求解几类特殊的约束矩阵方程的理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
约束矩阵方程广泛应用于系统工程、自动控制、统计学、经济学、网络规划、
    土木工程、振动理论等。本篇博士论文主要研究了以下几类约束矩阵方程问题以
    及数值解法:
    问题Ⅰ 给定矩阵A,B∈Rm×n,集合S(?)Rn×n,寻求X∈S,使得
    ‖AX-B‖=min.
    问题Ⅱ 给定矩阵X,B∈Rm×n,集合S(?)Rm×m,寻求A∈S,使得
    AX=B.
    问题Ⅲ 给定特征值矩阵A∈Rk×k,A为对角阵或二阶块对角矩阵,以及相
    应的特征向量矩阵X∈Rn×k,集合S(?)Rn×n,寻求A∈S,使得
    AX=XA.
    或者
    ‖AX-XA‖=min.
    问题Ⅳ 给定矩阵A11∈Rm1×n1,A12∈Rm1×n2,A21∈Rm2×n1,m1+m2=
    n1+n2=n,以及矩阵集合S(?)Rn×n,寻求子块A22∈Rm2×n2,使得完全化的矩阵
    问题Ⅴ 给定A*∈Rn×n,设SE为上述问题的解集合,寻求解矩阵A∈SE,
    使得
    本文的主要研究成果如下:
    1. 本文研究了问题Ⅰ在闭凸锥上的一种新的数值解法。创造性地利用闭凸锥上
    的逼近理论、凸分析理论研究了最小二乘解的特征,结合最优化理论,提出了
    投影梯度算法,理论上证明了算法的全局收敛性和线性收敛性。对8种常见
    的闭凸锥,系统地提供了MATLAB程序,使求解变得方便、容易。
    2. 对于问题Ⅱ,首次研究了约束矩阵集合S分别为广义反射矩阵、反对称正交
    矩阵、部分等距算子、正交投影算子的情况下矩阵反问题的解,克服了约束矩
    阵集合均为有界闭集带来的困难,成功地得到了有解的条件,并研究了最小
    二乘解,提供了算法、部分MATLAB程序以及相应的数值实例。
    
    求解几类特殊的约束矩阵方程的理论与算法研究
    3.对于问题Hl,我们研究了Hamilton矩阵约束下矩阵逆特征值问题的最小二
     乘解,首次给出了MATIAB程序计算最小二乘解和最小范数解;研究了正交
     矩阵约束下逆特征值问题有解的条件,和最佳逼近解的求法,给出相应的算法
     和数值实例。
    4.对于问题W,我们继续研究了可逆矩阵的完全化问题,首次得到了通解、
     最小范数解和最佳逼近解;首次研究反对称可逆矩阵完全化约束下矩阵的最
     佳逼近间题,提供了算法计算唯一最佳逼近解;首次提出并研究了正交投影
     算子的完全化问题,得到了有解的条件,并首次与矩阵的秩联合起来考虑完全
     化,成功地编制了M ATLAB程序计算具有任意给定秩的解。
    5.我们继续研究了有界闭集、子空间和线性流形上的最佳逼近问题,给出了求
     解的方法和数值算例。
     本篇博士论文得到了国家自然科学基金的资助。
     本篇博士论文用拌玫江2:软件打印.
    关键词:闭凸锥;投影梯度法;最小二乘解;矩阵反问题;矩阵逆特征值问题;矩
    阵完全化;最佳逼近.
    了
The constrained matrix equations have been widely applied in system engineering, autocontrol theory, economics, network programming, civil struction engineering and vibratory theory. The problems we will mainly discuss in the Ph.D. Thesis are as follows:Problem I Given two matrices A,B ∈ Rm×n, a constrained set S Rn×n. Find X ∈ S such thatAX - B = min.Problem II Given two matrices X, B 6 Rm×n, a constrained set S Rm×m. Find A e S such thatAX=B.Problem III Given an eigenvalue matrix ∈ Rk×k which is diagonal or 2 x 2 block diagonal, and the corresponding eigenvector matrix X ∈ Rn×k a constrained set S Rn×n. Find A ∈ S such thatAX = XAorProblem IV Given blocks , and a constrained set S Rn×n. Find a block A22 ∈ Gm2×m2 such thatProblem IV Given A* ∈ Rn×n, denote SE by the solution set of the above problems respectively. Find a solution matrix A ∈ SE such thatThe main fruits of the paper are as below: The numerical solutions for Problem I on the closed convex cone are sys-temically studied in the paper. Applying the approximation theory of closed convex cone and convex analysis in the creative way, the properties of least-squares solution are obtained. Using optimal theory, a gradient projection iteration is proposed to compute approximately the solutions of Problem I on
    
    a closed convex cone. The global convergence and linear convergence have been theoritically proved. For eight familiar closed convex cones, a series of MATLAB procedures are provide to compute the solutions for them easily and conveniently.2. We discuss firstly the inverse problems (i.e. Problem II) of generalized reflection matrices, skew-symmetric orthogonal matrices, partial isometries and orthogonal projectors respectively, have obtained the necessary and sufficient conditions for solution existence. Furthermore, we also consider the least-sqaures solutions for them, provide algorithms or MATLAB functions to compute the solutions on PC.3. As for Problem III, we research the inverse eigenvalue problem of Hamiltonian matrices, get the methods to compute the least-squares solution and the best approximate solution for it, provide MATLAB procedures to calculate the least-squares solution and the least-squares solution with the least norm, we also investigate the inverse eigenvalue problem of orthogonal matrices, present algorithms to compute one solution when there exists at least a solution, to compute the least-squares solutions and optimal approximate solution. Some numerical examples are provided to illustrate the theory and the algorithms.4. Problem IV is matrix completion problem. We look into the matrix completion problem of nonsingular matrices, skew-symmetric invertible matrices and orthogonal projectors, deduce firstly the necessary and sufficient conditions for solution existence, provide some MATLAB functions or algorithms to compute the solutions, least-squares solutions and optimal approximate solutions.5. We also study the approximation problem(i.e. Problem V) on the subspace, the closed bounded set and linear manifold, give algorithms and corresponding numerical examples.This Ph.D. Thesis is supported by the National Natural Science Foundation of China.This Ph.D. Thesis is typeset by LATEX2ε
引文
[1] E.M.E.Zayed. An invefrse eigenvalue problem for an arbitrary multiply connected bounded domain in R3 with impedance boundary conditions. SIAM J.Appl.Math.,1992,52:725-729
    [2] J.R. Mclaughlin, P.L.Polyakov, P.E.Sacks. Rrconstruction of a spherically symmetric speed of sound, SIAM Appl. Math., 1994,54:1203-1223
    [3] 陈新.机械结构动态设计理论方法及应用.北京:机械工业出版社,1997, 9-34
    [4] 张德文,李应明.元素型摄动的选代法-动力模型修正与广义故障诊断.振动 与冲击,1989,3:23-31
    [5] G.M.L.格拉德威尔著.振动中的反问题.王大钧,何北昌译,北京:北京大 学出版社,1991,154-205
    [6] Downing, A.C., Householde A.S.. Some inverse characteristic value problems. J.Assoc. Comput. Math., 1956, 3:203-207
    [7] de Oliveira G.N.. Matrix inequalities and the additive inverse eigenvalue problem. Computing, 1972, 9: 95-100
    [8] Morel.P. Sur le probleme invered des valiurs propres. Numer. Math., 1974, 23:83-94
    [9] M.T.Chu, J.W. Wright. The education testing problem reviseted. IMA J. Numer, Anal., 1995, 15: 141-160
    [10] R. Fletcher. Semi-definite matrix constrains in optimazation. SIAM J. Control Op tim., 1985, 23:493-513
    [11] J.A.Dias Da Kilva. On the multiplicative inverse eigenvalue problem. Linear Algebra Appl., 1986, 78:133-145
    [12] K.P. Hadeler. Multiplicative inverse eigenwertprobleme. Linear Algebra Appl., 1968, 12:65-86
    [13] G.N. de Oliveira. On the multiplicative inverse eigenvalue problem. Canad. Math. Bull., 1972, 15: 173-189
    [14] A. Shapiro. On the unsolvability of inverse eigenvalue problems almost everrwhere. Linear Algebra Appl.,1983, 49:27-31
    [15] J.G. Sun. the unsolvability of multiplicative inverse eigenvalue problems almost everywhere . J. Comput. Math., 1986, 4:227-244
    [16] Hochstadt, H.. On some inverse problems in matrix theory. Arch. Math., 1967, 18:201-207
    [17] Hochstadt, H.. On the construction of a Jacobi matrix from spectral data. Linear Algebra Appl., 1974, 8:435-446
    [18] Hald, O.H.. Inverse eigenvalue problems for Jacobi matrices. Linear Algebra Appl., 1976,14:63-85
    
    [19] D. Boley, G.H. Golub. A modified method for reconstructing periodic Jacobi matrices. Math. Comput., 1984,24:143-150
    [20] D. Boley, G.H. Golub. A survey of matrix inverse eigenvalue problem. Inverse Problems, 1987, 3:595-622
    [21] 戴华.矩阵特征值反问题:博士学位论文.南京大学档案馆,南京大学,1988, 10-60
    [22] 吕炯兴,徐海燕.由谱数据构造Jacobi矩阵.高等学校计算数学学报,1996, 4: 321-332
    [23] 胡锡炎,张磊,黄贤通.由谱数据和主子阵构造Jacobi矩阵.数值计算和计 算机应用,1997,2: 144-150
    [24] 胡锡炎,张磊,彭振赟.由主子阵和缺损特征对构造Jacobi矩阵.计算数学, 2000,3: 345-354
    [25] 廖安平,白中治.由两个特征对构造正定Jacobi矩阵.数值计算和计算机应 用,2002,2: 131-138
    [26] Zhenyun Peng, Xiyan Hu, Lei Zhang. On the construction of a Jacobi matrix from ites mixed-type eigenpairs. Linear Algebra Appl., 2003, 362:191-200
    [27] 彭振赟,胡锡炎,张磊. Jacobi矩阵逆特征值问题存在唯一解的条件.数值 计算和计算机应用,2002,23:226-232
    [28] 马昌社,胡锡炎,张磊.由主子阵和特殊次序缺损特征对构造Jacobi矩阵. 计算数学,2003,25:463-470
    [29] 蒋正新,陆启韶.谱约束下的矩阵最佳逼近问题.计算数学,1986,8(1) : 47-52
    [30] 孙继广.一类反特征值问题的最小二乘解.计算数学, 1987,9(2) :207-216
    [31] 孙继广.实对称矩阵的两类逆特征值问题.计算数学, 1988,10(3) :282-290
    [32] 张磊.一类对称矩阵的逆特征值问题.高等学校计算数学学报, 1990, 1: 65-71
    [33] 谢冬秀.线性流形上的逆特征值问题.高等学校计算数学学报,1993,3:374-380
    [34] 胡锡炎,张磊,谢冬秀.双对称矩阵逆特征值问题解存在的条件.计算数学, 1998, 4:409-418
    [35] Dongxiu Xie, Xiyan Hu, Lei Zhang. The solvability conditions for inverse eigenvalue problem of anti-bisymmetric matrices. Journal of Computational Mathematics, 2002,20:245-256
    [36] Fuzhao Zhou, Xiyan Hu, Lei Zhang. The solvability conditions for inverse eigenvalue problems of centro-symmetric matrices. Linear Algebra and its Applications, 2003, 364:147-160
    [37] Yuanbei Deng, Xiyan Hu, Lei Zhang. The solvability conditions for inverse eigenvalue problem of the symmetrizable matrices. Journal of Computational and Applied Mathematics, 2004, 375:101-106
    
    [38] 周富照,胡锡炎,张磊.线性流形上对称正交对称矩阵逆特征值问题.计算数 学,2003,25:281-292.
    [39] Fuzhao Zhou, Xiyan Hu, Lei Zhang. Least-square solution of class of inverse eigenvalue problems for symmetric ortho-symmetric nonnegative definite matrices. Numerical Mathematics, 2003, 12(05) :107-111
    [40] Charles R. Johnson, Antonio, Leal Duarte et al. Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: the case of generalized stars and double generalized stars. Linear Algebra and Its Applications, 2003, 373:311-330
    [41] 周树荃,戴华.代数特征值反问题.河南:河南科学技术出版社,1991,93-401
    [42] Moody T. Chu. Inverse eigenvalue problems. SIAM, Review, 1998,40(1) :1-39
    [43] 李森林.几类直接控制系统绝对稳定性的充要条件,科学通报,1982,27: 581-581
    [44] 张磊,唐隆基.关于线性代数方程组的一类反问题.数学的实践和认识,1984, 27: 21-26
    [45] 李绍疆.若干矩阵反问题.中国科学技术大学学报, 1984,14(2) :195-204
    [46] 张磊.线性约束下矩阵的最佳逼近问题.湖南数学年刊,1987,1:58-63
    [47] 张磊,胡锡炎.一类三对角阵stitjes阵的反问题.湖南大学学报,1985,4: 100-106
    [48] 胡锡炎,张磊.三对角对称正定矩阵的一类反问题.湖南数学年刊,1985, 1: 40-47
    [49] 张磊.对称非负定矩阵反问题解存在的条件.计算数学,1989,11(4) :337-343
    [50] 戴华.谱约束下实对称矩阵束最佳逼近及其应用.高等学校计算数学学报, 1990, 2: 177-187
    [51] 孙继广.矩阵反问题解的稳定性.计算数学,1988,2: 282-290.
    [52] W. Lei. The re-posititve definite solutions to the matrix inverse problem AX=B. Linear Algebra and Its Applications,1992,174:145-151
    [53] 张磊,谢冬秀.子空间旋转的最小二乘问题.湖南大学学报,1992,1:115-120.
    [54] 谢冬秀,张磊.一类反对称矩阵反问题的最小二乘解.工程数学学报,1993, 3: 257-263
    [55] 谢冬秀,张磊,胡锡炎.一类双对称矩阵矩阵反问题的最小二乘解.计算数 学,2000,1:29-40
    [56] 周富照,胡锡炎,张磊.一类对称正交对称矩阵反问题的最小二乘解.应用数 学学报,2004,4: 752-755
    [57] 周富照.几类约束矩阵方程及其最佳逼近:博士学位论文.湖南大学档案馆: 湖南大学,2002,3-60
    [58] 张忠志.几类约束矩阵方程与矩阵的最佳逼近:博士学位论文.湖南大学档 案馆:湖南大学,2002,30-60
    [5
    
    [59] 彭振赟.几类矩阵扩充问题和几类矩阵方程问题:博士学位论文.湖南大学 档案馆:湖南大学,2003,30-60。
    [60] Fuzhao Zhao, Lei Zhang, Xiyan Hu. Least-Square Solutions for inverse problems for centrosymmetric matrices. Computers and Mathematics with Applications, 2003, 45:1581-5189
    [61] Zhenyun Peng, Xiyan Hu, Lei Zhang. The reflexive and anti-reflexive solutions of the matrix equation AX=B. Linear Algebra and Its Applications,2003, 375: 147-155
    [62] Zhongzhi Zhang, Xiyan Hu, Lei Zhang. Least-squares solutions of inverse problems for Hemitian generalized Hamiltonian matrices. Applied Mathematics Letters, 2004, 120: 303-308
    [63] P.H.Schonemann. A generalized solution of the orthogonal Procrusts problem. Psy chometrika, 1966,31:1-10
    [64] Nicholas J. Higham. The symmetric Procrusted Problem. BIT, 1988,28:111-141
    [65] K.G. Woodgate. Least-Square solution of F = PG over positve semidefinite symmetric P. Linear Algebra and Its Applications, 1996,145:171-190
    [66] J.C. Allwright. Positive semidefinite matrices:Characterization Via conical hulls and least-squares solution of a matrix equation. SIAM J.. Control Optimal, 1998, 26:537-556
    [67} R.Escalante, M. Raydan. Dykastra's Algorithm for constrained least-squares rectangular matrix problems. Computers Math. Applic, 1998, 35(6) :73-79
    [68] 谢冬秀.几类约束矩阵方程及其最佳逼近:博士学位论文.湖南大学档案馆: 湖南大学,1999,6-18
    [69] Baksalary J.K., Kala R.. The matrix equation AX-YB=C. Linear Algebra and Its Application, 1979,25:41-43
    [70] Baksalary J.K., Kala R.. The matrix equation AXB + CYD = E. Linear Algebra and Its Application, 1980, 30:141-147
    [71] Chu K.W. E.. The solution of the matrix equations AXB-CXD=E and (YA-DZ,YC-BZ)= (E,F). Linear Algebra and Its Application, 1987,93:93-106
    [72] Chu K.W. E.. Singular value and generalized singular value decompositions and the solution of linear matrix equations. Linear Algebra and Its Application, 1987,88:83-98
    [73] Chu K.W. E.. Symmetric solutions of linear matrix equations by matrix decompositions. Linear Algebra and Its Application, 1989, 119:35-50
    [74] Mirko Dobovisek. On minimal solutions of the matirx equation AX-YB = 0. Linear Algebra and Its Application, 2001, 325:81-99
    [75] S.J.Hammarling. Numerical solution of the stable, nonnegative definite Lyapunov equation. IMA J. .Numer.Anal., 1982, 2:303-323
    
    [76] A.S.Hwlel., B.Tenison, K.R. Poolla. Numerical solution of the lyapunov equation by approximate power iteration. Linear Algebra and Its Application, 1996,236:205-230
    [77] I.M.Jaimoukha, E.M Kasenally. Krulov subspace methods for solving alrge lyapunov equations. SIAM J. Numer.. Anal., 1994,31:227-251
    [78] A. Lu, E.L. Wachspress. Solution of lyapunov equations by alternatin direction implicit iteration . Comput. Math. Appl., 1991,21:43-58
    [79] Jing-Rebecca Li, Jacob White. Low rank solution of lyapunov equations. SIAM J. Matrix ANAK.APPL., 2002, 24:260-280
    [80] J. Gross. A note on the generl Hermitian solution to AXA* = B. Bull.Malay Math. Soc. 1998,21:57-62
    [81] J. Gross. Nonnegative-definite and positive-definite solutions to the matrix equation AX A* = B,-revisited. Linear Algebra and Its Application, 2000, 321:12-129
    [82] J. K. Baksalary. Nonnegative definite and positive solutions to the matrix equation AX A* = B. Linear and Multilinear Algebra, 1984, 16:133-139
    [83] 廖安平,白中志.矩阵方程ATXA=D的双对称最小二乘解.计算数学, 2002,24(1) : 9-20
    [84] Tongsong Jiang, Musheng Wei. On solutions of the matrix equations X-AXB = C and X-AXB = C. Linear Algebra and Its Application, 2003,367:225-233
    [85] Yuanbei Deng, Xiyan Hu, Lei Zhang. Least squares solutions of BXAT = T over symmetric, skew-symmetric and positive semidefinite X. SIAM J. Matrix Anal. Appl. 2003, 02:486-494.
    [86] 邓远北.几类线性矩阵方程的解与PROCRUSTS问题:博士学位论文.湖南 大学档案馆:湖南大学,2003,11-90
    [87] Peter Lancaster, Miron Tismenetsky. The theory of matrices with application. Second Edition, ACADEMIC PRESS, 1985,117-164.
    [88] Gene H. Golub, Charles F. Van Loan. Matrix Computation. Third Edition. The John Hopkins University Press, 1996, 240-513
    [89] C.C. Paige, M.Saunders. Towards A generalized singular value decomposition. SIAM J. Numer. Anal. 1981, 18:398-405
    [90] Gene H. Golub, Hongyuan Zha. Perturbation analysis of the canonical correlations of matrix pairs. Linear Algebra and Its Application, 1994, 210:3-28
    [91] J. Zemanian. Non-uniform semi-infinite grounded grids. SIAM J Appl. Math. 1982, 13:770-788
    [92] W.N. Anderson Jr., T..D. Morley, G.E. Trapp. Positives Solutions to X = A-BX-1B*. Linear Algebra and Its Application, 1990, 134:53-62
    [93] J Zabezyk. Remakks on the control of discrete time distributed paramter systems. SIAM J. Control, 1974,12:721-735
    [94] D. V. Ouellette. Schur complements and statistics. Linear Algebra and Its Applica tions, 1981,36:187-295
    
    [95] Jacob C. Engwerda. On the Existence of a Positive Definite solution of the matrix equation X + ATX-1A = I. Linear Algebra and Its Applications, 1993 , 194 : 91 - 108
    [96] Xingzhi Zhan, Jianjun Xie. On the matrix equation X + ATX-1A = I. Linear Algebra and Its Applications, 1996,247:337-345
    [97] Jacobi C. Engerda, Andre C.M. Ran, Arie L. Rijkeboer. Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation XA*X-1A = Q. Linear Algebra and Its Applications, 1993, 186:255-275
    [98] Ivan G. Ivanov, Salah M. El-sayed. Properties of positive definite solutions of the equation X + A*X-2A = I. Linear Algebra and Its Applications, 1998,279:303-316
    [99] Ivan G. Ivanov, V. I. Hasanov, B.V-Minchev. On the matrix equations X ± A*X-2A = I. Linear Algebra and Its Applications, 2001,326:27-44
    [100] Xinguo Liu, Hua Cao. On the positive definite solutions of the matrix equations Xs ± ATX-1A = In. Linear Algebra and Its Applications, 2003,368:83-97
    [101] S.F. Xu. Pertubation anlysis of th maximal solution fo the matrix X + AtX-1A = P. Linear Algebra and Its Applications, 2001.,336:61-70
    [102] V.I. Hasanov, I.G. Ivanov, F. Uhlig. Improved perturbation estimaties for the matrix equations X ± A*X-1A = Q. Linear Algebra and Its Applications, 2004, 379:113-135
    [103] Robert Grone, Charles R. Johnson, Eduardo M. Sa et al. Positive definite completions of partial Hermitian matrices. Linear Algebra and Its Applications, 1984,58:109-124
    [104] Wayne Barrett, Charles R. Johnson, Pablo Tarazaga. The real positive definite completion problem for s simple cycle. Linear Algebra and Its Applications, 1993, 192:3-31
    [105] Leslie Hogben. Completions of inverse M-matrix patterns. Linear Algebra and Its Applications, 1998, 282:145-160
    [106] Charles R. Johson, Ronald L. Smith. The completion problem for M-matrices and inverse M-matrices. Linear Algebra and Its Applications, 1996, 241-242:655-667
    [107] Leslie Hogben. Graph theoretic methods for matrix completion problems. Linear Algebra and Its Applications, 2001,328:161-202
    [108] Luz Maria DeAlba, Leslie Hogben. Completions of P-matrix patters. Linear Algebra and Its Applications, 2000, 319:83-102
    [109] Charles R. Johnson , Ronald L. Smith. The positive definite completion problem relative to subspace. Linear Algebra and Its Applications, 2000, 307:1-14
    [110] M. Fiedler, T. L. Markham. Completion a matrix when certain entries of its inverse are specified. Linear Algebra and Its Applications, 1986,74:225-237
    
    [111] Dai Hua. Completing a symmetric 2×2 block matrix and its inverse. Linear Algebra and Its Applications, 1996,235:235-245.
    [112] D.Hadwin, D.R.Larson, D. Timotin, Approximation theory and matrix completions, Linear Algebra and Its Applications, 2004, 377:165-179
    [113] Roger A. Horn, Charles R. Johnson. Topics in matrix analysis. Combridge University Press, 1991, 239-268.
    [114] David Kincaid, Ward Cheney. Numerical Analysis: Mathematics of Sicience Computing. China Machine Press, 139-245.
    [115] 谢冬秀,张磊.一类反对称矩阵的最小二乘问题.工程数学学报, 1993, 10(3) :25-34
    [116] 张磊,谢冬秀,胡锡炎.线性流形上双对称矩阵的逆特征值问题.计算数学, 2000,22(2) : 49-58
    [117] A.M. Mathai, S.B. Provost. Quadratic Forms in Random Variables: Theory and Applications. Dekker, New York,1992, 4-40
    [118] Jerzy K. Baksalary, Oskar Maria Baksalary. Idempotency of linear combinations of two idempotent matrices. Linear Algebra and Its Applications, 2000, 321:3-7
    [119] C.R. Rap, S.K. Mitra. Generalized Inverse of Matrices and its Applications. Wiley, New York, 1971, 19-79
    [120] Alan Jennings. Matrix Computation for engineers and Scientists. New York: John Wiley and sons, Ltd 1978, 3-35.
    [121] 胡家赣.线性代数方程组的迭代解法.北京:科学出版社, 1999,105-192
    [122] 徐树方,矩阵计算的理论与方法,北京:北京大学出版社,1999,76-109
    [123] 陈景良,陈向晖,特殊矩阵,北京:清华大学出版社,2001,758-769
    [124] 张磊.正交矩阵的反问题及其最优逼近.湖南数学年刊,1990,10:1-2
    [125] 许贵平,魏木生.矩阵的双侧旋转及其最佳逼近.高等学校计算数学学报, 1996, 4, 365-373
    [126] C.F. Van Loan. Computing the CS and generalized singular value decomposition. Numer. Math. 1985, 46:479-492
    [127] 孙文瑜,何旭初.广义逆矩阵引论.南京:江苏科学技术出版社, 1990,1-96
    [128] R Tyrrell Rockafellar. Convex Analysis. Princeton, New Jersey: Princeton University Press, 1972, 3-82
    [129] 袁亚湘,孙文瑜.最优化理论与应用.北京:科学出版社,2003,108-172
    [130] 张磊.闭凸锥上的逼近及其在数值上的应用.湖南数学年刊,1986,6(2) :43-48.
    [131] 徐仲,张凯院,陆全.TOEPLITZ矩阵类的快速算法.西安:西北工业大学 出版社,1999,1-29
    [132] Perer Benner, Ralph Byers, Volker Mehrmann et al. Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian Pencils. SIAM J. Matrix Anal.
    
    Appl.,2002,24(l):165-190