and mainly produced by the aging organ.There is a maximum emission of ethylene at the soybean ripening period,especially before soybean harvest.The abundance of expression of ACS showed similar rules.Different concentrations of ethylene inhibitor AVG and promoter ACC were sprayed to soybean cultivar Tiefeng 31,and their effects on plant photosynthesis and CO_2 response curve were measured.The results showed that through the treatments of AVG,net photosynthetic rate,transpiration rate and stomatal conductance were significantly increased;intercellular CO_2 concentration were markedly decreased;light saturation point,photosynthetic rate at light saturation point,apparent quantum efficiency,CO_2 saturation point,carboxylation efficiency and maximum RuBP regeneration rate were markedly increased;light compensation point,CO_2 compensation point were significantly decreased.ACC,the precursor of ethylene showed an opposite effects. In addition,the chlorophyll contents were significantly enhanced.The results above indicated that AVG treatment could improve photosynthesis characteristics of soybean seedlings.And with the improvement of photosythesis characteristics,the plant height and the dry weight of seedlings were significantly enhanced by AVG treatment.The ACC treatment showed the opposite effects.
     (2) The relationship between ethylene production and metal mobilization and transport was investigated.Soybean seeds were incubated with or without inhibitors of ethylene synthesis AVG or in the presence of the natural ethylene precursor ACC,the ddH_2O as control. The kinetics of ethylene emissions,the ethylene key enzyme gene ACS expression,the ACS enzyme activity and the concentration and extractability of metal in axis tissues were measured.The results showed that the ACS gene relative expression,the ACS enzyme activity and ethylene evolution reached the peak value during the visible stage of germination (pericarp splitting) and the prolonging stage of the hypocotyls.Correspondingly,the Zn~(2+) concentration and extractability in axis tissues significantly increased.The concentration of Fe~(2+) and Mn~(2+) showed no obvious change before prolonging stage but declined at the 7~(th) day,and their extractability showed no rule change.The ethylene inhibitors inhibit the ethylene emission;promote the axis prolonging and Zn~(2+) concentration and HCl-extractability. The ACC showed the contrary effect.These findings suggested that,the triple response in soybean affected by ethylene may be regulated the concentration of Zn~(2+) into axis tissues from cotyledon or HCl-extractability in axis tissues.
     (3) Different concentrations of ethylene inhibitor AVG and promoter ACC were sprayed to soybean,and their effects on soyben flower traits,pollen morphology and yield were studied.Results showed that total number of flower,flower length,petal length, stamina column length,pollen quantity,pollen tube length,straw weight,pod number per plant and yield increased along with higher AVG concentration,while abortion ratio of pollen decreased.ACC,the precursor of ethylene showed an opposite effect.Both AVG and ACC treatments had no significant effects on pollen germination ratio.Scanning electron microscope(SEM) observation results showed that AVG treatments promoted pollen length,while distorted deformation occurred after ACC treatments.
     (4) A linear gene cassettes direct transformation method was developed and used in transient expression of a GUS reporter gene in onion epidermal cells and soybean cotyledon nod system,respectively.Linear gene cassette was labeled by 5'-fluorescent dye(fluorescein isothiocyanate,FITC) and its delivery pathway was traced.The basic transformation solution used was Murashige and Skoog basal salt mixture(MS) liquid medium.Hypertonic pretreatment of explants and transformation cofactors,including Ca~(2+),surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated.Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h,the onion low epidermal explants were pre-cultured in darkness at 27℃for 48h.After transformation for 3h,the explants were transferred to MS solid media for 72h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei.By GUS staining and flow-cytometry-mediated fluorescent detection,a significant increase of the ratios of fluorescent nuclei as well as expression of the GUS reporter gene was observed by each designed transformation solution.This potent and feasible method showed prospective applications in plant transgenic research.
     (5) RNAi vector of conservative region from ethylene biosynthesis limiting enzyme ACS gene was constructed.The liner DNA cassettes of RNAi-ACS acquired by PCR action was used as the transformation elements and the soybean cotyledon nod was transformed as the explants to study the effect of ethylene on flower bud differentiation of soybean.The results of PCR and RT-PCR showed that the linear RNAi-ACS gene cassettes have entered into the cotyledons node of soybean.Ethylene emission and ACS gene expression abundance was significantly inhibited after the cotyledon node was transformed.Compared with the control,more flower bud was differentiated at the cotyledon section.
     The above results showed that the ethylene affects soybean growth and development through its lifecycle.The typical ethylene triple response was relative with the Zn~(2+) concentration and extractability in axis tissues regulated by ethylene.And inhibition of ethylene in soybean increased soybean yields by improving photosynthesis characteristics, promoting the vegetable growth,and enhancing the forage quality and quantity.The results presented above provide a general theoretical basis for the soybean cultivation and breeding.
引文
[1]王连铮.国内外大豆生产的现状和大豆品种创新问题[J].中国食物与营养,2006,(7):6-9.
    [2]BLEECKER A B,KENDE H.Ethylene:a gaseous signal molecule in plants[J].Annu.Rev.Cell Dev.Biol.,2000,16:1-18
    [3]张兴文,任红玉,严红.大豆花荚败育及脱落的研究进展[J].大豆科学,2002,21(4):290-294.
    [4]ISELY D.Vigor tests[G].Proc.Assoc.Off.Seed Anal.,1957,47:176-182.
    [5]KOZAREWA I,CANTLIFFE D,NAGATA R T.High maturation temperature of lettuce seeds during development increased ethylene production and germination at elevated temperatures.J.Am.Soc.Hortic.Sci.,2006,131(4):564-570.
    [6]FEHR W R,CAVINESS C E,BURMOOD D T,et al.Stage of development descriptions for soybeans,Glycine max(L.) Merrill.Crop Sci.,1971,11:929-931.
    [7]NELSON C J,LARSON K L.Seedling growth[C].In:TESAR M B(Eds).Physiological basis of crop growth and development.Wisconsin:University of Wisconsin Press,1984:93-129.
    [8]WHIGHAM D K.Soybean[M],International Rice Research Institute.Potential productivity of field crops under different environments.IRR,Los Banos,Philippines,1983,205-225.
    [9]李葳,朱保葛,徐民新,等.矮杆和半矮杆大豆突变体植株生长对外源GA3的响应[J].作物学报,2008,34(7):1-7.
    [10]NONOKAWA K,KOKUBUN M,NAKAJIMA T,et al.Roles of auxin and cytokinin in soybean pod setting[J].Plant Prod.Sci.,2007,10(2):199-206.
    [11]柴国华.激素、逆境对大豆脱落纤维素酶基因表达的调控及其对花荚脱落的影响[D],西北农林科技大学,2006.
    [12]LEOPOLD L B,CLARKE F E,HANSHAW B B,et al.A procedure for evaluating environmental impact[J].In:US Geological Survey,Circular 645.Washington,1971.
    [13]李秀菊,孟繁静.植物激素在大豆生殖器官脱落过程中的变化[J].植物生理学报,1997,23(4):342-346.
    [14]王关林,方宏筠.植物基因工程(第2版)[M].北京:科学出版社,2002.
    [15]刘海坤,卫志明.利用根癌农杆菌介导转化大豆成熟种子胚尖获得转基因植株[J].植物生理与分子生物学学报,2004,(06):33-38.
    [16]林树柱,曹越平,卫志明.根癌农杆菌介导的大豆遗传转化[J].生物工程学报,2004,20(6):817-821.
    [17]卜云萍,李明春,胡国武,等.高山被孢霉Δ-6-脂肪酸脱氢酶基因转化大豆的研究[J].生物技术,2004,(03):18-20.
    [18]应珊,何晓薇,王秀荣,等.影响农杆菌介导的大豆转化效率的因素研究[J].分子植物育种,2008,6(1):32-40.
    [19]TRICK H N,FINER J J.Sonication-assisted Agrobacterium-mediated transformation of soybean[Glycine max(L.) Merrill]embryogenic suspension culture tissue[J].Plant Cell Rep.,1998,11:323-328.
    [20]XUE RG,XIE HF,ZHANG B.A multi-needle-assisted transformation of soybean cotyledonary node cells[J].Biotechnol.Lett.,2006,28(19):1551-1557.
    [21]OLHOFT P M,LIN K,GALBRAITH J,et al.The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells[J].Plant Cell Rep.,2001,20:731-737.
    [22]MCCABE D E,SWAIN W F,MARTINELL B J.Stable transformation of soybean by particle acceleration[J].Bio/Tech.,1988,6:923-926.
    [23]Schmidt M A,LaFayette P R,Artelt B A,et al.A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment[J].In Vitro Cell Dev.Biol.-Plant,2008,44(3):162-168.
    [24]MOORE P J,MOORE A J,COLLINS G B.Genotypic and developmental regulation of transient expression of a reporter gene in soybean zygotic cotyledons[J].Plant Cell Rep.,1994,13:556-560.
    [25]胡张华,刘智宏,郎春秀.影响大豆基因枪转化的几个参数[J].东北农业大学学报,1999,50(5):22.
    [26]龚学臣,季静,王罡,等.基因枪对大豆进行PSY基因的转化研究[J].大豆科学,2006,25(2):45-48
    [127]武小霞,李文斌,张淑珍.我国大豆转基因研究进展[J].大豆科学,2005,24(2):144-149.
    [28]GAO X R,WANG G K,SU Q,et al.Phytase expression in transgenic soybeans:Stable transformation with a vector-less construct[J].Biotechnol.Lett.,2007,29:1781-1787.
    [29]倪万潮,郭三堆,贾士荣.花粉管通道法介导的棉花遗传转化[J].中国农业科技导报,2000,2(2):27-32.
    [30]LIU JF,SU Q,AN LJ,et al.Transfer of a minimal linear marker-free and vector - free smGFP cassette into soybean via ovary-drip transformation[J].Biotechnol.Lett.,2008,31(2):295-303.
    [31]雷勃钧,李希臣,卢秀华,等.外源野生大豆DNA导入栽培大豆及RAPD分子验证[J].中国科学(B 辑),1994,24(6):596-601.
    [32]张国栋,赵长山.将外源DNA注入幼荚实现大豆遗传转化[J].大豆科学,1994,13(3):268-273.
    [33]刘德璞,廖林,袁鹰,等.导入外源DNA获得抗sMv大豆品系[J].大豆科学,1997,16(4):277-282.
    [34]练云,梁慧珍,王树峰,等.农杆菌介导大豆遗传转化研究进展及转基因作物现状[J].大豆科学,2009.28(3):531-536.
    [35]MARRA BM,SOUZA DS,AGUIAR JN,et al.Protective effects of a cysteine proteinase propeptide expressed in transgenic soybean roots[J].Peptides,2009,30(5):825-31.
    [36]南相日,刘文萍,刘丽艳,等.PEG介导BT基因转化大豆原生质体获得转基因植株[J].大豆科学,1998,17(4):326-329.
    [37]徐凤萍,杨君,程云清,等.smGFP最小化线性元件的直接渗透转化与瞬时表达[J].植物研究,2009,29(3):230-233.
    [38]竺晓平,刘金亮,田延平,等.瞬时表达比较马铃薯X病毒CP基因3种结构对RNA沉默的诱导效果[J].应用与环境生物学报,2007,13(1):1-4.
    [39]KHALAFALLA M M,RHAMAN S M,EL-SHEMY H A,et al.Optimization of particle bombardment conditions by monitoring of transient sGFP(S65T) expression in transformed soybean [J].Breed Sci.,2005,55:257-263.
    [40]刘栋,石强,李鹏丽,等.利用GUS基因瞬时表达对大豆子叶节和胚尖转化方法的比较及优化[J].生物学通报,2008,(12):35-39.
    [41]JOHNSON P R,ECKER I R.The ethylene gas signal transduction pathway:a molecular perspective[J].Annu.Rev.Genet.,1998,32:227-254.
    [42]CHAUHAN B S,GILL G,PRESTON C.Influence of environmental factors on seed germination and seedling emergence of Oriental mustard(Sisymbrium orientale)[J].Weed Sci.,2006,54:1025 - 1031.
    [43]BETTEY M and FINCH-SAVAGE W E.Enzyme activities during germination in Brassica seed lots of differing vigour[J].Seed Sci.Res.,2008,6:165-173.
    [44]王蕾.天山野生杏种子萌发和抗旱生理生态学研究[D].乌鲁木剂:新疆农业大学,2008.
    [45]汪天,王素平,郭世荣.外源乙烯对黄瓜幼苗根系生长及内源多胺含量的影响[J].沈阳:沈阳农业大学学报,2006,37(31):473-475.
    [46]王中凤,应铁进.番茄突变体Epinastits的乙烯反应表现型分析[J].植物生理与分子生物学学报,2004,30(1):27-33.
    [47]ALONSO J M,HIRAYAMA T,ROMAN G,et al.EIN2,a bifunctional transducer of ethylene and stress responses in Arabidopsis[J].Science,1999,284:2148-2152.
    [48]ALONSO J M,STEPANOVA A N,SOLANO R,et al.Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis [J].Proc.Natl.Acad.Sci.USA,2003,100:2992-2997.
    [49]KUCERA B,COHN MA,LEUBNER-METZGER G.Plant hormone interactions during seed dormancy release and germination[J].Seed Sci.Res.,2005,15:281-307.
    [50]MATILLA A J,MATILLA-VAZQUEZ M A.Involvement of ethylene in seed physiology[J].Plant Sci.,2008,175:87-97.
    [51]PETRUZZELLI L,HARREN F,PERRONE C,et al.On the role of ethylene in seed germination and early growth of Pisum sativum[J].J.Plant Physiol.,1995,145:83-86.
    [52]LASHBROOK C C,TIEMAN D M,KLEE H J.Differential regulation of the tomato ETR gene family throughout plant development[J].Plant J.,1998,15:243- 252.
    [53] LEUBNER-METZGER G, PETRUZZELLI L, WALDVOGEL R, et al. Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I b-1,3-glucanase during tobacco seed germination[J]. Plant Mol. Biol., 1998, 38:785 - 795.
    [54]SAINI H S, CONSOLACION E D, BASSI P K, et al. Control processes in the induction and relief of thermoinhibition of lettuce seed germination, Actions of phytochrome and endogenous ethylene [J]. Plant Physiol., 1989, 90:311-315.
    [55]SISLER E C, Serek M. Compounds interacting with the ethylene receptor in plants [J].Plant Biol., 2003, 5:473-480.
    [56]SISLER E C, GRICHKO V and SEREK M. Interaction of ethylene and other compounds with ethylene receptor: agonists and antagonists [M]. In: Ethylene action in plants,eds. Khan N A, Springer Berlin Heidelberg New York Press, 2006.
    [57] KEPCZYNSKI J, KEPCZYNSKA E. Ethylene in seed dormancy and germination [J]. Physiol. Plant.1997,101:720-726.
    [58] HALL M A, Moshkov I E, Novikova G V , et al. Ethylene signal perception and transduction:multiple paradigms [J]. Biol. Rev. Camb. Phil. Soc., 2001, 76:103-128.
    [59]KLEE H J. Ethylene signal transduction, moving beyond Arabidopsis [J]. Plant Physiol.,2004, 135:660-667.
    [60] STEPANOVA A N, ALONSO J M. Ethylene signaling and response pathway: A unique signaling cascade with a multitude of inputs and outputs [J]. Physiol. Plant, 2005, 123:195-206.
    [61] CERVANTES E, RODRIQUES A AND NICOLAS G. Ethylene regulate the expression of a cysteine proteinase gene during germination of chickpea (Cicer arietinum L. )[J]. Plant Mol.Biol., 1994, 25,207-215.
    [62]PETRUZZELLI L, KUNZ C, WALDVOGEL R, et al. Distinct ethylene and tissue-specific regulation of b-1, 3-glucanases and chitinases during pea seed germination[J]. Planta,1999, 209:195-201.
    [63] PETRUZZELLI L, CORAGGIO I, LEUBNER-METZGER G. Ethylene promote ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase [J]. Planta, 2000, 211:144-149.
    [64] PETRUZZELLI L, STURARO M, MAINIERI D, et al. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radicle tissues of germinated pea seeds[J]. Plant Cell Environ., 2003,26:661-671.
    [65] PUGA-HERMIDA M I, GALLARDO M, RODRIGUEZ-GACIO M D, et al. The heterogeneity of turnip-tops (Brassica Rapa) seeds inside the silique affects germination, the activity of the final step of the ethylene pathway, and abscisic acid and polyamine content [J]. Funct. Plant Biol., 2003, 30:767-775.
    [66]BEAUDOIN N,SERIZET C,GOSTI F,et al.Interactions between abscisic acid and ethylene signaling cascades[J].Plant Cell,2000,12:1103 - 1115.
    [67]NEMHAUSER J L,HONG F,CHORY J.Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J].Cell,2006,126:467-475.
    [68]Lee M,Toro-Ramos T,Huang H,et al.Reduced activity of Arabidopsis thaliana HMT2,a methionine biosynthetic enzyme,increases seed methionine content[J].Plant J.,2008,54:310-320.
    [69]GALLARDO K,JOB C,GROOT S P,et al.Proteomics of Arabidopsis seed gemination.A comparative study of wild-type and gibberellin-deficient seeds[J].Plant Physiol.,2002,129:823 - 837.
    [70]SIRIWITAYAWAN G,GENEVE RL,DOWNIE AB.Seed germination of ethylene perception mutants of tomato and.Arabidopsis[J].Seed Sci.Res.,2003,13:303-314
    [71]BLEECKER A B,ESTELLE M A,SOMERVILLE C,et al.Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana[J].Science,1988,241:1086-1089.
    [72]CHIWOCHA S D,CUTLER A J,ABRAMS S R,et al.The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid,auxin,cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy,moistchilling and germination[J].Plant J.,2005,42:35-48.
    [73]SPOLLEN W G,LENOBLE M E,SAMUELS T D,et al.Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production[J].Plant Physiol.,2000,122:967-976.
    [74]陈炫,陶忠良,吴志祥,等.多效唑、乙烯利对妃子笑荔枝成花的影响[J].热带农业科学,2007,28(5):8-10.
    [75]罗兴录.不同植物生长调节剂对木薯生长发育和淀粉积累影响的研究[J].中国农学通报,2002,18(3):30-33.
    [76]陈香玲,卢美英.乙烯利在植物成花方面的应用及研究进展[J].广西农业科学,2005,42(2):110-112.
    [77]何荣华.桑树杀梢剂的研究[D].长沙:湖南农业大学,2006.
    [78]郑杰.不同生长期橡胶苗木对乙烯利伤害敏感性的研究[D].儋州:华南热带农业大学,2007.
    [79]李洪藻,罗均生,张裕兴.荔枝结果树喷施乙烯利控制冬梢试验[J].中国果树,1992,34(3):30-32.
    [80]李三暑,姜秀勇,陈永聪.不同生长调节剂和氨基酸配比对龙眼枝梢生长的影响[J].广西热作科技,1998,11(4):35-36.
    [81]董建国,俞子文,余叔文.在渍水前后的不同时期增加体内乙烯产生对小麦抗逆性的影响[J].植物生理学报,1983,20(9):388-392
    [82]JONES E B.Epinasty promoted by salinity or ethylene is indicator of salt-sensitivity in tomatoes[J].Plant Cell Environ.,1996,19:93-100.
    [83]COMEZ-CADEIAS.Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt stock[J].Plant Plantar,1998,(21):54-62.
    [84]韦金道,韦龙新.乙烯利控制荔枝冬梢促花试验[J].中国南方果树,1996,25(04):50.
    [85]韦瑞宗.乙烯利处理龙眼果树田间试验[J].广西农业科学,2003,40(4):30-31.
    [86]舒肇甦.龙眼产期化学调控技术的应用现状和前景[J].柑桔与亚热带果树信息,2001,3(6):3-4.
    [87]于萍.生长调节剂对龙眼成花的影响研究[D].中国优秀硕士学位论文全文数据库,2008.
    [88]WILLIAMS K M.Peach bloom delay using fall applications of Ethrel and Pro-Gibb[J].Acta Hort.,1989,254:154-156.
    [89]潘建平,田世尧,袁沛元,等.乙烯利在果树上的应用研究进展[J].广东农业科学,2004,(1),27-29.
    [90]王永章,张大鹏.乙烯对成熟期新红星苹果果实碳水化合物代谢的调控[J].园艺学报,2000,27(6):391-395.
    [91]阮晓,王强,王文全,等.香梨果实发育、成熟期间乙烯、ACC、MACC变化及相互关系[J].园艺学报,2000,27(3):205-206.
    [92]罗正荣.果树化学调控研究进展[J].中国果树,1993,04:36-39.
    [93]陈学好,陈艳萍,金银根.黄瓜性器官败育的细胞学研究[J]。扬州大学学报,2003,24(2):68-71.
    [94]陈学好,曾广文.黄瓜花性别分化与内源多胺的关系[J].植物生理与分子生物学学报,2002,28(1):17-22.
    [95]邢虎成,余玮,罗中钦,等.苎麻性别分化与乙烯的关系研究[J].中国农业科学,2008,41(5):1423-1428
    [96]田长恩,粱承邺,黄毓文,等.水稻细胞质雄性不育系及其保持系幼穗发育过程中的多胺代谢[J].植物生理学报,1998,24(4):333-339.
    [97]TOR M,LOTZE M T AND HOLTON N.Receptor-mediated signalling in plants:molecular patterns and programmes[J].J.Exp.Bot.,2009,60:3645-3654.
    [98]AGUSTI J,MERELO P,CERCOS M,et al.Ethylene-induced differential gene expression during abscission of citrus leaves[J].J.Exp.Bot.,2008,59(10):2717-2733.
    [99]ADDICOTT FT.Abscission[M].Berkeley:University of California Press,1982.
    [100]BAE H,KIM S H,KIM M S,et al.The drought response of Theobroma cacao(cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses[J].Plant Physiol.Biochem.,2008,6(2):174-88.
    [101]CHO SK,LARUE CT,CHEVALIER D,et al.Regulation of floral organ abscission in Arabidopsis thaliana[J].Proc.Natl Acad.Sci.USA,2008,105(40):15629-15634.
    [102] SAKAMOTO M, MUNEMURA I, TOMITA R, et al. Involvement of hydrogen peroxide in leaf abscission signaling revealed by analysis with an in vitro abscission system in Capsicum plants [J].Plant J., 2008, 56(1):13-27.
    [103] TRIPATHI S K, SINGH A P, SANE A P, et al. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose [J]. J. Exp. Bot. 2009, 60(7):2035-2044.
    [104] SHALIT A, ROZMAN A, GOLDSHMIDT A, et al. The flowering hormone florigen functions as a general systemic regulator of growth and termination [J]. Proc. Natl Acad. Sci. USA,2009, 106(20): 8392-8397.
    [105] JOHN A L, MORGAN P W. Ethylene: Role in Fruit Abscission and Dehiscence processes [J].Plant PhysioL, 1972, 50:759-764.
    [106] YIN X, CHEN K, ALLAN A C, et al. Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit [J]. J. Exp. Bot., 2008,59(8):2097-2108.
    [107] SHOWLER A T. Relationships of abscised cotton fruit to boll weevil (Coleoptera:Curculionidae) feeding, oviposition, and development [J]. J.Econ. Entomo., 2008,101(1): 68-73.
    [108] MORGAN P W, HALL W D. Effect of dichloroPenoxyacetic acid on Production of ethylene by Cotton and sorghum [J].Plant Physiol., 1962, 15:420-427.
    [109] HALL W D, MORGAN P W. Auxin-Ethylene interrelationships [J]. Plant PhysioL, 1964,123:727-745.
    [110] MORGAN P W. Stimulation of Ethylene Evolution and Abscission in Cotton by 2-Chlo-roethane PhosPhonic Acid [J]. Plant Physiol., 1969, 44 (3):337-341.
    [111] MORGAN P W, GAUSMAN H W. Effects of Ethylene on Auxin TransPort [J]. Plant PhysioL ,1966, 41 (1):45-52.
    [112] Marianne K, Pedersen, James D, et al. Effect of Cyclanilide, Ethephon, Auxin Transport Inhibitors, and Temperature on Whole Plant Defoliation [J]. Crop Sci., 2006,46:1666-1672.
    [113] MORGAN P W, DURHAM J. Ethylene-induced leaf Abscission Is Promoted by Gibberellie Acid [J].Plant PhysioL, 1975, 55(2): 308-311.
    [114] RIOV A. Polygalaeturonase from Citrus Leaf ExPlants Role in Abscission [J]. Plant PhysioL , 1974, 53 (2):312-316.
    [115] YUAN R, WU Z, KOSTENYUK I A, et al. G-protein-coupled {alpha} 2A-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase[J]. J. Exp. Bot., 2005, 56(417):1867-1875.
    [116]BRANDAO A D,DEL BEM L E V,VINCENTZ M,et al.Expression pattern of four storage xyloglucan mobilization-related genes during seedling development of the rain forest tree Hymenaea courbaril[J].J.Exp.Bot.,2009,60(4):1191-1206.
    [117]Mcmanus MT.Further examination of abscission zone cells as ethylene target cells in higher plants[J].Annals of Botany,2008,101:285-292.
    [118]LITEBERMAN M,TEBERMAN M,MIEBERMAN I,et al.Genesis and biogenesis of ethylene[J].Nature,1964,204:343-345.
    [119]YANG S F,HOFFMAN N E.Ethylene biosynthesis and its regulation in higher plants[J].Ann.Rev.Plant Physiol.,1984,35:155-89.
    [120]TSAVKELOVA E A,KLIMOVA S Y,CHERDYNTSEVA T A,et al.Hormones and hormone-like substances of microorganisms[J].Appl.Biochem.Micro.,2006,42:229-235.
    [121]陈新建,刘国顺,陈占宽,等.乙烯生物合成途径及其相关基因工程的研究进展[J].热带亚热带植物学报,2002,20(01):85-100.
    [122]RIEU I,CRISTESCU S M,HARREN M W,et al.RP-ACS1,a flooding-induced 1-aminocy clopropane - 1-carboxylate synthase gene of Ramex palustris,is involved in rhythmic ethylene production[J].J.Exp.Bot.,2005,56(413):841-849.
    [123]SAITO Y,YAMASAKI S,FUJII N,et al.Possible involvement of CS-ACS1 and ethylene in auxin-induced peg formation of cucumber seedlings[J].Ann.Bot.,2005,95(3):413-22.
    [124]EL-SHARKAWY I,KIM WS,JAYASANKAR S,et al.Differential regulation of four members of the ACC synthase gene family in plum[J].J.Exp.Bot.,2008,59(8):2009-2027.
    [125]WANG X,ZHANG Y,ZHANG J,et al.Molecular characterization of a transient expression gene encoding for 1-aminocyclopropane-1-carboxylate synthase in cotton(Gossypium hirsutum L.)[J].J.Biochem.Mol.Biol.,2007,40(5):791-800.
    [126]SATO T,OELLER P W,Athanasios T.The 1-Aminocyclopropane-1- carboxylate Synthase of Cucurbita[J].J.Biol.Chem.,1991,266(6):3752-3759.
    [127]LIN Z,ZHONG S,and GRIERSON D.Recent advances in ethylene research[J].J.Exp.Bot.,2009,60(12):3311-3336.
    [128]ROTTMANN W H,PETER G E,OELLER P W,et al.1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence[J].J.Mol.Biol.,1991,222:937-961.
    [129]HYODO H,TANAKA Y,WATANABE K.Wound-induced ethylene production and 1-amino cyclopropane-1-carboxylete eynthase in mesocarp tissue of winter squash fruit [J].Plant Cell Physiol.,1983,24:963-969.
    [130]KENDE H.Ethylene biosynthesis[J].Annu.Rev.Plant Physiol.Mol.Biol.,1993,44,283-307.
    [131]BARRY C,GIOVANNONI J J.Ethylene and Fruit Ripening[J].J.Plant Growth Regul.,2007,26:143-159.
    [132]STRAETEN V D,RODRIGUES-POUSADA R A,VILLARROEL R,et al.Cloning,genetic mapping and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-1-carboxylate synthase[J].Proc.Natl.Acad.Sci.USA,1992,89:9969- 9973.
    [133]SHIU O Y,OETIKER J H,YIP W K,et al.The promoter of LE-ACS7,an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato,is tagged by a Sol3transposon[J].PNAS,1998,95(17):10334 - 10339.
    [134]MENG X,CAI S,LASHBROOK CC.A Structurally Divergent ACC Synthase Gene Family Coordinates Abscission,Wounding,and Auxin Responses in Soybean[M/OL].2004,http://abstracts.aspb.org/pb2004 /public/P53/ 7776.html.
    [135]CHUANG CF,MEYEROWITZ EM.Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana[J].Proc.Natl.Acad.Sci.USA,2000,97(9):4985-4990.
    [136]BYZOVA M V,FRANKEN J,AARTS M G,et al.Arabidopsis STERILE APETALA,a multifunctional gene regulating inflorescence,flower and ovule development[J].Genes.Dev.,1999,13:1002-1014
    [137]CLEANS J C,WORBY,C A,SIMONSON-LEFF N,et al.Use of double-stranded RNA interference in Drosophila cell lines to to dissect signal transduction pathways[J].Proc.Natl Acad.Sci.USA,2000,97:6499-6503.
    [138]LIE Q,SINGH S P,GREEN A G.High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing[J].Plant Physiol.,2002,129(4):1732-1743.
    [139]陈银华,张俊红,欧阳波,等.花椰菜ACC氧化酶基因的克隆及其RNAi对内源基因表达的抑制作用[J].遗传学报,2005,32(7):764-769.
    [140]冯斗,张春发,张颖.香蕉乙烯受体基因cDNA的克隆及其表达分析[J].热带作物学报,2004,25(01):6-10.
    [141]BELTRANO J,RONCO M G,MONTALDI E R.Drought stress syndrome in wheat is provoked ethylene evolution imbalance and reversed by rewatering,aminoethoxyvinylglycine,or sodium benzoate[J].J.Plant Growth Regul.,1999,18:59-64.
    [142]李富军,翟衡,杨洪强,张新华,等.1-MCP对苹果果实贮藏期间乙烯合成代谢的影响[J].中国农业科学,2004,37(5):734-738
    [143]WANG K L,LI H,ECKER J R.Ethylene biosynthesis and signaling networks[J].The Plant Cell(supplement),2002,14:131-151.
    [144]BRIGHT J,DESIKAN R,HANCOCK J T,et al.ABA-induced NO generation and stomatal closure in arabidopsis are dependent on H_2O_2 synthesis[J].Plant J.,2006,45(1):113-122.
    [145]AVAT S,YAHYA E.Plant growth regulator(Ethephon) alters maize(Zea mays L.) growth water use and grain yield under water stress[J].J.Agron.,2008,7(1):41-48.
    [146]FENG B H,LI H X,LU Y E,et al.Characteristics Related to Leaf Senescence in Tomatoes with Trans-geniciptand anti-ACO Genes[J].Plant Physiol.Plant Mol.Biol.,2003,29(6):535-541.
    [147]DANNY T,THIJS L P,LAURENTIUS A C,et al.The role of ethylene perception in the control of photosynthesis[J].Plant Signal Behav.,2008,3(2):108-109.
    [148]戈巧英,张其德,郝乃斌,等.高光效大豆光合特性的研究--Ⅴ.不同大豆品种光合作用的光抑制[J].大豆科学,(01):95-102.
    [149]西北农业大学植物生理生化教研组.植物生理学实验指导[M].西安:陕西科学技术出版社,1987.
    [150]CHOW B AND MCCOURT P.Plant hormone receptors:perception is everything[J].Genes.Dew.,2006,20(15):1998-2008.
    [151]余义勋,包满珠.通过转重复结构的ACC氧化酶基因延长香石竹的瓶插期[J].植物生理与分子生物学学报,2004,30(5):541-545.
    [152]王荣花,刘雅莉.李嘉瑞不同发育阶段牡丹和芍药切花开花生理特性的研究[J].园艺学报,2005,32(5):861-865.
    [153]赵春江,康书江,李鸿祥,等.冬小麦主要生育时期乙烯释放规律的研究[J].华北农学报,1999,14(4):45-49.
    [154]NELJUBOV D N.Uber dies horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen[J].Beih.Bot.Centralbh.,1901,10:128-139.
    [155]Nikolic N,Orlovic S,Krstic B,et al.Variability of acorn nutrient concentrations in pedunculate oak *Quercus robur L.) genotypes[J].J.Forest Sci.,2006,52:51-60.
    [156]GUPTA S K,ATEN C.Comparison and evalution of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soil[J].Int.J.Anal.Chemist.1993,51:25-46.
    [157]MCLAUGHLIN M J,ZARCINAS B A,STEVENS D P,et al,Soil Testing for Heavy Metals.Commun [J].Soil Sci.Plant Anal.,2000,31:1661-1700.
    [158]BANGERTH F.Antagonism between calcium and other elements in apple fruit[J].Acta.Hort.1976,45:49-52.
    [159]关永贺,杨君,包永明,等.高效液相色谱法检测大豆1-氨基环丙烷-1-羧酸合酶活性的研究[J].分析化学,2007,35(3):355-359.
    [160]MAKI R G.Cemcitabine and docetaxel in metastatic sarcoma:past,present,and future [J].Oncologist,2007,12:999-1006.
    [161]LALONDE S,SAINI H S.Comparative 1-amino-cyclopropane-1 -carboxylic acid conjugation.Requirement for endogenous Ethylene during Seed in thermo inhibited Cicer arietinum seeds[J].Plant Germination.Ann.Bot.,1992,69:423-428.
    [162]BITYUTSKII N P,MAGNITKSKIY S V,KOROBEYNIKOVA L P,et al.Distribution of iron,manganese,and zinc in mature grain and their mobilization during germination and early seedling development in maize[J].J Plant Nutr.,2002(25):635-653.
    [163]OZTURK L,YAZICI MA,YUCEL C,et al.Concentration and localization of zinc during seed development and germination in wheat[J].Plant Physiol.,2006,128:144 - 152.
    [164]LENORMAND C,MARTINI F,BALANGE A P.Germination of sunflower seeds:involvement of calcium[J].Plant Physiol.Biochem.,1993,31:447-455.
    [165]关军锋,马智宏,张会敏,等.苹果幼果发育期果柄结构和Ca,Mg,K水平的变化[J].植物营养与肥料学报,2005,11(2):264-268.
    [166]SISLER E C,GRICHKO V P,SEREK M.Compounds Interacting with the Ethylene Receptor -Agonists and Antagonists[C].In KHAN N A(eds).Ethylene Action in Plants.New York:Springer-Verlag press,2006:35-49.
    [167]KOTI S,REDDY K R,KAKANI V G,et al.Soybean(Glycine max) Pollen Germination Characteristics,Flower and Pollen Morphology in Response to Enhanced Ultraviolet-B Radiation.Ann Bot-London,2004,94:855-864.
    [168]陆婷,谭敦炎,李疆,等.扁桃花粉的发生及发育[J].果树学报,2004,21(4):334-337.
    [169]MICELI S J,BRANDER C,EGLI D B.Decreasing reproductive sink size by physically restraining seed growth in soybean:effects on plant growth and leaf senescence[J].Eur.J.Agron.,1994:188-189.
    [170]Liu X B,Jin J,Wang G H,et al.Soybean yield physiology and development of high-yielding practices in Northeast China[J].Field Crops Res.,2008,105(3):157-171
    [171]MANGANARIS GA,VICENTE AR,CRISOSTO CH,et al.Effect of delayed storage and continuous ethylene exposure on flesh reddening of 'Royal Diamond plums[J].J.Sci.Food Agric.,2008,88(12):2180-2185.
    [172]HU J F,FUKUDA T,OHARA H,et al.Effect of AVG application on berry set of 'Kyoho'grape[J].J.Jpn.Soc.Hortic.Sci.,1999,68:833-838.
    [173]KHALID A M,Akhtar M,Mahmood H,et al.Effect of substrate-dependent microbial produced ethylene on plant growth[J].Microbiology,2006,75:231-236.
    [174]LI J G,YUAN R C.NAA and Ethylene Regulate Expression of Genes Related to Ethylene Biosynthesis,Perception,and Cell Wall Degradation during Fruit Abscission and Ripening in 'Delicious' Apples[J].J.Plant Growth Regul.,2008,27:283- 295.
    [175]WU W,SU Q,XIA X Y,et al.The Suaeda liaotungensis Kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA[J].Euphytica,2008,159:17-25.
    [176]ZHONG S,LIN Z,GRIERSON D.Tomato ethylene receptor-CTR interactions:visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum[J].J.Exp.Bot.,2008,59:965-972.
    [177]Bathori G,Csordas G,Gk P C,et al.Ca~(2+)-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC)[J].J.Biol.Chem.,2006,281:17347-17358.
    [178]MATEUSZ W,EDWARD K,PRZEMYSLAW L.Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana[J].Acta Biochim.Pol.,2006,53(2):289-298.
    [179]SREERAMAN S,MAZIAH M,ABDULLAH M P,et al.Physical and biological parameters affecting transient GUS and GFP expressions in banana via particle bombardment[J].Asia Pac.J.Mol.Biol.Biotechnol.,2005,13(1):35-57.
    [180]CHRISTOPH M,WOLFGANG W.Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts[J].Plant Cell Rep.,1989,8:148-151.
    [181]VINOD K S,RAJAM M V.Induction of Agrobacterium tumefaciens vir genes by the green alga,Chlamydomonas reinhardtii[J].Curr.Sci.,2007,92:1727-1729.
    [182]黄海.关于果树花芽分化的研究(续)[J].果树学报,1987,4(02):45-49.
    [183]WURIYANGHAN H,ZHANG B,CAO W H,et al.The Ethylene Receptor ETR2 Delays Floral Transition and Affects Starch Accumulation in Rice[J].Plant Cell,2009,21:1473-1494.
    [184]FIRE A,XU S,MONTGOMERY M K,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,391(6669):806-811.
    [185]张迟,谢从华,柳俊,等.RNA干涉对马铃薯内源酸性转化酶活性的影响[J].农业生物技术学报2008,16(01):108-113.
    [186]PATEL R M,VAN KAN J A L,BAILEY A M,et al.RNA-mediated gene silencing of superoxide dismutase(bcsodl) in Botrytis cinerea[J].Phytopayhol.,2008,98(12):1334-1339.
    [187]曲姗姗,刘丽君,寇坤,等.农杆菌介导法将Bt(cryI4)基因导入大豆的研究[J].大豆科学,2009.28(2):186-190.