基于双线性方法的孤子可积系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性发展方程精确解和可积性的研究有助于理解孤子理论的本质属性和代数结构,而且对相应自然现象的合理解释及实际应用将起到重要的作用。
     本学位论文基于Hirota所提出的双线性方法,深入、系统地研究了孤子可积系统的求解问题。揭示了双线性结构的代数特征;总结了Hirota双线性方法的各种推广及应用;探讨了Hirota双线性方法与其它孤子方程求解方法之间的广泛联系以及与可积性的内在关系;充分展示了Hirota双线性方法是孤子方程求解的强有力的工具。孤子方程存在形形色色的精确解以及多种精确解都可通过Hirota双线性方法推得的事实反映了孤子理论的丰富性、多样性、统一性特征。主要工作分为解的表示形式和多种精确解的推导两大部分。
     第一部分系统地总结了双线性微分算子的性质以及孤子方程的双线性化工作。介绍解的Wronskian和Pfaffian表示形式,包括Grammian型解的表示形式;总结了Wronskian和Pfaffian的若干重要的性质和关系式。分别从以下三个方面展开研究:
     对一些非等谱方程,主要是非等谱MKdV方程、具非均匀项的MKdV方程,分别利用Hirota双线性方法和Wronskian技巧得到了它们多孤子解的表示形式。
     指出Wronskian和Pfaffian解的验证最终都化归为Plucker关系式或Jacobi恒等式,双线性结构实际上就是Pfaffian恒等式。
     给出了KP、BKP方程及其相应Backlund变换Pfaffian解的表示形式。说明了通过Pfaffian化可导出其解仍具有Pfaffian形式新的可积方程的事实。
     第二部分研究非线性发展方程多种精确解的推导。
     对Hirota双线性方法作了直接的推广性发展,并具体地研究了两类浅水波方程和Ito方程,获得具有不同于经典孤子解带有奇异性的一类精确解,借助图形还具体地对类2-孤子解之间的碰撞问题进行了分析研究。
     对带参数的双线性Backlund变换,经适当的修正可得到另一形式的Backlund变换。利用经修正后的双线性Baicklund变换可求得孤子方程新的精确解。具体地求得了浅水波方程和5阶KdV方程N-孤子解新的表示形式以及新的精确解,对于5阶KdV方程还得到了目前研究甚多的positon解和negaton解。
     借助于双线性Backlund变换,并对参数作适当的选取,我们得到了可导出KdV方程、Vakhnenko方程许多精确解的非线性叠加公式。
     应用双线性Backlund变换,同样地对其作合理的改造并选取适当的参数,从
The search on the explicit solution and integrability of nonlinear evolution equations are helpful in clarifying the underlying algebraic structure and play an important role in reasonable explaining of the corresponding natural phenomenon and application.In this dissertation, based on the Hirota bilinear method, the exact solution and physical problem are systematically investigated and the more abundant structure in bilinear formalism are revealed as well as the relations to other direct methods and integrability are discussed. It is evident that Hirota bilinear method is a powerful tool for solving a wide class of nonlinear evolution equation. More remarkable is that various physically important solutions to the soliton equations can be presented explicitly by means of Hirota bilinear method. This dissertation may be divided into two parts.Part I is devoted to summarize some properties of Hirota's bilinear operators, the properties of Wronskian and Pfaffian that appears in the expression of the N-soliton solution of the soliton equation. It is shown that the solutions of most of the soliton equations are given in terms of the determinants with a Wronskian and Grammian structure, or Pfaffian. The bilinear forms of the equations are reduced to the algebraic identities for determinants or the identities of Pfaffian.By using Hirota bilinear method and Wronskian technique, we consider the iV-soliton solutions of the nonisospectral MKdV equation and the MKdV equation with nonconformity, respectively.In addition, soliton equations whose solutions are expressed by Pfaffian are briefly discussed. Included are KP equation, BKP equation and theirs Backlund transformation in bilinear form. By applying the pfaffianization technique to the soliton equation, a new integrable model with Pfaffian solution could be generated.Part II is mainly focused on studying and the construction of various type of explicit exact solutions for nonlinear evolutions on the basis of bilinear formalism.The Hirota bilinear method is generalized and investigated, where the N-soliton-like solutions with singular slowly decaying at infinity for the shallow water waves equations and Ito equation are obtained. Further, we also explored the interaction behaviors and find singularity.
引文
[1] J. S. Russell, Report of the committee on wave, Report on the 7th meeting of British Association for the Advancement of science, John Murray, London, (1838), 417.
    [2] D. J. Korteweg and G. de Vries, On the chang of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave, Philos. Mag. Ser., 39, (1895), 422.
    [3] A. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, /. Los Alamo Report, LA1940, (1955).
    [4] N. J. Zabusky and M. D. Kruskal, Interaction of " soliton " in a collisionless plasma and the recurrence of intial states, Phys. Rev. Lett, 19, (1965), 1095-1097.
    [5] A. C. Scott, F. Y. F. Chu, D. W. Mclaughlin, Soliton- A new concept in applied science, Proc. IEEE., 61, (1973), 1443-1483.
    [6] P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, England, 1989).
    [7] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the KdV equation, Phys. Rev. Lett, 19, (1967), 1095-1097.
    [8] C. S. Gardner, The Korteweg-de Vries equation and generalizations. VI. Method for exact solution, Comm. Pure Appl. Math., 27, (1974), 97-133.
    [9] R. M. Miura, The Koeteweg-de Vries equation and generalization I. A remark able explicit nonlinear transformation, J. Math. Phys. 9, (1968), 1202-1204.
    [10] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Apll. Math., 53, (1974), 249-315.
    [11] M. J. Ablowitz and H. Segur, Soliton and the inverse scattering transform, SIAM, Philadelphia, USA, (1981).
    [12] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evlution equation and inverse scattering, Cambridge University Press, Cambridge, (1991).
    [13] B. G. Konopelchenko, Introduction to multidimensional integrable equations, Plenum Publishing, New York, 1992.
    [14] M. Boiti, F. Pempinelli. A. K. Pogrebkov and B. Prinari, Towards an inverse scat-
     tering theory for two-dimensional nondecaying potentials, Theor. Math. Phys., 116, (1998), 741-781.
    [15] H. Steudel and D. J. Kaup, Inverse scattering transform on a finite interval, J. Phys. A, 32, (1999), 6219-6231.
    [16] Y. B. Zeng, W. X. Ma and R. L. Lin, Integration of the soliton hierarchy with self-consistent sources, J. Math. Phys., 41, (2000), 5453-5489.
    [17] A. S. Fokas, Soliton-like solutions for a nonisospectral KdV hierarchy, Chaos, Solitons and Fractals, 21, (2004), 395-401.
    [18] C. Rogers, W. Shadwick, "Backlund transformations and applications", in: Mathematics in science and engineering, Vol. 161, Academic, New York, (1982).
    [19] X. B. Hu, Y. Li, Some results on the Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Phys. A, 24, (1991), 3205-3212.
    [20] X. B. Hu, Nonlinear superposition formulae of the KdV equation with a source, J. Phys. A, 24, (1991), 5489-5497.
    [21] X. B. Hu, P. A. Clarson, Rational solutions of a differential-difference KdV equation, the Toda equation and the discrete KdV equation, J. Phys. A, 28, (1995), 5009-5015.
    [22] H. D. Wahlquist, F. B. Estabrook, Backlund transformations for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31, (1973), 1386-1390.
    [23] 谷超豪等著,孤立子理论与应用,浙江科技出版社,(1990).
    [24] 李翊神,孤子与可积系统,上海教育出版社,(1999).
    [25] H. C. Hu, Q. P. Liu, New Darboux transformation for Hirota-Sastuma coupled KdV system, Chaos, Solitons and Fractals, 17, (2003), 921-928.
    [26] Y. S. Li and J. E. Zhang, Darboux transformations of classical Boussinesq system and its multi-soliton solutions, Phy. Lett. A, 284, (2001), 253-258.Y. S. Li and J. E. Zhang, The multiple-soliton solution of the Camassa-Holm equation, Proc. R. Soc. Lond. A, 460, (2004), 2617-2627.
    [27] Y. B. Zeng, New factorization of the Kaup-Newell hierarchy, Phys. D, 73, (1994), 171-188.
    [28] 曾云波,带附加项的AKNS方程族的Darboux变换,数学物理学报,15,(1995),337-345.
    [29] Y. B. Zeng and Y. S. Li, The Lax representation and Darboux transformation for constrained flows of the AKNS hierarchy, Acta Math. Sinica New Series, 12, (1996), 217-224.
    [30] Y. B. Zeng, W. X. Ma and Y. Shao, Two binary Darboux transformations for the KdV hierarchy with self-consistent sources, J. Math. Phys., 42, (2001), 2113-2128.
    [31] 谷超豪,胡和生,周子翔,孤立子理论中的达布变换及几何应用,上海科学技术出版社,(1999).
    [32] R. Hirota, A new form of Backlund transformations and its relation to inverse scattering problem, Prog. Theor. Phys., 52, (1974), 1498-1512.
    [33] 陈登远,Backlund变换与N-孤子解,全国第三届孤立子与可积系统讨论会,郑州大学,(2001).
    [34] R. Hirota, Nonlinear evolution equations generated from the Backlund transformation for the Toda lattice, Prog. Theor. Phys, 55, (1976), 2037-2038.
    [35] R. Hirota, A variety of nonlinear network equation generated from the Backlund transformation for the Toda lattice, Prog. Theor. Phys. Suppl., 59, (1976), 64-100.
    [36] R. Hirota and J. Satsuma, Nonlinear evolution equation generated from the Backlund transformation for the Boussinesq equation, Prog. Theor. Phys., 57, (1977), 797-807.
    [37] R. Hirota and J. Satsuma, A simple structure of superpositon formula of Backlund transformation, J. Phys. Soc. Japan, 45, (1978), 1741-1750.
    [38] J. J. C. Nimmo, A bilinear Backlund transformation for the nonlinear Schrodinger equation, Phy. Lett. A, 99, (1983), 281-286.
    [39] J. Satsuma, D. J. Kaup, A Backlund transformation for a higher oeder KdV equation, J. Phys. Soc. Japan, 43, (1977), 108-110.
    [40] X. B. Hu, Y. Li, Superposition formulae of a fifth order KdV eqeuation and its modified equation, Acta Math. Appl. Sinica, 4, (1988), 46-54.
    [41] 胡星标,李勇,Hietarinta方程及其变形方程的Backlund变换和非线性叠加公式,高校应用数学学报,5,(1990),17-31.
    [42] 胡星标,李勇,DJKM方程的Backlumd变换及非线性叠加公式,数学物理学报,11,(1991),164-172.
    [43] M. Musette and C. Verhoeven, Nonlinear superposition formula for the Kaup-Kuperhmidt partial differential equation, Phys. D, 144, (2000), 211-220.
    [44] A. Nakamura and R. Hirota, Second modified KdV equation and its exact multi- soliton solution, J. Phys. Soc. Japan, 48, (1980), 1755-1762.
    [45] A. Nakamura, Backlund transformation of the cylinrical KdV equation, J. Phys. Soc. Japan, 49, (1980), 2280-2386.
    [46] A. Nakamura, Chain of the Backlund transformation for the KdV equation, J. Math. Phys., 22, (1981), 1608-1613.
    [47] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, ZhETF, 61, (1971), 118, JETP, 34, (1972), 62-69.
    [48] R. Hirota, Exact soliton of the KdV equtaion for multiple collisions of solitons, Phys. Rev. Lett, 27, (1971), 1192-1194.
    [49] R. Hirota, Direct methods in soliton theory, R. K. Bullough, Caudrey P. J., editors, Solitons, Springer, (1980).
    [50] R. Hirota, Exact soliton of the sine-Gordon equtaion for multiple collisions of solitons, J. Phys. Soc. Japan, 33, (1972), 1459-1463.
    [51] R. Hirota, Exact envelope-soliton solution of a nonlinear wave equation, J. Math. Phys., 14, (1973), 805-809.
    [52] R. Hirota, Exact iV-soliton solutions of the wave equation of long wave in shallow- water and in nonlinear lattice, J. Math. Phys., 14, (1973), 810-814.
    [53] R. Hirota, Exact three-soliton solution of the two-deminsional sine-Gordon equtaion, J. Phys. Soc. Japan, 35, (1973), 1566.
    [54] R. Hirota and J. Satsuma, iV-soliton solutions of model equation for shallow water waves, J. Phys. Soc. Japan, 76, (1976), 611-612.
    [55] R. Hirota, Exact solution to the equation discribing cylindrical solitons, Phys. Lett., 71, (1979), 393-394.
    [56] A. Nakamura and R. Hirota, Second modified KdV equation and its exact multi- soliton solution, J. Phys. Soc. Japan, 48, (1980), 1755-1762.
    [57] R. Hirota and M. Ito, A direct approach to multi-periodic wave solitons to nonlinear evolution equation, J. Phys. Soc. Japan, 50, (1981), 338-342.
    [58] R. Hirota, Bilinearization of soliton equation, J. Phys. Soc. Japan, 51, (1982), 323-
    [59] J. Satsuma, JV-soliton solution of the two-dimensional Korteweg-de Vries equation, J. Phys. Soc. Japan, 40, (1976), 286-290.
    [60] Y. Matsuno, Blinear transformation method, Academic Press, (1984).
    [61] R. Hirota and J. Satsuma, iV-soliton solution of the KdV equation with loss and nonuniformity terms, J. Phys. Soc. Japan, 41, (1976), 2141-2142.
    [62] D. J. Zhang, The iV-soliton solutions for the modified KdV equation with self- consistent sources, J. Phys. Soc. Japan, 71, (2002), 2649-2656.
    [63] D. J. Zhang, The iV-soliton solutions of the sine-Gordon equation with self-consistent sources, Phys. A, 321, (2002), 467-481.
    [64] D. J. Zhang and D. Y. Chen, The N-solutions of some soliton equations with self- consistent sources, Chaos. Soliton. Fractals., 18, (2003), 31-43.
    [65] S. F. Deng, D. Y. Chen and D. J. Zhang, The multisoliton solutions of the KP equation with self-consistent sources, J. Phys. Soc. Japan, 72, (2003), 2184-2192.
    [66] A. C. Newell, soliton in mathematics and physics, CBMS-NSF Regional conference series in applied mathematical society lecture note seris, 149, Cambridge, New York, (1991).
    [67] X. B. Hu, Nonlinear superposition formulae of the Boussinesq hierarchy, Acta Math. Appl. Sinica, 9, (1993), 17-27.
    [68] X. B. Hu, R. Bullough, A Backhand transformation and nonlinear superposition formulae of the Caudrey-Dodd-Gibbon-Kotera-Sawada hierarchy, J. Phys. Soc. Japan, 67, (1998), 772-777.
    [69] R. Hirota, Exact N-soliton solution of nonlinear lumped self-daul network equations, J. Phys. Soc. Japan, 35, (1973), 289-294.
    [70] R. Hirota, Nonlinear partial difference equation.I. A difference analoguce of the KdV equtaion, J. Phys. Soc. Japan, 43, (1977), 1424-1433.
    [71] R. Hirota, Nonlinear partial difference equation.II. Discrete-time Toda equation, J. Phys. Soc. Japan, 43, (1977), 2074-2078.
    [72] R. Hirota, Nonlinear parial difference equation.III. Discrete sine-Gordon equation, J. Phys. Soc. Japan, 43, (1977), 2079-2086.
    [73] R. Hirota, Nonlinear parial difference equation.IV. Backlund transformation transformation for the discrete-thne Toda equation, J. Phys. Soc. Japan, 45, (1977), 321-332.
    [74] R. Hirota, Nonlinear partial difference equations.V. Nonlinear equations reducible to linear equations, J. Phys. Soc. Japan, 46, (1979), 312-319.
    [75] S. Oishi, A method of constructing generalized solutions for certain bilinear soliton equations, J. Phys. Soc. Japan, 47, (1979), 1341-1346. S. Oishi, A method of analyzing soliton equations by bilinearization, J. Phys. Soc. Japan, 48, (1980), 639-646.
    [76] A. Nakamura, Decay mode solution of the two-dimensional KdV equation and the generalized Backlund transformation, J. Math. Phys., 22, (1981), 2456-2462. A. Nakamura, One dimensionally aligned decay mode solutions of the two- dimensional nonlinear Schrodinger equation, J. Phys. Soc. Japan, 50, (1981), 2467- 2470. A. Nakamura, Simple similarity-type multiple-decay-mode solution of the two- dimensional KdV equation, Phys. Rev. Lett, 46, (1989), 751-753.
    [77] A. Nakamura and R. Hirota, A new example of explode-decay solitary wave in one- dimension, J. Phys. Soc. Japan, 54, (1985), 751-753.
    [78] A. Nakamura, A direct method of calcuating periodic wave solutions to nonlinear evolutions. I. Exact two-periodic wave solution, J. Phys. Soc. Japan, 47, (1979), 1701-1705. A. Nakamura, A direct method of calcuating periodic wave solutions to nonlinear evolutions. II. Exact one- and two-periodic wave solution of the coupled bilinear equation, J. Phys. Soc. Japan, 48, (1980), 1365-1370.
    [79] R. Hirota, M. Ito, Resonance of solitons in one dimension J. Phys. Soc. Japan, 52, (1983), 744-748.
    [80] M. Jaworski, J. Zagrodzinski, Positon solutions of the sine-Gordon equation, Chaos, Solitons and Fractals, 5, (1995), 2229-2234.
    [81] Y. Zhang and D. Y. Chen, A new representation of JV-solition solution and limiting solutions for the fifth order KdV equation, Chaos, Solitons and Fractals, 23, (2005), 1055-1061.
    [82] S. F. Deng and D. Y. Chen, The novel multisoliton solutions of the KP equation, J. Phys. Soc. Japan, 70, (2001), 3174-3175.
    [83] D. Y. Chen, D. J. Zhang and S. F. Deng, The novel multisoliton solutions of the mKdV-sine-Gordon equation, J. Phys. Soc. Japan, 71, (2002), 658-659.
    [84] D. Y. Chen, D. J. Zhang and S. F. Deng, Remarks on some solutions of soliton equations, J. Phys. Soc. Japan, 71, (2002), 2071-2072.
    [85] Y. Zhang, S. F. Deng and D. Y. Chen, The novel multisoliton solutions of equation for shallow water waves, J. Phys. Soc. Japan, 72, (2003), 763-764.
    [86] Y. Zhang, S. F. Deng and D. Y. Chen, N-soliton solutions for the shallow water waves equation, The Proceedings of Nonlinear Evolution Equations and Dynamical System (ICM 2002 Satellite Conference), World Scientific, Singapore, (2003), 157-163.
    [87] Y. Zhang, New N-soliton solution for the Sawada-Kotera equation, Journal of Shanghai University (English Edition), 8, (2004), 132-133.
    [88] Y. Zhang and D. Y. Chert, The novel multi-solitary wave solution for the fifth order KdV equation, Chinese Phys., 13, (2004), 1606-1610.
    [89] Y. Zhang and D. Y. Chen, The N-soliton-like solution of the Ito equation, Commu. Theor. Phys., 42, (2004), 641-644.
    [90] 张解放,郭冠平,(2+1)维破裂孤子方程的新多孤子解,物理学报,52,(2003),2359-2362.
    [91] Y. Zhang and D. Y. Chen, Backlund transformation and soliton solutions for the shallow water waves equation, Chaos, Solitons and Fractals, 20, (2004), 343-351.
    [92] Y. Zhang and D. Y. Chen, A new representation of N-soliton solution for the Boussinesq equation, Chaos, Solitons and Fractals, 23, (2005), 175-181.
    [93] J. Satsuma, M. J. Ablowitz, Two dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20, (1979), 1496-1503.
    [94] X. B. Hu, Rational solutions of integrable equations via nonliner superposition formulae, J. Phys. A, 30, (1997), 8225-8240.
    [95] Y. Matsuno, A new proof of the rational N-soliton solution for the Kadomtsev-Petviashvili equation, J. Phys. Soc. Japan, 58, (1989), 67-72.
    [96] J. Hietarint and R. Hirota, Multidromion solutions to the Davey-Stewartson equation, Phys. Lett. A, 145, (1990), 237-244.
    [97] J. Hietarint, One-dromion solutions for generic of equations, Phys. Lett. A, 149, (1990), 113-118.
    [98] C. R. Gilson, Resonant behaviour in the Davey-Stewartson equation, Phys. Lett. A, 161, (1992), 423-428.
    [99] K. W. Chow, 'Solitoff solutions of nonlinear evolution equations, J. Phys. Soc. Japan, 65, (1996), 1971-1976.
    [100] K. W. Chow, etc., Positon-like solutions of nonlinear evolution equations in (2+1) dimensions, Chaos, Solitons, Fractals, 9, (1998), 1901-1912.
    [101] K. W. Chow, Coalescence of ripplons, breathers, dromions and dark solitons, J. Phys. Soc. Japan, 70, (2001), 666-677.
    [102] J. Hietarinta, Gauge symmetry and the generalization of Hirota's bilinear method, J. Nonlin. Math. Phys, 3, (1996), 260-265.
    [103] B. Grammaticos, A. Ramani and J. Hietarinta, Multilinear operators: the natural extension of Hirota's bilinear formalism, Phys. Lett. A, 190, (1994), 65-70.
    [104] M. Adler and J. Moser, On a class of polynomials connected with the Korteweg- deVries equation, Comm. Math. Phys., 61, (1978), 1-30.
    [105] V. B. Matveev and M. A. Salle, Darboux transformation and solitons, Springer- Verlag, Berlin, (1991).
    [106] J. Satsuma, A Wronskian representation of n-soliton solutions of nonlinear evolution equations, J. Phys. Soc. Japan, 46, (1979), 359-360.
    [107] N. C. Freeman and J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petmiashvili equations: the Wronskian technique, Phys. Lett., 95A, (1983), 1-3.
    [108] J. J. C. Nimmo and N. C. Freeman, A method of obtaining the n-soliton solution of the Boussinesq equation in terms of a Wronskian, Phys. Lett., 95A, (1983), 4-6.
    [109] J. J. C. Nimmo, A bilinear Backlund transformation for the nonlinear Schrodinger equation, Phys. Lett, 99A, (1983), 279-280.
    [110] J. J. C. Nimmo, Soliton solitons of three differential-difference equations in Wronskian form, Phys. Lett, 99A, (1983), 281-286.
    [111] N. C. Freeman and J. J. C. Nimmo, Soliton solutions of the Korteweg de Vries and the Kadomtsev-Petviashvili equations:the Wronskian technique , Proc. R. Soc. Lond, 389A, (1983), 319-329.
    [112] J. J. C. Nimmo and N. C. Freeman, The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form, J. Phys. A, 17, (1984), 1415-1424.
    [113] N. C. Freeman, Soliton solutions of non-linear evolution equations, J. Appl. Math., 32, (1984), 125-145.
    [114] R. Hirota, Solitons of the classical Boussinesq equation and the spherical Boussinesq equation: the wronskian technique, J. Phys. Soc. Japan, 55, (1986), 2137-2150.
    [115] R. Hirota, Y. Ohta and J. Satsuma, Wronskian structures for soliton equations, Prog. Theo. Phys. Suppl., 94, (1988), 59-72.
    [116] I. Loris and R. Willox, Soliton solutions of Wronskian form to the nonlocal Boussinesq equation, J. Phys. Soc. Japan, 65, (1996), 383-388.
    [117] 张大军,邓淑芳,陈登远,MKdV-sineGordon方程的多孤子解,数学物理学报,24A,(2004),257-264.
    [118] Y. J. Zhang, Wronskian-type solutions for the vector k-constrained KP hierarchy, J. Phys. A, 29, (1996), 2617-2626.
    [119] A. Nakamura, A bilinear N-soliton formula for the KP equation, J. Phys. Soc. Japan, 58, (1989), 412-422.
    [120] Y. Matsuno J. Phys, Soc. Japan, 58, (1989), 412-422.
    [121] R. Hirota, M. Ito and F. Kako, Two-dimensional Toda lattice equation, Progr. Theor. Phys. Suppl., 94, (1988), 42-58.
    [122] R. Hirota, Y. Ohta and J. Satsuma, Solutions of Kadomtsev-Petviashvili equation and the two-dimensional Toda equations, J. Phys. Soc. Japan, 57, (1988), 1901-1904.
    [123] Q. M. Liu, Solving formula of the two-dimensional Toda Lattice, J. Phys. A, 22, (1989), 255-257.
    [124] T. Tamizhmani, S. K. Vel and K. M. Tamizhmani, Wronskian and rational solutions of the differential-difference KP equation, J. Phys. A, 31, (1998), 7627-7633.
    [125] Y. Ohta, Casorati and discrete gram type determinant representations of solutions to the discrete KP hierarchy, J. Phys. Soc. Japan, 62, (1993), 1872-1886.
    [126] F. Yuasa, Backlund transformation of the two-dimensional Toda lattice and Casorati's determinants, J. Phys. Soc. Japan, 56, (1987), 423-424.
    [127] J. J. C. Nimmo and N. C. Freeman, Rational solutions of the Korteweg-de Vries equation in Wronskian form, Phys. Lett, 96 A, (1983), 443-446.
    [128] Q. M. Liu, X. B. Hu and Y. Li, Rational solutions of the classical Boussinesq hierarchy, J. Phys. A: Math Gen., 23, (1990), 585-591.
    [129] A. S. Carstea and D. Grecu, On a class of rational and mixed soliton-rational solutions of the Toda lattice, Progr. Theor. Phys. Suppl., 96, (1996), 29-36.
    [130] H. Wu, D. J. Zhang, Mixed rational solutions of two differential- difference equations in Casorati determinant form, J. Phys. A: Math Gen., 23, (2003), 585-591. D. J. Zhang, Singular solutions in Casoratian form for two differential- difference equations, Chaos, Solitons and Fractals, 23, (2005), 1333-1350.
    [131] W. X. Ma and Y. You, Rational solutions of the Toda lattice equation in Casoratian form, Chaos, Solitons, Fractals, 22, (2004), 395-406.
    [132] K. I. Maruno, W. X. Ma, M. Oikawa, Generalized Casorati determinant and positon- negaton-type solutions of the Toda lattice equation, J. Phys. Soc. Japan, 73, (2004), 831-837.
    [133] R. Hirota, Soliton solution to BKP equtaion I. The Pfaffian technique, J. Phys. Soc. Japan, 58, (1989), 2285-2296.
    [134] M. Sato, Y. Sato, Nonlinear partial differential equations in applied science, ed.H. Fujita, P. D. Lax and G. Strang, Kinokuniya/North-Holland, (1983).
    [135] V. B. Matveev, Generalized Wronskain formula for solutions of the KdV equations: First applications, Phys. Lett. A, 166, (1992), 205-208.
    [136] Q. M. Liu, Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies, J. Phys. Soc. Japan, 59, (1990), 3520-3527.
    [137] W. X. Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301, (2002), 35-44.
    [138] Y. Zhang, S. F. Deng, D. J. Zhang and D. Y. Chen, The iV-soliton solutions for the non-isospectral mKdV equation, Phys. A, 339, (2004), 228-236.
    [139] R. Hirota and Y. Ohta, Hierarchies of coupled soliton equations I., J. Phys. Soc. Japan, 60, (1991), 798-809.
    [140] R. Hirota, Direct method in soliton theory, Iwanami, Tokyo, (1992) (in Japance).
    [141] S. Kakei, Dressing method and the coupled KP hierarchy, Phys. Lett. A, 264, (2000), 449-458.
    [142] C. R. Gilson, Generalizing the KP hierarchies'.Pfaffian hierarchies, Theor. Math. Phys., 133, (2001), 1663-1674.
    [143] 刘青平,M.Manas,BKP方程族Pfaffian解,数学年刊,23 A,(2002),693-698.
    [144] A. Nakamura and Y. Ohta, Bilinear, Pfaffian and Legendre function structures of the Tominmatsu-Sato solutions of the Ernst equation in general relatively, J. Phys. Soc. Japan, 60, (1991), 1835-1838.
    [145] Y. Ohta, Pfaffian solutions for the Vesolov-Novikov equation, J. Phys. Soc. Japan, 61, (1993), 3928-3933.
    [146] Y. Ohta, J. J. Nimmo and C. R. Gilson, A bilinear apporach to a Paffian self-dual Yang-Mills equation, Glasgov Math., 43A, (2001), 99-108.
    [147] M. Iwao and R. Hirota, Soliton solutions of a coupled derivative modfied KdV equations, J. Phys. Soc. Japan, 69, (2000), 59-72.
    [148] Y. Ohta, Pfaffian solution for coupled discrete nonlinear Schodinger equation, Chaos, Soliton and Fractals, 11, (2000), 91-95.
    [149] Y. Matsuno, A new proof of the rational N-soliton solution for the Kadomtsev-Petviashvili equation, J. Phys. Soc. Japan, 58, (1989), 67-72.
    [150] Y. Matsuno, New type of algebraic solitons expressed in terms of Pfaffian, J. Phys. Soc. Japan, 58, (1989), 1948-1961.
    [151] C. R. Gilson, J. J. Nimmo, Pfaffianization of the Davey-Stewartson equations, Theor. Math. Phys., 128, (2001), 870-882.
    [152] C. R. Gilson, J. J. Nimmo and S. Tsujimoto, Pfaffianization of the discrete KP equation, J. Phys. A, 34, (2001), 10569-10575.
    [153] J. X. Zhao, C. X. Li and X. B. Hu, Pfaffianization of the differential-difference KP equation, J. Phys. Soc. Japan, 73, (2004), 1159-1163.
    [154] C. X. Li and X. B. Hu, Pfaffianization of the semi-discrete Toda equation, Phys. Lett. A, 329, (2004), 193-198.
    [155] R. Hirota, X. B. Hu, X. Y. Tang, A vetor potential KdV equation and vector Ito equation: soliton solutions, bilinear Backlund transformations and Lax pairs, J. Math. Anal. Appl., 288, (2004), 323-348.
    [156] M. J. Ablowitz, A. Ramini, and H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type. Ⅰ, Ⅱ, J. Math. Phys., 21, (1980), 715-721; 1006-1015.
    [157] J. Weiss, Backlund transformation and the Painleve property, J. Math. Phys., 27, (1986) 1296-1305.
    [158] A. C. Newell, T. Ratiu, M. Tabor and Y. B. Zeng, Proc. Int. Conf. Nonlinear Dynamical Systems, Montreal, 1986.
    [159] M. Musette and R. Conto, Algorithmic method for deriving Lax pairs from the invariant Painleve analysis of nonlinear partial differential equations, J. Math. Phys., 32, (1991), 1450-1457.
    [160] J. Weiss, Backlund transformation and the Painleve property, J. Math. Phys., 27, (1986), 1293-1305.
    [161] W. T. Han and Y. S. Li, Remarks an the solutions of the KP equation, Phys. Lett. A, 283, (2001), 185-194.
    [162] 韩文廷,孤子方程特解的一种矩阵表示[博士学位论文],中国科技大学,(2003).
    [163] Z. B. Li, M. L. Wang, Travelling wave solutions to the two-dimensional KdV-Burgers equation, J. Phys. A: Math. Gen., 26, (1993), 6027-6032.
    [164] M. L. Wang, Y. B. Zhou, Z. B. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216, (1996), 67-75.
    [165] 范恩贵,齐次平衡法,Weiss-Tabor-Carnevale及Clarkson-Kruskal约化之间的联系,物理学报,49,(2000),1409-1412.
    [166] 张解放,长水波近似方程的多孤子解,物理学报,47,(1998),1416-1420.
    [167] Z. Y. Yan, H. Q. Zhang, Multiple soliton-like and periodic-like solutions to the generalization of integrable of (2+1)-dimensional dispersive long-wave equations, J. Phys. Soc. Japan, 71 (2002) 437-442.
    [168] C. W. Chao, X. G. Geng, in: C. H. Gu, Y. S. Li, G. Z. Tu, (Eds), Nonlinear physics, research reports in physics, Springer, Berlin, (1990), 68-78.
    [169] C. W. Chao, X. G. Geng, C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy, J. Phys. A: Math. Gen., 23, (1990), 4117-4126.
    [170] Y. Cheng, Y. S. Li, The constraint of the KP equation and its special solutions, Phys. Lett. A, 157, (1991), 22-26.
    [171] Y. B. Zeng, etc., Canonical explicit Backlund transformations with spectrality for constrained flows of soliton hierachies, Phys. A, 303, (2002), 321-338.
    [172] S. Y. Lou, L. L. Chen, Formally variable separation approach for nonintegrable models, J. Math. Phys., 40, (1999), 6491-6500.
    [173] S. L. Zhang, S. Y. Lou, C. Z. Qu, Variable separation and exact solutions to generalized nonlinear diffusion equations, Chin. Phys. Left., 19, (2002), 1741-1744.
    [174] S. Y. Lou, On the coherent structures of Nizhnik-Novikov-Veselov equation, Phys. Lett. A, 277, (2000), 94-100.
    [175] H. B. Lan, K. L. Wang, Exact solution for two nonlinear equations, J. Phys. A: Math. Gen., 23, (1990), 4097-4106.
    [176] G. X. Huang, S. Y. Lou, X. X. Dai, Exact and explicit solitary wave solutions to a model equation for water waves, Phys. Lett. A, 139, (1989), 373-374.
    [177] Z. B. Li, Wu method and solitons, Proc. of ASCM'95 eds Shi H. and Kobayashi H.,(Tokyo: Scientists Incorporated), (1995), 157.
    [178] 李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报,17,(1997),81-89.
    [179] E. G. Fan, H. Q. Zhang, New exact solutions for a system of coupled KdV equations, Phys. Lett. A 245, (1998), 389-392.
    [180] E. G. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277, (2000), 212-218.
    [181] Y. T. Gao, B. Tian, Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics, Comput. Phys. Comm., 133, (2001), 158-164.
    [182] 李志斌,姚若侠,非线性耦合微分方程组的精确解析解,物理学报,50,(2001),2062-2067.
    [183] 闫振亚,张鸿庆,具有三个任意函数的变系数KdV-mKdV方程的精确类孤子解,物理学报,48,(1999),1957-1961.
    [184] Z. S. Lu, H. Q. Zhang, On a further extended tanh method, Phys. Lett. A, 307, (2003), 269-273.
    [185] 刘式适,傅遵涛,刘式达,赵强,Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用,物理学报,50,(2001),2068-2073.
    [186] E. G. Fan, H. H. Dai, A direct approach with computerized symbolic computation for finding a series Of travelling waves to nonlinear equations, Comput. Phys. Commun., 153, (2003), 17-30.
    [187] S. Y. Lou, G. J. Ni, The relations among a special type of solutions in some (D+1)-dimensional nonlinear equations, J. Math. Phys., 30, (1989), 1614-1620.
    [188] E. G. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35, (2002), 6853-6872.
    [189] Ramani, Inverse scattering, ordinary differential equations of Painleve of type and Hirota's biliner formalism, preprint L. P. T. E University Paris-Sud, Orsay, 1980.
    [190] X. B. Hu, Hirota-type equations, soliton solutions, Backlund transformations and conservation laws, J. Partial Differential Equations, 3, (1990), 87-95.
    [191] X. B. Hu, Generlized Hirota's bilinear equations and their soliton solutions, J. Phys. A: Math. Gen., 26, (1993), L465-474.
    [192] J. Hietarinta, A search of bilinear equations passing Hirota's three-soliton condition: Ⅳ. Complex bilinear equations, J. Math. Phys., 29, (1988), 628-635.
    [193] J. Hietarinta, A search of bilinear equations passing Hirota's three-soliton condition: Ⅲ. sine-Gordon-type bilinear equations, J. Math. Phys., 28, (1987), 2586-2592.
    [194] J. Hietarinta, A search of bilinear equations passing Hirota's three-soliton condition: Ⅱ. mKdV-type bilinear equations, J. Math. Phys., 28, (1987), 2094-2101.
    [195] J. Hietarinta, A search of bilinear equations passing Hirota's three-soliton condition: Ⅰ. KdV-type bilinear equations, J. Math. Phys., 28, (1987), 1732-1742.
    [196] M. Ito, An extension of nonlinear evolution equations of the KdV(MKdV) type to higher orders, J. Phys. Soc. Japan, 49, (1980), 771-778.
    [197] A. C. Newell, Y. B. Zeng, The Hirota conditions, J. Math. Phys., 27, (1986), 2016-2021.
    [198] 郭福奎,否定Hirota条件的一个简单方法,应用数学学报,27,(1991),111-114.
    [199] B. Grammaticos, A. Ramani and J. Hietarinta, A search for integrable bilinear equations: the Painleve approach, J. Math. Phys. 31, (1990), 2572-2578.
    [200] K. Sawada and T. Kotera, A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Progr. Theor. Phys., 51, (1974), 1355-1362.
    [201] Y. Matsuno, Exact muliti-soliton solutions of the Benjamin-Ono equation, J. Phys. A, 12, (1979), 619-612.
    [202] 陈登远,孤子引论,科学出版社,(2D04),待出版.
    [203] 邓淑芳,孤子方程的新解[博士学位论文],上海大学,(2004).
    [204] 李翊神,一类发展方程和谱的变形,中国科学(A辑),5,(1982),385-390.
    [205] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, Proc. RIMS Symp. Nonlinear Integrable Systems, Classical and Quantum Theory, (M. Jimbo and T. Miwa, eds), Kyoto, 1981, World Scientific, 1983.
    [206] Soliton solutions to the BKP equations. Ⅱ. The integral equation, J. Phys. Soc. Japan, 58, (1989), 2705-2712.
    [207] G. L. Lamb, Jr: In Honor of Philp M. Morse, ed. H. Feshbach and K. U. Ingard, M. I. T. Press, Cambrige Mass, (1969), 88.
    [208] X. B. Hu, Y. Li, Nonlinear superposition formulae of the Ito equation and a model equation for shallow water waves, J. Phys. A, 24, (1991), 1979-1986.
    [209] X. B. Hu, A Backlund transformation and nonlinear superposition formulae of a higher-order Ito equation, J. Phys. A, 26, (1993), 5895-5903.
    [210] X. B. Hu, Nonlinear superposition formulae of the Novikov-Veselov equation, J. Phys. A, 27, (1994), 1331-1338.
    [211] X. B. Hu, A Backlund transformation and nonlinear superposition formulae of a modified KdV-type bilinear equation, J. Math. Phys., 35, (1994), 4739-4745.
    [212] X. B. Hu, R. Willox, Some new exact solutions of the Novikov-Veselov equation, J. Phys. A, 29, (1996), 4589-4592.
    [213] X. B. Hu, etc., Some new results on the triple-humped soliton equation: Backlund transformation, nonlinear superposition principle and new explicit solutions, J. Phys. A, 31, (1998), 8859-8868.
    [214] X. B. Hu, etc., Soliton solutions symmetries of the 2+1 dimensional Kaup-Kupershmit equation, Phys. Left. A, 262, (1999), 409-415.
    [215] X. B. Hu, etc., Soliton solutions to the Jimbo-Miwa equations and the Fordy-Gibbons-Jimbo-Miwa equation, Phys. Lett. A, 262, (1999), 310-320.
    [216] X. B. Hu, etc., Lax pairs and Backlund transformations for a coupled Ramani equation and its related system, Appl. Math. Lett., 13, (2000), 45-48.
    [217] H. W. Tam, W. X. Ma, X. B. Hu, and D. L. Wang, The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisted equation and its related system, J. Phys. Soc. Japan, 69, (2000), 45-52.
    [218] X. B. Hu, Y. T. Wu, Application of the Hirota bilinear formalism to a new intergrable diffential-difference equation, Phys Lett A, 246, (1998), 523-529.
    [219] X. B. Hu, P. A. Clarkson, Backlund transformation and nonlinear superposition formulae of a diffential-difference KdV equation, J. Phys. A, 31, (1998), 1405-1414.
    [220] W. X. Ma, X. B. Hu, etc., Backlund transformation and its superposition principle of a Blaszak-Marciniak four-field lattice, J. Math. Phys., 40, (1999), 6071-6086.
    [221] X. B. Hu, H. W. Tam, Application of Hirota's bilinear formalism to a two- dimensional lattice by Leznov, Phys Lett A, 276, (2000), 65-72.
    [222] X. B. Hu, H. W. Tam, Some new results on the Blaszak-Marciniak 3-field and 4-field lattices, Rep. Math. Phys., 46, (2000), 99-104.
    [223] X. B. Hu, D. L. Wang, H. W. Tam, Integrable extended Blaszak-Marciniak lattice and another extended lattice Lax pairs, Theor. Math. Phys., 127, (2001), 738-743.
    [224] X. B. Hu, H. W. Tam, Some recent results on integrable bilinear equations, J. Non. Math. Phys., 8, (2001), 149-155.
    [225] X. B. Hu, H. W. Tam, New integrable differential-difference systems: Lax pairs, bilinear forms and soliton solution, Inverse Problems, 17, (2001), 319-327.
    [226] H. W. Tam, X. B. Hu, Soliton solutions and Backlund transformation for the Kuper- shmidt five-field lattice: a bilinear approach, Appl. Math. Lett, 15, (2002), 987-993.
    [227] X. B. Hu, P. A. Clarkson, Rational solutions of an extended Lotka-Volterra equation, J. Non. Math. Phys., 9, (2002), 75-86.
    [228] H. W. Tam, X. B. Hu, and X. M. Qian, Remarks on several 2+1 dimensional lattices, J. Math. Phys., 69, (2002), 1008-1017.
    [229] H. W. Tam, X. B. Hu, A special integrable differential-diffference equation and its related system: bilinear forms soliton solutions and Laxs pairs, J. Phys. Soc. Japan, 72, (2003), 264-272.
    [230] X. B. Hu, W. M. Xue, A bilinear Backlund transformation for the negative Volterra hierarchy, J. Phys. Soc. Japan, 72, (2003), 3075-3078.
    [231] J. X. Zhao, C. X. Li, X. B. Hu, An integrable coupled Toda equation and its related equation via Hirota's bilinear approach, J. Non. Math, Phys., 10, (2003), 237-244.
    [232] C. R. Gilson, X. B. Hu, etc., Two integrable differential-diffference equations derived from the discrete BKP equation and their related equations, 177-184.