有限字长数字控制器设计与实现若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字控制系统是一个十分重要而且活跃的研究领域,其无限精度设计理论已经比较成熟并得到广泛的应用。从理论上讲,一个理想系统可以有许多种完全等价的实现方案,然而,在用物理元器件、模块或子系统实现系统时,由于存在着有限字长效应,实际系统中的性能往往要偏离理想性能。系统的性能与系统的实现结构有着密切的关系。在数字控制器的设计与实现过程中,必须考虑到有限字长对系统性能的影响。
     有限字长控制器研究的一个方向是有限字长控制器的实现问题,即对于已经设计好的控制器,得到能最小化有限字长影响的控制器实现;另一个方向是直接设计一个有限字长控制器,使闭环系统能满足一定的性能指标。
     本论文首先对数字系统,特别是数字控制器设计与实现中的有限字长问题和非脆弱控制器设计的背景、历史发展情况等作了简单介绍,然后通过分析数字控制器中不同来源的有限字长误差,定义不同的性能指标,较系统地分析并讨论不同的有限字长数字控制器设计和实现问题。主要的工作概括如下:
     针对数字控制器参数的有限字长误差,分别定义并分析z算子实现和δ算子实现的FWL系统中闭环传递函数相对于数字控制器实现参数的灵敏度,通过灵敏度最小化来设计控制器最优实现;
     针对控制器参数的有限字长误差,分别定义并分析z算子实现和δ算子实现的FWL系统中闭环极点位置相对于数字控制器实现参数的灵敏度,通过灵敏度最小化来设计控制器最优实现;
     针对控制器内部信号的有限字长误差,基于随机控制理论,分别定义并分析z算子实现和δ算子实现的FWL系统中的闭环舍入噪声增益,通过最小化舍入噪声增益指标来设计控制器最优实现;
     针对控制器内部信号的有限字长误差,分别基于l_1范数和H_∞范数定义并分析z算子实现的FWL系统中的闭环舍入噪声增益,通过最小化舍入噪声增益指标来设计控制器最优实现;并将H_∞舍入噪声增益问题推演转化为一个LMI问
    
     摘要
    题,从而利用MATLAB可很方便地进行求解;
     针对控制器内部信号的有限字长误差,采用直接方法来设计有限字长控制
    器,使有限字长协方差上界控制问题和有限字长见控制问题转化为统一的矩阵
    不等式求解问题,求得的有限字长控制器能使闭环系统满足给定的性能指标。
     最后,在总结全文的基础上,提出了若干有待进一步深入研究的问题。
Digital control system has been considered as one of the most important and active fields in engineering for many years, and the infinite precision design theory and application have been well studied for a long time. An ideal system can be implemented in different but equivlent realizations theoretically, however, due to the finite word length (FWL) effects resulting from actual devices, modules or subsystems, the system performance will always deviate from the ideal performance in practice. The system performance is closely related with the implementation of the system. Thus, the FWL effects need to be considered when a digital controller is designed and implememted.
    One approach of FWL controller study is to obtain the optimal realizations of a given FWL controller to minimize the FWL effects. An alternative approach is to design the FWL controller directly according to some given performance index.
    The backgrounds and a historical view of FWL problems and non-fragile controller design are presented at the beginning of the dissertation. In the body of the dissertation, different performance indexes are defined and analyzed based on the analysis of different types of FWL errors in digital controller, and different FWL digital controller design and realization problems are considered and solved. The major contributions of this dissertation are as follows:
    Considering the FWL errors of controller coefficients, define and analyze the closed-loop transfer function sensitivity measure with respect to the controller coefficients, obtain the optimal controller realizations via minimizing the transfer function sensitivity measure. Both z -operator and δ -operator parameterized systems are considered.
    Considering the FWL errors of controller coefficients, define and analyze the closed-loop pole place sensitivity measure with respect to the controller coefficients, obtain the optimal controller realizations via minimizing the pole sensitivity measure. Both z -operator and δ -operator parameterized systems are considered.
    
    
    
    Considering the FWL errors of internal signals in digital controller, based on stochastic control theory, define and analyze the closed-loop roundoff noise gain in both z -operator and 5 -operator parameterized FWL systems, and obtian the optimal controller realizations via minimizing the roundoff noise gain.
    Considering the FWL errors of internal signals in digital controller, define and analyze the roundoff noise gain based on l1 -norm and H∞ -norm respectively,
    and obtain the optimal controller realization via minimize the newly defined roundoff noise gains. The H∞ roundoff noise gain minimizing problem is
    reduced to an linear matrix inequalities problem which can be solved using MATLAB conveniently.
    Considering the FWL errors of internal signals in digtial controllers, direct approach is adopted to design FWL controller. A FWL covariant upper bound control problem and a FWL H∞ control problem are reduced to a unified matrix inequalities problem.
    Finally, more problems to be studied and investigated are pointed out on the basis of summarization of this dissertation.
引文
1. W. Forsythe and R. M. Goodall. Digital Control—Fundamentals, Theory and Practice. Macmillan, Basingstoke, U.K., 1991.
    2. K. A. strm and B. Wittenmark. Computer Controlled Systems: Theory and Design, 3rd edition. Prentice-Hall, Upper Saddle River, NJ., 1997.
    3. G. F. Franklin, J. D. Powell and M. Workman. Digital Control of Dynamic Systems, 3rd edition. Addison-Wesley, Menlo Park, CA., 1998.
    4. J. E. Bertram. The effects of quantization in sampled-feedback systems. Transactions on AIEE: 77: 177-182, 1958.
    5. J. B. Slaughter. Quantization errors in digital control systems. IEEE Transactions on Automatic Control, 9: 70-74, 1964.
    6. J. B. Knowles and R. Edwards. Effects of a finite-word-length computer in a sampled-data feedback systems. Proceedings of IEE, 112(6): 1194-1207, 1965.
    7. E. E. Curry. The analysis of round-off and truncation errors in a hybrid control system. IEEE Transactions on Automatic Control, 12: 601-604, 1967.
    8. J. B. Knowles and E. M. Olcayto. Coefficient accuracy and digital filter response. IEEE Transactions on Circuits Theory, CT-15:31-41, 1968.
    9. P. E. Mantey. Eigenvalue sensitivity and state-variable selection. IEEE Transactions on Automatic Control, 13(3): 263-269, 1968.
    10. B. Liu. Effect of Finite word length on the accuracy of digital filters-A review, IEEE Transactions on Circuits Theory, CT-18:670-677, 1971.
    11. A. Fettweis. On the connection between Multiplier word length limitation and roundoff noise in digital filters. IEEE Transactions on Circuit Theory, 19:486-491, 1972.
    12. E. Avenhaus. On the design of digital filters with coefficients of limited wordlength. IEEE Transactions on Audio Electroacoustics, AU-20, 1972.
    13. A. Fettweis. On properties of floating-point roundoff noise. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-22: 149-151, 1974.
    14. J. D. Markel and A. H. Gray. Roundoff noise characteristics of a class of orthogonal polynomial structures. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-23(5): 473-786, 1975.
    15. C. T. Mullis and R. A. Roberts. Roundoff noise in digital filters: Frequency transformations and invariants. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-24:538-550, 1976.
    
    
    16. A. Sripad and D. L. Snyder. A necessary and sufficient condition for quantization errors to be uniform and white. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-25: 442-448, 1977.
    17. R. E. Rink and H. Y. Chong. Performance of State Regulator systems with floating-point computation. IEEE Transactions on Automatic Control, AC-24: 411-420, 1979.
    18. R. E. Crochiere. A new statistical approach to the coefficient word length problem for digital filters. IEEE Transactions on Circuits and Systems, CAS-22: 190-196, 1975.
    19. C. T. Mullis and R. A. Roberts. Synthesis of minimum round off noise fixed-point digital filters. IEEE Transactions on Circuits and Systems, 23:551-562, 1976.
    20. C. T. Mullis and R. A. Roberts. Filter structures which minimize roundoff noise in fixed-point digital filters. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, p.505-508, 1976.
    21. S. Y. Hwang. Minimum uncorrelated unit noise in state-space digital filtering. IEEE Transactions on Acoustics, Speech and Signal Processing, 25: 273-281,1977.
    22. A. I. Abu-El-Haija and A. M. Peterson. An approach to eliminate roundoff errors in digital filters. IEEE Transactions on Acoustics, Speech and Signal Processing, 27: 195-198, 1979.
    23. A. B. Sripad. Performance Degradation in Digitally Implemented Optimal Regulators using Fixed-Point Arithmetic. Automatica, 18(3): 353-357, 1982.
    24. P. Morony, A. S. Willsky and P. K. Houpt. Roundoff noise and scaling in the digital implementation of control compensators. IEEE Transactions on Acoustics, Speech and Signal Processing, 31(6): 1464-1474, 1983.
    25. D. Williamson. Finite wordlength design of digital Kalman filters for state estimation. IEEE Transactions on Automatic Control, AC-30(10): 930-939, 1985.
    26. P. Morony, A, S. Willsky and P. K. Houpt. The digital implementation of control compensators: the coefficient word length issue. IEEE Transactions on Automatic Control, 25: 621-630, 1980.
    27. A. J. M. Van Wingerden and W. L. de Koning. The influence of finite word-length on digital optimal control. IEEE Transactions on. Automatic Control, 25: 621-630, 1980.
    28. A. J. M. Van Wingerden and W. L. de Koning. The influence of finite word length on digital optimal control. IEEE Transactions on Automatic Control,
    
    AC-29(5): 385-391, 1984.
    29. P. Morony. Issues in the Implementation of Digital Feedback Compensators. Number 5 in Signal Processing, Optimization, and Control Series. MIT Press, Cambridge, MA, 1983.
    30. D. Willamson. Digital Control and Implementation: Finite Wordlength Considerations. Systems and Control Engineering. Prentice Hall, Englewood Cliffs, NJ, 1991.
    31. M. Gevers and G. Li. Parametrizations in Control, Estimations and Filtering Problems: Accuracy Aspects. Springer-Verlag, Berlin, 1993.
    32. R. S. H. stepanian and James F. Widborne. Digital Controller Implementation and Fragility: A Modern Perspective. Springer-Verlag, London, 2001.
    33. L. H. Keel and S. P. Bhattacharryya. Robust, fragile, or Optimal? IEEE Trans. Automatic Control, 42(8): 1098-1105, 1997.
    34. W. M. Haddad and J. R. Corrado. Robust resilient dynamic controllers for systems with parametric uncertainty and controller gain variations. In Proceedings of the American Control Conference, p. 2837-2841, 1998.
    35. L. Thiele. Design of sensitivity and round-off noise optimal state-space discrete systems. International Journal of Circuit Theory and Applications, 12: 39-46, 1984.
    36. G. -T. Yan. New digital notch filter structures with low coefficient sensitivity. IEEE Transactions on Circuits and Systems, CAS-31(9): 825-828, 1984.
    37. G. Orlandi and G. Martinelli. Low sensitivity recursive digital filters obtained via the delay replacement. IEEE Transactions on Circuits and Systems, CAS-31(7): 453-460, 1984.
    38. L. Thiele. On the sensitivity of linear state-space systems. IEEE Transactions on Circuits and Systems, CAS-33(5): 502-510, 1986.
    39. A. Zilouchian and R. Carroll. A coefficient sensitivity bound in 2-D state-space digital filtering. IEEE Transactions on Circuits and Systems, CAS-33(7): 665-667, 1986.
    40. W. J. Lutz and S. L. Hakimi. Design of multi-input multi-output systems with minimum sensitivity. IEEE Transactions on Circuits and Systems, 35(9):1114-1121, 1988.
    41. M. Iwatsuki, M. Kawamata and T. Higuchi. Statistical sensitivity and minimum sensitivity structures with fewer coefficients in discrete time linear systems. IEEE Transactions on Circuits and Systems, 37(1): 72-80, 1990.
    42. T. Hinamoto, M. N. Shirazi and H. Toda. Minimization of sensitivity for
    
    MIMO linear discrete-time systems under scaling constrains. International Journal of Systems Science, 22(10): 1729-1741, 1991.
    43. T. Hinamoto and T. Takao. Synthesis of 2-D state-space filter structures woth low frequency-weighted sensitivity. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and digital signal processing, 39(9): 646-651, 1992.
    44. G. Li, B. D. O. Anderson, M. Gevers and J. E. Perkins. Optimal FWL design of state space digital systems with weighted sensitivity minimization and sparseness consideration. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 39(5): 365-377, 1992.
    45. G. Li, On Frequency Weighted Minimal L_2 Sensitivity of 2-D Systems Using Fornasini-Marchesini LSS Model. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 44(7): 642-646, 1997.
    46. C.-S. Xiao. Improved L_2-sensitivity for state-space digital system. IEEE Transactions on Signal Processing, 45(4): 837-840, 1997.
    47. C.-S. Xiao, P. Agathoklis and D. J. Hill. Coefficient sensitivity and structure optimization of multidimensional state-space digital filters. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 45(9):993-998, 1998
    48. A. G. Madievski, B.D.O. Anderson and M. Gevers. Optimun Realizations of Sampled-data Controllers for FWL Sensitivity Minimization. Automatica, 31(3): 367-379. 1995.
    49. R. H. Istepanian, I. Pratt, R. Goodall and S. Jones. Effects of fixed-point parameterization on the performance of active suspension control systems. In Proceedings of the 13th Triennial World Congress, p.291-295, 1996.
    50. T. Ogawa, T. Kumagai, T. Suzuki, S. Okuma. Implementation technique considering closed-loop system performance of high order controllers. In Proceedings of AMC '96-MIE, p.75-79, 1996.
    51. T. Hinamoto and T. Kouno. Realization of state-estimate feedback controllers with minimum L_2-sensitivity. In Proceedings of the IEEE Internahional Symposium on Circuits and Systems, Ⅱ-837-840, 2001
    52. R. E. Skelton and D. A. Wagie. Minimal root sensitivity in linear systems. Journal of Guidance Control, 7: 570-574, 1984.
    53. M. R. Stoji, M. M. Fedenia and R, M. Stoji. Sensitivities of the prescribed pole spectrum in a closed-loop control system. Automatica, 24(2): 257-260,1988.
    54. G. Li. On pole and zero sensitivity of linear systems. IEEE Transactions on
    
    Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 44(7):583-590, 1997.
    55. R. H. Istepanian, G. Li, J. Wu and J. Chu. Analysis of sensitivity measures of finite-presicion digital controller structures with closed-loop stability bounds. IEE Proceedings-Control Theory and Applications, 145(5): 472-478, 1998.
    56. G. Li. On the structure of digital controllers with finite word length consideration. IEEE Transactions on Automatic Control, 43(5): 689-693,1998.
    57. I. J. Fialho and T. T. Georgiou, On stability and performance of sampled-data systems subject to wordlength constraint. IEEE Transactions on Automatic Control, 39(12): 2476-2481, 1994.
    58. J.-H. Chou, S.-H. Chen and I.-R. Horng. Robust stability bound on linear time-varying uncertainties for linear digital control systems under finite wordlength effects. International Journal of JSME, C-39(4): 767-771, 1996.
    59. R. H. Istepanian J.F. Whidborne. Multi-objective design of finite word-length controller structures. In Proceedings of the IEEE Congress on Evolutionary Computation, 1: 61-68, 1999.
    60. J. Wu, R. H. Istepanian and S. Chen. Stability issues of finite-precision controller structures for sampled-data systems. International Journal of Control, 72(15): 1331-1342, 1999.
    61. S. Chen, J. Wu, R. H. Istepanian and J. Chua. Optimizing stability bounds of finite-precision PID controller structures. IEEE Transactions on Automatic Control, 44(11): 2149-2153. 1999.
    62. J. F. Whidborne, J. Wu and R. S. H. Istepanian. Finite word length stability issues in an l_1 framework. International Journal of Control, 73(2): 166-176, 2000.
    63. R. H. lstepanian, S. Chen, J. Wu and J. F. Whidborne. Optimal finite-precision controller structures for sampled-data systems. International Journal of System Science, 31(4): 429-438, 2000.
    64. J. Wu, S. Chen, G. Li and J. Chu. Optimal finite-precision state-estimate feedback controller realizations of discrete-time systems. IEEE Transactions on Automatic Control, 45(8): 1550-1554, 2000.
    65. J. Wu, S. Chen, G. Li, R. H. Istepanian and J. Chu. An improved closed-loop stability related measure for finite-precision digital controller realizations. IEEE Transactions on Automatic Control, 46(7): 1162-1166, 2001.
    66. J. Wu, S. Chen, G. Li and J. Chu. Finite word length implementation for
    
    digital reduced order observer based controller. Developments in Chemical Engineering and Mineral Processing, 9(1/2): 41-48, 2001.
    67. S. Chen, J. Wu and G. Li. Two approaches based on pole sensitivity and stability radius measures for finite precision digital controller realizations. Systems and Control Letters, 45:321-329, 2002.
    68. J. F. Whidborne, R. S. H. Istepanian and J. Wu. Reduction of Controller Fragility by Pole Sensitivity Minimization. IEEE Transactions on Automatic Control, 46(2): 320-325, 2001.
    69. L. B. Jackson. Roudoff noise bounds derived from coefficient sensitivities for digital filters. IEEE Transactions on Circuits and Systems, CAS-23: 481-485, 1976.
    70. T. L. Chang. A low roundoff noise digital filter structure. In Proceedings of IEEE International Symposium on Circuits and Systems, p. 1004-1008, 1978.
    71. R. V. Patel and M. Toda. Quantitive measures of robustness for multivariable systems. In Proceedings of the 2nd IFAC Symposium on Computer Aided Design of Multivariable Technological Systems, p. 153-158, 1982.
    72. V. Tavsanoglu and L. Thiele, Optimal Design of State-Space Digital Filters by simultaneous Minimization of Sensitivity and Roundoff Noise. IEEE Transactions on Circuits and Systems, CAS-31(10): 884-888, 1984.
    73. L. Thiele. Design of Sensitivity and Roundoff Noise Optimal State-space Discrete systems. Circuit Theory and Applications, 12:39-46, 1984.
    74. B. W. Bomar and J. C. Hung. Minimum roundoff noise digital filters with some power-of-two coefficients. IEEE Transactions on Circuits and Systems, CAS-31(10): 833-840, 1984.
    75. M. Kawamata and T. Higuchi. A unified approach to the optimal synthesis of fixed-point state-space digital filters. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-33(4): 911-920, 1985.
    76. D. Williamson. Roundoff noise minimization and pole-zero sensitivity in fixed-point digital filters using residue feedback. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-34(5): 1210-1220, 1986.
    77. M. Verhaegen and P. Van Dooren. Numerical aspects of different Kalman filter implementations. IEEE Transactions on Automatic Control, AX-31(10): 907-917, 1986.
    78. T. Lin, M. Kawamata, and T. Higuchi. A unified study on the roundoff noise in 2-D state space digital filters. IEEE Transactions on Circuits and Systems, CAS-33(7): 724-729, 1986.
    
    
    79. W.-S. Lu and A. Antoniou. Synthesis of 2-D state-space fixed-point digital-filter structures with minimum roundoff noise. IEEE Transactions on Circuits and Systems, CAS-33(10): 965-973, 1986.
    80. L. M. Smith and B. W. Bomar. An algorithm for constrained roundoff noise minimization in digital filters with application to two-dimensional filters. IEEE Transactions on Circuits and Systems, CAS-35(11): 1359-1368, 1988.
    81. B. D. Van Veen and R. Baraniuk. Matrix based computation of floating roundoff noise. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-37(12): 1995-1998, 1989.
    82. P. W. Wong. Quantization noise, fixed-point multiplicative roundoff noise, and dithering. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-38(2): 286-300, 1990.
    83. C. Tsai. Floating-point roundoff noises of first-and second-order sections in parallel form digital filters. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 44(9): 774-779, 1997.
    84. M. Yagyu, A. Nishihara and N. Fujii. Analysis and minimization of output errors of 2-D non-separable FIR digital filters with finite precision internal signals. IEICE Transactions on Fundamentals, E80-A(8): 1391-1401, 1997
    85. Y. H. Lee, M. Kawamata and T. Higuchi. GA-based design of multiplierless 2-D state-space digital filters with low roundoff noise. IEE Proceedings-Circuits Devices and Systems, 145(2): 118-123, 1998
    86. M. E. Ahmed and P. R. Belanger. Scaling and roundoff in fixed-point implementation of control algorithms. IEEE Trans. Ind. Electr., 31(3): 228-234, 1984.
    87. G. Amit and U. Shaked. Small roundoff realization of fixed-point digital filters and controllers. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(6): 880-891, 1988.
    88. M. Verhaegen. Roundoff error propagation in four generally-applicable, recursive, least-squares estimation schemes. Automatica, 25(3): 437-444, 1989.
    89. D. Williamson and K. Kadiman. Optimal Finite Wordlength Linear Quadratic Regulation. IEEE Transactions on Automatic Control, 34(12): 1218-1228,1989.
    90. G. Li and M. Gevers. Sensitivity and roundoff noise optimization of a state-estimate feedback controller. In Proceedings of 11th IFAC World Congress, 4:303-310, 1990.
    91. G. Li and M. Gevers. Optimal finite precision implementation of a
    
    state-estimate feedback controller. IEEE Transactions on Circuits and Systems, 37(12): 1487-1498, 1990.
    92. K.-T. Liu, R. E. Skelton and K. Grigoriadis. Optimal controllers for finite wordlength implementation. IEEE Transactions on Automatic Control, 37(9):1294-1304, 1992.
    93. M. Steinbuch, G. Schoostra and H. T. Goh. Closed-loop scaling of fixed-point digital control. IEEE Trans. Control Syst. Technology, 2:312-317, 1994.
    94. M. A. Rotea and D. Williamson. Optimal realizations of finite wordlength digital filters and controllers. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 42(2): 61-72, 1995.
    95. E. G. Collins, Jr. and Y. Zhao. Design of H_2-Optimal, finite word length, PID controllers. In Proceedings of the American Control Conference, p.902-903, 2000.
    96. E. G. Collins, Jr. and Y. Zhao. Optimal PID controller with finite word length implementation. In Proceedings of the American Control Conference, 2173-2178, 2001.
    97. G. Li, J. Wu, S. Chen and K. Y. Zhao. Optimum structures of digital controllers in sampled-data systems: a roundoff noise analysis. IEE Proceedings-Control theory and Applications, 149(3): 247-255, 2002.
    98. D. Delchamps. Stabilizing a linear system with quantized state feedback, IEEE Transactions on Automatic Control, 35(8):916-924, 1990.
    99. B. Widrow, I. Kollár and M.-C. Liu. Statistical Theory of Quantization. IEEE Transactions on Instrumentation and Measurement, 45(2): 353-361, 1996.
    100. R. Brockett and D. Liberzon. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 45(7): 1279-1289, 2000.
    101. N. Ella and S. K. Mitter. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 46(9): 1384-1400, 2001.
    102. H. Richter and E. A. Misawa. Stability analysis of discrete linear systems with quantized input and state measurements. In Proceedings of the American Control Conference, p.2392-2397, 2002.
    103. H. Richter, E. A. Misawa and B. D. O'Dell. Stability analysis of discrete linear systems with quantized input. In Proceedings of the American Control Conference, p.2991-2996, 2002.
    104. H. Richter. Stability and equilibria of linear control systems under input and measurement quantization. Ph. D Dissertation, Oklahoma State University,
    
    2001.
    105. W. M. Haddad and J. R. Corrado. Resilient dynamic controller design via quadratic Lyapunov bounds. In Proceedings of the 36th Conference on Decision and Control, p. 2678-2683, 1997.
    106. P. M. Mkil. Comments on "Robust, fragile, or optimal?". IEEE Transactions on Automatic Control, 43(9): 1265-1268, 1998.
    107. P. Dorato. Non-fragile controller design: an overview. In Proceedings of the American Control Conference, p. 2829-2831, 1998.
    108. D. Kaesbauer and J. Ackennann. How to escape from the fragility trap. In Proceedings of the American Control Conference, p.2832-2836, 1998.
    109. A. Jadbabaie, C. T. Abdallah, D. Famularo and P. Dorato. Robust, non-fragile and optimal controller design via linear matrix inequalities. In Proceedings of the American Control Conference, p.2842-2846, 1998.
    110. Y. Yang and A. L. Tits. Generic pole assignment may produce very fragile designs. In Proceedings of the 37th IEEE Conference on Decision and Control, p.1745-1746, 1998
    111. J. Paattilammi and P.M. Makila. Fragility and Robustness: A Case Study on PM Headbox control. In Proceedings of American Control Conference, p.2898-2903, 1999.
    112. W. M. Haddad and J. R. Corrado. Robust resilient dynamic controllers for systems with parametric uncertainty and controller gain variations. International Journal of Control, 73(15): 1405-1423, 2000.
    113. G. H. Yang, J. L. Wang and Y. C. Soh. Guaranteed cost control for discrete-time linear systems under controller gain perturbations. Linear Algorithms and Applications, 312(1-3): 161-180, 2000.
    114. G. H. Yang, J. L. Wang and C. Lin. H_∞ control for linear systems with additive controller gain variations. International Journal of Control, 73(16): 1500-1506, 2000.
    115. J.-S. Yee, G.-H. Yang and J. L. Wang. Non-fragile H_∞ Flight controller Design for a High Performance Aircraft. In Proceedings of the American Control Conference, p. 1857-1861, 2000.
    116. J.-S. Yee, G.-H. Yang and J. L. Wang. Non-fragile H_∞ Flight controller Design for large bank-angle tracking manoeuvres. Proceedings of IMechE, Part Ⅰ: Journal of Systems and Control, 214(3): 157-172, 2000
    117. M.-T. Ho. Non-Fragile PID Controller Design. In Proceedings of the 39th IEEE Conference on Decision and Control, p.4903-4908, 2000.
    
    
    118. D. Famularo, P. Dorato, C. T. Abdallah, W. M. Haddad and A. Jadbabaie, Robust non-fragile LQ Controllers: the static state feedback case. International Journal of Control, 73(2): 159-165, 2000.
    119. R. H. C. Takahashi, D. A. Dutra, R. M. Palhares and P. L. D. Peres. On robust non-fragile static state-feedback contoller synthesis. In Proceedings of the 39th IEEE Conference on Decision and Control, p.4909, 2000.
    120. G. H. Yang and J. L. Wang. Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty. IEEE Transactions on Automatic Control, 46(2): 343-348, 2001.
    121. R. H. Middleton and G. C. Goodwin. Improved finite word length characteristics in digital control using delta operators. IEEE Transactions on Automatic Control, AC-31(11): 1015-1021, 1986.
    122. C. P. Neuman. Transformations between delta and forward shift operator transfer function models. IEEE Transactions on Systems, man, and cybernetics, 23(1): 295-301, 1993.
    123. R. M. Goodall and B. J. Donoghue. Very high sample rate digital filters using the δ operator. IEE Proceedings-G, 140(3): 199-206, 1993.
    124. G. Li and M. Gevers. Comparative study of finite wordlength effects in shift and delta operator parameterizations, IEEE Transactions on Automatic Control, 38(5): 803-807, 1993.
    125. G. Li and M. Gevers. Roundoff noise minimization using delta-operator realizations [digital filters]. IEEE Transactions on Signal Processing, 41(2):629-637, 1993.
    126. Y.-M. Sung and M.-C. Kung. Lower finite word-length effect on state space digital filter by δ operator realization. International Journal of Electronics, 75(6): 1135-1141, 1993.
    127. T.-L. Song and E. G. Collins, Jr. and R. H. Istepanian. Improved closed-loop stability for fixed-point controller implementation using the delta operator. In Proceedings of the American Control Conference, p. 4328-4332, 1999.
    128. S. Chen, J. Wu, R. H. Istepanian and J. F. Whidborne. Optimising stability bounds of finite-precision controller structures for sampled-data systems in the δ-operator domain. IEE Proceedings-Control Theory and Applications, 146(6): 517-526: 1999.
    129. J. Wu, S. Chen, G. Li, R. H. Istepanian and J. Chu. Shift and delta operator realisations for digital controllers with finite word length considerations. IEE Proceedings-Control Theory and Applications, 147(6): 664-672, 2000.
    130. S. Chen, R. H. Istepanian, J. Wu and J. Chu. Comparative study on optimizing
    
    closed-loop stability bounds of finite-precision controller structures with shift and delta operators. System and ControlLetters, 40(3): 153-163, 2000.
    131. R. Gessing. Word length of pulse transfer function for small sampling periods. IEEE Transactions on Automatic Control, 44(9): 1760-1764, 1999.
    132. Z. wider. Realization using the γ operator. Automatica, 34(11): 1455-1457, 1998.
    133. S. Mukhopadhyay, A. Patra and G. P. Rao. New class of discrete-time models for continuous-time systems. International Journal of Control, 55(5): 1161-1187, 1992.
    134. H. T. Nagle and C. Carrolf. Hardware realization of sampled data controllers. In Proceedings of IFAC Symposium of Automatic Control, p.23-27, 1974.
    135. S. C. Chen, Application of one-chip signal processor in digital controller implementation. IEEE Control System Magazine, 2: 16-22, 1982.
    136. J. H. Lang. On the design of a special-purpose digital control processor. IEEE Transactions on Automatic Control, AC-29(3): 195-185, 1984.
    137. P. Sadayappan, Y. L. C. Ling, K. W. Olson and D. E. Orin. A restmcureable VLSI robotics vector processor architecture for real-time control. IEEE Transactions on Robotics Automation, 5(5): 583-599, 1989.
    138. S. Battilotti and G. Ulivi. An architectur for high performance control using digital signal processor chips. IEEE Control System Magazine, 10(6): 20-23, 1990.
    139. K. Shimabukuro, M. Kamayama and T. Higuchi. Design of a multiple-valued VLSI processor for digital control. IEICE Transactions on Information Systems, E-75(5): 709-719, 1992.
    140. V. Samoladas and L. Petrou. Special-purpose architectures for fuzzy-logic controllers. Microprocessing and Microprogramming, 40(4): 275-289, 1994.
    141. S. Kitticakoonkit, M. Kampyama and T. Higuchi. Design of a matrix multiply-addition VLSI processor for robot inverse dynamics computation, IEICE Transactions on Information Systems, E-74(11): 3819-3827, 1994.
    142. E. Kappos and D. J. Kinniment. Application-specific processor architectures for embedded control: case studies. Microprocessors and Microsystems, 20(4):225-232, 1996.
    143. M. K. Masten and I.Panahi. Digital signal processors for modern control systems. Control Engineering Practice, 5(4): 449-458, 1997.
    144. S. Jones, R. Goodall and M. Gooch. Targeted processor architectures for high-performance controller implementation. Control Engineering Practice,
    
    6(7): 867-878, 1998.
    145. R. S. H. Istepanian, J. Wu and J. F. Whidborne. Controller realizations of a teleoperated dual-wrist assembly system with finite word length considerations. IEEE Transactions on Control System and Technology, 9(4): 624-628, 2001.
    146. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.
    147. G. W. Stewart. Introduction to Matrix Computations. Academic Press, 1973.
    148. G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, 1990.
    149. G. C. Goodwin. Some observations on robust stochastic estimation. In Proceedings of 8th IFAC/IRORS Symposium on Identification and System Parameter Estimation, p.22-32, 1988.
    150. T. Iwasaki. A Unified matrix inequality approach to linear control design. Ph. D Dissertation, Purdue University, 1993.
    151. R. E. Skelton, T. lwasaki and K. M. Grigoriadis. A Unified Algebraic Approach to Linear Control Design. Taylor & Francis, 1998.