调强放射治疗中的优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放射治疗与手术治疗和化学药物治疗一起,组成了肿瘤的三大治疗手段。从经典的三维适形放射治疗技术发展到现在的调强放射治疗技术(intensity-modulated radiotherapy, IMRT),是放射肿瘤学史上的一次重大变革。但鉴于实际问题的复杂性,IMRT的优势还远没有在临床应用中完全发挥出来。IMRT治疗计划作为调强放疗的核心和基础,其中尚有许多急需解决的问题。
    本论文算法研究和临床需求紧密结合,在实现和完善常规的IMRT优化技术的基础上,围绕射野方向优化、提高优化速度、缩短治疗时间等方面的问题进行了深入、细致和创造性地研究。所做的主要工作如下:
    (1)综述了国内外IMRT的研究现状;分析了目前IMRT优化算法的不足和临床需求;总结了共轭梯度法(conjugate gradient, CG)和遗传算法(genetic algorithm, GA)的特点和性能;阐述了剂量计算模型。这些工作为后续研究奠定了基础。
    (2)以物理目标函数为基础,实现了基于共轭梯度法的射野强度分布的优化。其中为了提高优化的性能,我们采用了独特的辅助器官、动态调节剂量点权重和剂量特征矩阵索引等技术。实例研究表明,该算法具有速度快、效果好、用户输入参数少等优点,已在临床应用中取得了很好的效果。
    (3)针对目前常用的静态IMRT治疗中存在的子野个数多、治疗时间长等不足,首次提出了用GA+CG的方法来优化子野,达到了实用水平。该技术充分结合了GA方法的优点和实际问题的特点,创造性地设计了一套GA的编码和遗传操作模式,并在优化过程中同时考虑了多叶准直器(multileaf collimator, MLC)的物理限制。该算法被国外论文评阅人评价为在解决子野优化问题上的首创。
    (4)针对目前方法在射野方向优化时所需时间太长的不足,本文创造性地提出并实现了基于“GA+CG”的射野方向优化技术。该技术用GA和CG来分别优化射野的方向和射野强度分布。设计了针对具体问题的编码方式、遗传操作和独特的免疫操作处理。通过事先计算并保存能量特征矩阵和适应度标定等技术,保证了优化的高效性。
    (5)首次提出并初步建立了基于专家知识的自动选择射野方向的技术(KBASE)的基本框架和流程。KBASE技术充分把临床专家的丰富经验与优化算法相结合。在优化中成功地利用了射野方向约束和计划模板两种类型的专家知识。初步的研究结果表明,KBASE是可行和有效的。
    (6)对本论文的优化技术的临床实施进行了剂量验证。在两种MLC上的初步测试结果表明,本工作提出的IMRT的剂量计算和实施过程是准确可靠的。
Radiotherapy, together with the surgery and chemotherapy, are the three main means for tumor treatment. It is a historic advancement for tumor treatment that the classical three-dimensional (3D) conformal radiotherapy (3DCRT) evolved into the intensity-modulated radiotherapy (IMRT). Whereas, the advantages of IMRT have not yet been fully utilized, because of the complicated clinical conditions. The IMRT planning, one of the key issues of IMRT application, still has many problems needed to be dealt with.
    Aiming at the clinical requirements, this thesis realizes the conventional IMRT optimization technique, i.e. the optimization of the beam intensity maps, which is the base of the other researching works. Then researches are done on the beam angle optimization, on shortening optimization and saving treatment time, and so on, which are briefly listed below:
    (1) A comprehensive review is made on the current status of the IMRT, including the shortcomings of the current IMRT optimization algorithms and the clinical requirements. Also, a summarization is done to the algorithms used in this thesis: conjugate gradient method (CG) and genetic algorithm (GA), and a brief description is given to the photon dose calculation algorithm. These review and summarization are essential preparation for the coming researches.
    (2) Based on a physical objective function, a method for the optimization of beam intensity maps is developed using CG, among which some special steps are taken in order to improve the performance of the optimization. The results of simulated and clinical tumor cases demonstrate that the proposed algorithm is valid and timesaving. The algorithm has been embedded into a commercial TPS system for routine IMRT planning.
    (3) Aiming to reduce the number of the segments and shorten the treatment time for static IMRT (step-&-shoot), the technique of GA-based deliverable segment optimization (GADSO) is originated by the author. In GADSO, some novel genetic operations are designed, and also the MLC physical constraints are incorporated. GADSO has been published on Phys. Med. Biol., and is appraised as the first work to introduce GA into the segment optimization.
    (4) The author creatively develops the automatic beam angle selection (ABAS) using the hybrid algorithm of GA and CG, in order to overcome the extensive computation of the currently available optimization methods. In ABAS, the beam angles and the intensity maps are treated as two separated groups of variables and optimized using GA and CG, respectively. The efficiency of ABAS is achieved by taking some special measures, such as problem-dependant genetic operations, immunity process, fitness scaling, and so on. Some clinical applications show that ABAS is valid and feasible. ABAS has been accepted as a paper by Phys. Med. Biol..
    (5) As the first one, the author proposes and develops a framework for the knowledge-based beam angle optimization (KBASE), in which the plentiful clinical experiences accumulated over time by the physicists oncologists are incorporated into
    
    
    the GA optimization procedure. In KBASE, two types of expert knowledge are utilized: (a) beam orientation constraints, which are used to reduce the angle searching space, and (b) template plans, which are mainly used to guide the GA genetic progress. Some preliminary results validate the presented KBASE.
    (6) As a supplementary work, the clinical dose verification is made for Vairan MLC and Siemens MLC, and the comparison results are shown for the point doses and film dose distributions, among which good agreement is achieved.
引文
胡逸民. 肿瘤放射物理学. 北京:原子能出版社,1999
    Webb S Intensity-modulated Radiation Therapy, Bristol and Philadelphia: Institute of Physics Publishing, 2000
    Bjarngard B.E., Kijewski P.K., Pashby C., Description of a computer controlled machine, Int. J. Radiat. Oncol. Biol. Phys., 1977, Vol.2, p142
    Kijewski P.K., Chin L.M., Bjarngard B.E., Wedge-shaped dose distributions by computer controlled collimatormotation, Med. Phys., 1978, Vol.5, p426-429
    Chin L.M., Kijewski P.K., Svensson G.K., et al., A computer-controlled radiation therapy machine for pevic and para-aortic nodal areas, Int. J. Radiat. Oncol. Biol. Phys., 1981, Vol.7, p61-70
    Chin L.M., Kijewski P.K., Svensson G.K., et al., Dose optimization with computer controlled gantry rotation, collimator rotation and dose-rate variation, Int. J. Radiat. Oncol. Biol. Phys., 1983, Vol.9, p723-729
    Boyer A.L., Ochran T.G., Nyerick C.E., et al., Clinical dosimetry for implementation of a multileaf collimator, Med. Phys., 1992, Vol.19, p1255-1261
    Brahme A., Optimization of stationary and moving beam radiation techniques, Radiotherapy and Oncology, 1988, Vol.12, p129-196
    Webb S., Optimization of conformal radiotherapy dose distributions by simulated annealing. Phys. Med. Biol. 1989, Vol.34, p1349-1370
    Webb S., Optimization by simulated annealing of three-dimensional conformal treatment planning for radiation fields defined by a multileaf collimator. Phys. Med. Biol. 1991, Vol.36, p1201-1226
    Woo S.Y. Sanders M., Grant W., et al., Does the “Peacock” have anything to do with radiotherapy? Int. J. Radiat. Oncol. Biol. Phys., 1994, Vol.29, p213-214
    Agren A., Brahme A., Turesson I., Optimization of un-complicated control for head and neck tumors. Int. J. Radiat Oncol Biol Phys., 1990, Vol.19, p1077-1085
    Mohan R., Mageras G.S., et al., Clinically relevant optimization of 3D conformal treatments. Med. Phys., 1992, Vool.19, p933-944
    Niemierko A., Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med. Phys., 1997, Vol.24, p103-110
    Jones L.C. and Hoban P.W., Treatment plan comparison using equivalent uniform biologically effective dose (EUBED). Phys. Med. Biol., 2000, Vol.45, p159-170
    Jones L.C. and Hoban P.W., A comparison of physically and radiobiologically based optimization for IMRT. Med. Phys., 2002, Vol.29, p1447-1455
    Spirou S V, Chui C S, A gradient inverse planning algorithm with dose-volume constraints. Med. Phys., 1998, Vol.25, p321-333
    Xia P and Verhey L J, Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Med. Phys., 1998, Vol.25, p1424-1434
    Siochi R A C, Minimizing static intensity modulation delivery time using an intensity solid paradigm. Int. J. Radiat. Oncol., Biol., Phys. 1999, Vol.43, p671-680
    
    Bortfeld J., Schlegel W., Optimization of beam orientations in radiation therapy: some theoretical considerations, Phys. Med. Biol., 1993, Vol.38, p219-304
    Soderstrom S and Brahme A Selection of suitable beam orientation in radiation therapy using entropy and Fourier transform measures. Phy. Med. Biol., 1992, Vol.37, p911-924
    Soderstrom S and Brahme A., Which is the most suitable number of photon beam portals in coplanar radiation therapy? Int. J. Radiat. Oncol. Boil. Phys., 1995, vol.33, p151-159
    Stein J, Mohan R, Wang X H, Bortfeld T, Wu Q W, Preiser K, Ling C C and Schlegel W., Number and orientations of beams in intensity-modulated radiation treatments. Med. Phys., 1997, Vol.24, p149-160
    Rowbottom C G, Khoo V S and Webb S, Simultaneous optimization of beam orientations and beam weights in conformal radiotherapy. Med. Phys., 2001, Vol.28, p1696-1702
    Rowbottom C G, Webb S and Oldham M., Beam-orientation customization using an artificial neural network. Phys. Med. Biol., 1998b, Vol.44, p2251-2262
    Rowbottom C G, Webb S and Oldham M., Improvement in prostate radiotherapy from the customization of beam directions. Med. Phys., 1998a, Vol.25, p1171-1179
    Pugachev A B, Boyer A L and Xing L., Beam orientation optimization in intensity-modulated radiation treatment planning. Med. Phys., 2000, Vol.27, p1238-1245
    Xing L., Li J.G., Pugachev A., et al., Estimation theory and model parameter selection for therapeutic treatment plan optimization, Med. Phys., 1999, Vol.26, p2348-2358
    Woudstra E and Storchi P R M., Constrained treatment planning using sequential beam selection. Phys. Med. Biol., 2000, Vol.45, p2188-2149
    Xing L, Pugachev A, Li J et al., A medical knowledge based system for the selection of beam orientations in intensity modulated radiation therapy (IMRT). Int. J. Radiat. Oncol., Boil., Phys., 1999, Vol.45 (Suppl. 1), p246-247
    Pugachev A B and Xing L, Incorporating prior knowledge into beam orientation optimization in IMRT. Int. J. Radiat. Oncol. Boil. Phys., 2002, Vol.54, p1565-1574
    Woudstra E and Storchi P R M., Simultaneous optimization of segmented intensity modulated beams and beam orientations. Radiother. Oncol., 1999, Vol.51, S45
    Bednarz G, Michalski D, et al., The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Phys. Med. Biol., 2002, Vol.47, p2235-2245
    Shepard D M, Earl M A, Li X A, Naqvi S, Yu C., Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med. Phys., 2002 , Vol.29, p1007-1018
    Li Yongjie, Yao Jonathan and Yao Dezhong, Direct optimization of segments for intensity-modulated radiotherapy (abstract), Medical Physics, 2002, vol.29, p1259-1260
    Li Yongjie,Yao Jonathan; Yao Dezhong, Genetic algorithm based deliverable segments optimization for static intensity-modulated radiotherapy,Physics in Medicine and Biology, 2003, Vol.48, p3353-3374
    《现代应用数学手册》编委会,现代应用数学手册—运筹学与最优化理论卷,北京:清华大学出版社,1998
    粟塔山等,最优化计算原理与算法程序设计,湖南长沙:国防科技大学出版社,2001
    陈宝林,最优化理论与算法,北京:清华大学出版社,1989
    袁亚湘,孙文瑜,最优化理论与方法,北京:科学出版社,1997
    
    陈国良,王煦法,庄镇全,王东升,遗传算法及其应用,北京:人民邮电出版社,1996
    刑文训,谢金星. 现代优化计算方法. 北京:清华大学出版社,1999
    康立山,谢云,尤矢勇,罗祖华,非数值并行算法(第一册)—模拟退火算法,北京:科学出版社,1994
    刘勇,康立山,陈毓屏,非数值并行算法(第二册)—遗传算法,北京:科学出版社,1994
    Goldberg D E 1989 Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Massachusetts)
    Boyer, A.L. and Mok E.C., Calculation of photon dose distributions in an inhomogeneous medium using convolutions. Med. Phys., 1986, Vol.13, p503-509
    Brown, L. H., Siddon R. L. and Bfarngard B. E., Scatter dose for wedged fields. Phys. Med. Biol., 1987, Vol.32, p1321-1326.
    Chin, L.M., Cheng C.W., Siddon R. L., et al., Three-dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments. Int. J. Radiation Oncology Biol. Phys., Vol.17, p1327-1335.
    Chui, C.S. and Mohan R., Off-center ratios for three-dimensional dose calculations. Med. Phys., 1986, Vol.13, p409-412.
    Wyngaert, Siddon R. L., and Bjarngard B. E., Scatter dose summation for irregular fields: speed and accuracy study. Int. J. Radiation Oncology Biol. Phys., Vol.12, p839-842.
    Goitein and Michael. Calculation of the uncertainty in the dose delivered during radiation therapy. Med. Phys., 1985, Vol.12(5)
    Khan F.M., The Physics of Radiation Therapy. Second Edition, Williams & Wilkins, 1994.
    Kifewski, Peter K., Bjarnagard B. E. and Petti P. L., Monte Carlo calculations of scatter dose for small field sizes in a 60Co beam. Med. Phys., 1986, Vol.13
    Kooy, H.M. and Rashid H., A three-demensional electron pencil-beam algorithm. Phys. Med. Biol., 1989, Vol.34, p229-243.
    Mackie T. R., Scrimger J.W. and Battista J.J., A convolution method of calculating dose for 15-MV x-rays. Med. Phys., 1985, Vol.12, p188-196,
    Mohan R., Chui C., and Lidofsky L., Differential pencil beam dose computation model for photons. Med. Phys., 1986, Vol.13, p64-73.
    Niemierko, A. and Goitein M., The use of variable grid spacing to accelerate dose calculations. Med. Phys., 1989, Vol.16
    Petti, P. I., Siddon R. L, and Bjarngard B. E., A multiplicative correction factor for tissue heterogenities. Phys. Med. Biol., 1986, Vol.31, p1119-1128.
    Sharpe, M.B., and Battista J.J., Dose calculations using convolution and superposition principles: The orientation of dose spread kernels in divergent x-ray beams. Med. Phys., 1993, Vol.20, p1685-1694.
    Siddon R. L., Fast calculation of the extract radiological path for a three-dimensional CT array. Med. Phys., 1985, Vol.12
    Siddon R. L. Generalised Batho correction factor. Phys. Med. Biol., 1984, Vol.29, p1575-1579.
    
    Siddon R. L., Wyngaert J. K. de, and Bjarngard B. E.. Scatter integration with right triangular fields. Med. Phys., 1985, Vol.12
    Siddon R. L. Prism representation: a 3-D ray-tracing algorithm for radiotherapy applications. Phys. Med. Biol., 1985, vol.30, p817-824.
    Siddon R. L., Calculation of the radiological depth. Med. Phys., 1985, Vol.12
    Sontag, M. R., and Cunningham J.R., Corrections to absorbed dose calculations for tissue inhomogeneities. Med.Phys., 1977, Vol.4, p431-436.
    Sontag, M.R. and Cunningham J.R., The equivalent tissue-air-ratio method for making absorbed dose calculations in a heterogeneous medium. Radiology, 1978, Vol.129, p787-794.
    Wong, J. and Purdy J., On methods of inhomogeneity corrections for photon transport. Med. Phys., 1990, Vol.17, p807-814.
    Wong, J.W. and Henkelman R.M., A new approach to CT-pixel-based photon dose calculations in heterogeneous media. Med. Phys., 1983, Vol.10, p199-208.
    Yu, C.X. and Wong J.W., A 3-D implementation of the ETAR method using FFT. Med. Phys., 1993, Vol.20, p627-632.
    ATES User Manual, Revision 3.3, Topslane, 1996
    Brahme A., Optimization for stationary and moving beam radiation therapy techniques, Radiother. Oncol., 1988, Vol.12, p129-140
    Holmes T., Mackie R.T., Simpkin D., et al., Int. J. Radiat. Oncol. Biol. Phys., 1987, Vol.20, p859-873
    Lind B.K. and Brahme A., Properties of an algorithm for solving the inverse problem in radiation therapy. Inverse Problems, 1990, Vol.6, p415-426
    Langer M. and Leong J., Optimization of beam weights under dose-volume constraints, Int. J. Radiat. Oncol. Biol. Phys., 1987, Vol.13, p1255~1260
    Rosen I I, Lane R G, et al., Treatment plan optimization using linear programming, Med. Phys., 1991, Vol.18, p141-152
    Morill S.M., Lane J.A., Wong J.A., et al., Dose-volume considerations with linear programming. Med. Phys., 1991, Vol.18 p141-152
    Redpath A.T., Vickery B. and Wright D.H., A new technique for radiotherapy planning using quadratic programming, Phys. Med. Biol., 1976, Vol.21, p781-791
    Starkschall G., A constrained least-square optimization method for external beam radiation therapy treatment planning, Med. Phys., 1984, Vol.11, 659-665
    Censor Y., Altschuler M.D., Powlis W.D., On the use of Cimmino’s simultaneous projection’s method for computing a solution of the inverse problem in radiation therapy treatment planning, Inverse Problem, 1988, Vol.4, 607-623
    Holmes T. and Mackie T.R., A comparison of three inverse planning algorithms, Phys. Med. Biol., 1994, Vol.39, p91-106
    Gustafsson A., Lind B.K. and Brahme A., A generalized pencil beam algorithm for optimization of radiation therapy, Med. Phys., 1994, Vol.21, p343-356
    Bortfeld T., Burkelbach J., Boesecke R., et al., Methods of image reconstruction from projections applied to conformation radiotherapy. Phys. Med. Biol., 1990, Vol.35, p1423-1434
    Llacer J., Inverse radiation treatment planning using the Dynamically Penalized Likelihood method. Med. Phys., 1997, Vol.24, p1751-1764
    
    Leichtman G S, Aita A L and Goldman H W., Automated Gamma Knife dose planning using polygon clipping and adaptive simulated annealing. Med. Phys., 2000, Vol.27, p154-162
    Lessard E and Pouliot J., Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med. Phys., 2001, Vol.28, p773-778
    Mageras G S and Mohan R., Application of fast simulated annealing to optimization of conformal radiation treatments. Med. Phys., 1993, Vol.20, p639-647
    Szu H and Hartley R., Fast simulated annealing. Physics Letters A, 1987, Vol.122, p157-162
    Zhang P, Dean D, et al., Optimization of Gamma Knife treatment planning via guided evolutionary simulated annealing. Med. Phys., 2001, Vol.28, p1746-1752
    Ezzell G.A., Genetic and geometric optimization of three-dimensional radiation therapy treatment planning. Med. Phys., 1996, Vol.23, p293-305
    Langer M, Brown R, et al., A generic genetic algorithm for generating beam weights. Med. Phys., 1996, Vol.23, p965-971
    Wu X and Zhu Y., A mixed-encoding genetic algorithm with beam constraint for conformal radiotherapy treatment planning. Med. Phys., 2000, Vol.27, p2508-2516
    Deasy J.O., Multiple local minima in radiotherapy optimization problems with dose-volume constraints, Med. Phys., 1997, Vol.24, p1157~1161
    Hou Q., Wang J., Chen Y., et al., An optimization algorithm for intensity modulated radiotherapy—The simulated dynamics with dose-volume constraints, Med. Phys. 2003, Vol.30, p61-68
    Borgers C and Quinto E T., On the non-uniqueness of optimal radiation treatment plans. Inverse Problems, 1999, Vol.15, p1115-1138
    Llacer J, Deasy J O, Bortfeld T R, Solberg T D and Promberger C., Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints. Phy. Med. Biol., 2003, Vol.48, p183-210
    Wu Q and Mohan R., Multiple local minima in IMRT optimization based on dose-volume criteria. Med. Phys., 2002, Vol.29, p1514-1527
    Spirou S V, Nathalie Fourniew-Bidoz, Jie Yang, Chen-Shou Chui, Clifton C. Ling, Smoothing intensity-modulated beam profiles to improve the efficiency of delivery. Med. Phys., 2001, Vol.28, p2105-2112
    Alber M and Nusslin F., Intensity modulated photon beams subject to a minimal surface smoothing constraint. Phys. Med. Biol., 2000, Vol.45, p49-52
    Webb S., A simple method to control aspects of fluence modulation in IMRT planning. Phys. Med. Biol., 2001, Vol.46, p187-195
    Webb S, Convey D J and Evans P M., Inverse planning with constraints to generate smoothed intensity-modulated beams. Phys. Med. Biol., 1998, Vol.43, p2785-2794
    Bortfeld J, Kahler D L, Waldron T J and Boyer A L., X-ray field compensation with multileaf collimators. Int. J. Radiat. Oncol., Biol., Phys. 1994, Vol.28, p723-730
    Que W., Comparison of algorithms for multileaf collimator field segmentation. Med. Phys., 1999, Vol.26, p2390-2396
    
    Crooks S M, McAven L F, Robinson D F and Xing L., Minimizing delivery time monitor nuites in static IMRT by leaf-sequencing. Phys. Med. Biol., 2002, Vol.47, p3105-3116
    Seco J, Evans P M and Webb S., An optimization algorithm that incorporates IMRT delivery constraints. Phys. Med. Biol., 2002, Vol.47, p899-915
    Jeffrey V, siebers, Marc Lauterbach, et al., Incorporating multi-leaf collimator leaf sequencing into iterative IMRT optimization. Med. Phys., 2002, Vol.29, p952-959
    Alber M and Nusslin F., Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery. Phys. Med. Biol., 2001, Vol.46, p3229-3239
    Cho P S and Marks R J., Hardware sensitive optimization for intensity modulated radiotherapy, Phys. Med. Biol., 2000, Vol.45, p429-440
    Tervo J and Kolmonen, A model for the control of a multileaf collimator in radiation therapy treatment planning. Inverse problems, 2000, Vol.16, p1875-1895
    Li Yongjie, Yao Jonathan and Yao, Dezhong An Efficient Composite Simulated Annealing Algorithm For Global Optimization, International Conference on Communications, Circuits and Systems and West Sino Exposition Proceedings (Cat. No.02EX591), p1165-9, vol.2, 2002
    Yu Y, Schell M C and Zhang JB Y., Decision theoretic steering and genetic algorithm optimization: Application to stereotatic radiosurgery treatment planning. Med. Phys., 1997, Vol.24, p1742-1750
    Hou Q., et al., Beam orientation optimization for IMRT by a hybrid method of the genetic algorithm and the simulated dynamics, Med. Phys., 2003, Vol.30, p2360-2368
    Soderstrom S and Brahme A., Selection of suitable beam orientation in radiation therapy using entropy and Fourier transform measures. Phy. Med. Biol., 1992, Vol.37, p911-924
    Gokhale P, Hussein E.M.A and Kulkarni N., Determination of beam orientation in radiotherapy planning, Med. Phys., 1994, Vol.21, p393-400
    Li Yongjie, Yao Jonathan and Yao Dezhong, Genetic algorithm based automatic beam angles selection in IMRT (abstract), Medical Physics , 2003, Vol.30, p1373
    Li Yongjie,Yao Jonathan; Yao Dezhong, Automatic beam angles selection in IRMT planning using genetic algorithm, Physics in Medicine and Biology, 2004, Vol.49(in press)
    Haas O C L, Burnham K J and Mills J A., Optimization of beam orientation in radiotherapy using planar geometry. Phys. Med. Biol., 1998, Vol.43, p2179-2193
    王小平,曹立明. 遗传算法—理论、应用与软件实现. 西安:西安交通大学出版社,2002
    马金利,蒋国梁,廖源. 调强适形放射治疗的剂量学验证,中华放射肿瘤学杂志,2003, Vol.12, No.1, p64-67
    Wang X., Spirou S., LoSasso T., et al., Dosimetric verification of intensity modulated fields, Med. Phys., 1996, Vol.23, p317-327
    Xing L., Curran B., Hill R., et al., Dosimetric verification of a commercial inverse planning system, Phys. Med. Biol., 1999, Vol.44, p463-478
    
    Graves M.N., Thompson A.V., Martel M.K., et al., Calibration and quality assurance for rounded leaf-end MLC system, Med. Phys., 2001, Vol.28, p2227-2233
    Chui C.S., Chan M.F., Yorke E., et al., Delivery of intensity-modulated radiation therapy with a conventional multileaf collimator: comparison of dyamic and segmental methods, Med. Phys., 2001, Vol.28, p2441-2449
    Low D.A., Parikh P., Dempsey J.F., et al., Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams, Med. Phys., 2003, Vol.30, p1706-1711
    Yang Y., Xing L., Li J.G., et al., Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT, Med. Phys., 2003, Vol.30, p2937-2947
    Ma C.M., Pawlicki T., Jiang S.B., et al., Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system, Phys. Med. Biol., 2000, Vol.45, p2483-2495
    Cotrutz C, Lahanas M, Kappas C and Baltas D., A multi-objective gradient-based dose optimization algorithm for external beam conformal radiotherapy. Phys. Med. Biol. 2001, Vol.46, p2161-2175
    Hristov D, Stavrev P, Sham E, Fallone B G., On the implementation of dose-volume objectives in gradient algorithms for inverse treatment planning. Med. Phys., 2002, Vol.29, p848-856
    Wu X. and Zhu Y., A maximum-entropy method for the planning of conformal radiotherapy. Med. Phys. 2002, Vol.28, p2241-2246
    Wu X., Zhu Y. and Luo L., Linear programming based on neural networks for radiotherapy treatment planning. Phy. Med. Biol., 2000, Vol.45, p719-728
    Xing L. and Chen G.T.Y., Iterative methods for inverse treatment planning. Phy. Med. Biol., 1996, Vol.41, p2107-2123
    Xing L., Hamilton R.J., Pelizzari C., et al., Fast iterative methods for three dimensional inverse treatment planning. Med. Phys., 1998, Vol.25, p1858-1865
    Boyer A, Biggs P, Galvin J, et al., AAPM report No.72: Basic applications of multileaf collimators. 2001, Medical Physics Publishing
    Battum L.J.Van and Heijmen B.J.M., Film dosimetry in water in a 23 MV therapeutic photohn beam. Radiotherapy and Oncology, 1995, Vol.34, p152-159
    Rajapakshe R. and Shalev S., Output stability of a linear accelerator during the first three seconds. Med. Phys., 1996, Vol.23, p1517-519
    Claude M., Chantal G., Keith H., et al., A study of dose delivery in small segments. Int. J. Radiat. Oncol., Biol., Phys. 2000, Vol.48, p535-539
    Martens C., Claeys I., Wagter C. De and Neve W. De, The value of radiographic film for the characterization of intensity-modulated beams. Phy. Med. Biol., 2002, Vol.47, p2221-2234
    Sun J. and Zhu Y., Study of dosimetric penumbra due to multileaf collimation on a medical linear accelerator. Int. J. Radiat. Oncol., Biol., Phys. 1995, Vol.32, p1409-1417
    Parttridge M., Evans P.M., Mosleh-Shirazi A, et al., Independent verification using portal imaging of intensity-modulated beam delivery by the dynamic MLC technique. Med. Phys., 1998, Vol.25, p1872-1879
    Mohan R., Arnfield M., Tong S., et al., The impact of fluctuations in intensity patterns
    
    
    on the number of monitor units and the the quality and accuracy of intensity modulated radiotherapy. Med. Phys., 2000, Vol.27, p1226-1237
    Linthout N., Verellen D., Acker S. V., Vondel I., et al., Assessment of the acceptablility of the Elecka MLC within the Corvus planning system for static and dynamic delivery of intensity modulated beams. Radiotherapy and Oncology, 2002, Vol.63, p121-124
    Das I.J., Desobry G.E., McNeeley S.W. and Cheng E.C., Beam characteristics of a retrofitted double-focused multileaf collimator. Med. Phys., 1998, Vol.25, p1676-1684
    Essers M., Langen M., Dirkx M. L.P., Heijmen B.J.M, Commissioning of a commercially available system for intensity-modulated radiotherapy dose delivery with dynamic multileaf collimation. Radiotherapy and Oncology, 2001, Vol.60, p215-224
    LoSasso T., Chui C. and Ling C.C, Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. Med. Phys., 1998, Vol.25, p1919-1927
    LoSasso T., Chui C. and Ling C.C, Comprehensice quality assurance for the delivery of implementing intensity modulated radiotherapy with a multileaf collimator used in dynamic mode. Med. Phys., 2001, Vol.28, p2209-2219
    Arnfield M.R., Siebers J.V., Kim J.O, et al., A method for determining multileaf collimator transmission ans acatter for dynamic intensity modulated radiotherapy. Med. Phys., 2000, Vol.27, p2231-2241
    Wang X., Spirou S., LoSasso, et al., Dosimetric verification of intensity-modulated fields. Med. Phys., 1996, Vol.23, p317-327
    Chui C.S., Spirou S. and LoSasso T., Testing of dynamic multileaf collimation. Med. Phys., 1996, Vol.23, p635-641
    Childress N.L., dong L. and Rosen I.I, Rapid radiographic film calibration for IMRT verification using automated MLC fields. Med. Phys., 2002, Vol.29, p2384-2390
    Chui C.S., Cha M.F., Yorke E., et al., Delivery of intensity-modulated radiation therapy with a conventional multileaf collimator: Comparison of dynamic and segmental methods. Med. Phys., 2001, Vol.28, p2441-2449
    Graves M.N., Thompson A.V., Martel M.K., et al., Calibration and quality assurance for rounded leaf-end MLC systems. Med. Phys., 2001, Vol.28, p2227-2233
    Huq M.S., Das I.J., Steinberg T., Galvin J.M., A dosimetric comparison of various multileaf collimators. Phys. Med. Biol., 2002, Vol.47, p159-170
    Leyovich L.B., Sethi A. and Dogan N., Comparison of ionization chambers of various volumes for IMRT absolute dose verification. Med. Phys., 2003, Vol.30, p119-123
    Low D.A., Parikh P., Dempsey J.F. et al., Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams. Med. Phys., 2003, Vol.30, p1706-1711
    Gifford K.A., Followill D.S., Liu H.H., Verification of the accuracy of a phton dose calculation algorithm. Journal of applied clinical medical physics, 2002, Vol.3, p26-44
    Intensity Modulated Radiation Therapy Collaborative Working Group, Intensity modulated radiotherapy: Current status and issues of interst. Int. J. Radiat. Oncol., Biol., Phys. 2001, Vol.51, p880-914
    G.A Ezzell, J.M Galvin, D. Low, J.R.Palta, I. Rosen, M.B Sharpe, P. Xia, Y. Xiao, L. Xing, C.X. Yu, Guidance document on delivery, treatment planning, and clinical
    
    
    implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med. Phys., 2003, Vol.30, p2089-2115
    Alber M.L., A concept for the optimization of radiotherapy. PH.D dissertation, Tuebingen University, 2000
    Sauer O.A, Shepard D.M. and Mackie T.R., Application of constrained optimization to radiotherapy planning. Med. Phys., 1999, Vol.26, p2359-2366
    Wang X.H., et al., Optimization of intensity-modulated 3D conformal reatment plans based on biological indices. Radiot. Oncol., 1995, Vol.37, p140-152
    Stavrev P., et al., Inverse treatment planning by physically constrained minimization of a biological objective function. Med. Phys., 2003, Vol.30, p2948-2958
    Agren A., Brahme A., Turesson I., Optimization of un-complicated control for head and neck tumors. Int. J. Radiat Oncol Biol Phys., 1990, Vol.19, p1077-1085
    Mohan R., Mageras G.S., et al., Clinically relevant optimization of 3D conformal treatments. Med. Phys., 1992, Vol.19, p933-944
    Niemierko A., Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med. Phys., 1997, Vol.24, p103-110
    Jones L.C. and Hoban P.W., Treatment plan comparison using equivalent uniform biologically effective dose (EUBED). Phys. Med. Biol., 2000, Vol.45, p159-170
    Jones L.C. and Hoban P.W., A comparison of physically and radiobiologically based optimization for IMRT. Med. Phys., 2002, Vol.29, p1447-1455,