晚期糖基化终末产物在糖尿病性白内障中的作用及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分晚期糖基化终末产物、转化生长因子与糖尿病性白内障相关性研究
     目的探讨晚期糖基化终末产物(AGEs)、转化生长因子-β(TGF-β)水平与糖尿病性白内障的相关性,为深入研究糖尿病性白内障发病的分子生物学机理提供实验依据。
     方法采用生化方法、酶联免疫吸附测定(ELISA)法对糖尿病性和老年性白内障患者房水中葡萄糖(Glueose)、AGEs、TGF-β2,以及晶状体前囊膜上皮细胞AGEs和TGF-β2进行定量检测,Dot blot方法测定前囊膜晶状体上皮细胞内AGEs和TGF-β2的蛋白表达。并采用实时荧光定量聚合酶链式反应(real-time PCR)定量分析晶状体上皮细胞内AGEs受体(RAGE)和TGF-β1、TGF-β2、TGF-β3的mRNA表达。
     结果糖尿病性白内障房水中葡萄糖水平和AGEs含量分别为6.83±1.4mmol/L、355.79±195.64pg/ml,显著高于老年性白内障患者(4.74±1.3mmol/L、161.67±86.23pg/ml),两组间的差异具有显著的统计学意义(p<0.01),同时Real—timePCR结果显示晶状体上皮细胞AGEs受体(RAGE)的mRNA表达也显著高于老年性白内障患者。TGF-β2在糖尿病性白内障患者房水(368±264.23pg/ml)和晶状体上皮细胞中的含量(730±403pg/ml)较老年性患者明显降低(732±394.57pg/ml、1147±402pg/ml),TGF-β2 mRNA表达也降低,而TGF-β1mRNA的表达则明显升高,这种差异在老年性白内障和糖尿病性白内障之间均具有统计学意义(p<0.01)。TGF-β3 mRNA在老年性白内障和糖尿病性白内障晶状体上皮细胞中的表达没有显著差异。
     结论晶状体前囊膜的上皮细胞有AGE受体(RAGE)mRNA的表达,AGEs及受体在糖尿病性白内障晶状体上皮细胞中的表达高于老年性白内障,而TGF-β2在糖尿病性白内障的房水和晶状体上皮细胞中的表达低于老年性白内障。AGEs和TGF-β2可能与糖尿病性白内障的发病有关。
     第二部分晚期糖基化终末产物对晶状体上皮细胞作用及其分子机制
     目的研究晚期糖基化终末产物(AGEs)对体外培养的晶状体上皮细胞增殖及细胞周期的影响及细胞外基质和TGF—β表达变化;探讨糖尿病性白内障晶状体前囊膜上皮细胞p21、p27和c-myc蛋白的变化;从而探讨AGEs在糖尿病性白内障发病中可能的分子机制。
     方法采用MTT比色法检测AGEs对体外培养的人晶状体上皮细胞增殖的影响,流式细胞仪分析细胞周期。免疫荧光检测AGEs对晶状体上皮细胞TGF-β与细胞外基质FN、α-SMA和I型胶原蛋白表达水平的影响。Western免疫印迹法检测AGEs作用于晶状体上皮细胞后信号分子MEK和ERK蛋白表达和糖尿病性、老年性白内障前囊膜的上皮细胞细胞周期相关蛋白p21、p27、c-myc表达水平。
     结果AGEs小于1mg/ml时可以抑制晶状体上皮细胞的增殖,甚至出现明显的细胞凋亡。而AGEs浓度大于5mg/ml时促进细胞的增殖,且以AGEs作用于晶状体上皮细胞后48小时最显著。同时氨基胍(AG)抑制AGEs对晶状体上皮细胞的促增殖作用,表现为G1期阻滞。p21和p27在糖尿病性白内障的表达低于老年性白内障,而c-myc则表达升高。体外培养的人晶状体上皮细胞的培养基中加入晚期糖基化产物,晶状体上皮细胞TGF-β(TGF-β1/2/3)、FN、α-SMA和I型胶原蛋白的表达增加,MEK和ERK蛋白表达上调。
     结论糖尿病性白内障晶状体上皮细胞的增殖状态较老年性白内障活跃。高浓度AGEs促进晶状体上皮细胞增殖,氨基胍通过G1期阻滞抑制AGEs的促增殖作用。AGEs促进晶状体上皮细胞TGF-β(TGF-β1/2/3)、FN、α-SMA和I型胶原蛋白分泌增加。
PartⅠAdvanced glycation end-products and TGF-βwith diabetic cataract
     Purpose To investigate the effects of advanced glycation end-products (AGEs) and TGF-βon the diabetic cataract.These data should provide molecular basis for further studying the pathogenesis of clinical diabetic cataract.
     Methods Aqueous and anterior capsule lens epithelial cells from the diabetic cataract and age-related cataract patients were extracted to detect the blood glucose,AGEs,and TGF-β2 using biochemical methods and enzyme-linked immunosorbent assay(Elisa).For the anterior capsule lens epithelial cells,dot blot was used to detect the protein expression of AGEs and TGF-β2,and real-time PCR was used to quantitatively detect the mRNA expressions of AGE receptor(RAGE),TGF-β1,TGF-β2,and TGF-β3.
     Results Blood glucose and AGEs of the aqueous significantly increased in the diabetic cataract compared to the age-related cataract(p<0.01). RAGE mRNA expression of anterior capsule lens epithelial cells in the diabetic cataract were much higher than that of in the age-related cataract.TGF-βmRNA expression Either TGF-β2 in aqueous and lens epithelial cells or TGF-β2 mRNA expression in the lens epithelial cells of diabetic cataract obviously decreased compared to age-related cataract. In contrast with TGF-β2,TGF-β1 mRNA in the lens epithelial cells of diabetic cataract obviously increased in comparison with age-related cataract(p<0.01).TGF-β3 mRNA expression in the age-related cataract was slightly higher than that in the diabetic cataract.
     Conclusion AGEs,RAGE,and TGF-β1 expression increased in the lens epithelial cells of diabetic cataract in comparison with age-related cataract.However,TGF-β2 in the aqueous and lens epithelial cells of diabetic cataract obviously decreased.These results indicated that AGEs and TGF-βwere related with the pathogenesis of diabetic cataract.
     PartⅡMolecular mechanisms of advanced glycation end-products on lens epithelial cells
     Purpose To investigate the effects of advanced glycation end-products on the proliferation and cell cycle of lens epithelial cells,p21、p27 and c-myc protein expressions of lens epithelial cells both in diabetic and age-related cataract were studied as well.
     Methods The effect of AGEs on the proliferation of lens epithelial cells was detected by MTT methods,and cell cycle was analyzed by flow cytometry. FN,α-SMA and collagenⅠexpressions of cultured lens epithelial cells after adding AGEs by using immunofluorescence.Cell signal molecular expressions of MAPK and ERK in cultured lens epithelial cells with or without AGEs and p21,p27,c-myc protein in anterior capsule lens epithelial cells were determined by western blot.
     Results Lower concentration of AGEs inhibited the proliferation of lens epithelial cells,even made cell apoptosis.Higher concentration of AGEs accelerated cell proliferation and the effect was most obviously at 48hrs after adding AGEs.Aminoguanidine inhibited the proliferative effect of AGEs and cell cycle was blocked in G1 phase,p21 and p27 protein expression decreased and c-myc increased in diabetic cataract compared to age-related cataract.Expression of FN,α-SMA,TGF-βand collagenⅠof cultured lens epithelial cells increased after adding AGEs.Cell signal moleculars MAKP and ERK expression also increased in the action of AGEs.
     Conclusion:The proliferation of lens epithelial cells in diabetic cataract was more active compared to age-related cataract.Higher concentration of AGEs promoted the proliferation of lens epithelial cells, and aminoguanidine inhibited this effect by blocking G1 phase of cell cycle.Expression of FN,α-SMA,TGF-βand collagenⅠof cultured lens epithelial cells increased after the action of AGEs.This effects induced from AGEs might be correlated to the MAPK signal transduction pathway.
引文
[1]Wong TY,Loon SC,et al.The epidemiology of age related eye diseases in Asia.Br J Ophthalmol,2006,90(4):506-511.
    [2]Foster A,Resniko S.The impact of Vision 2020 on global blindness.Eye,2005,19(10):1133-1135.
    [3]夏小平,张晓,夏海涛.糖尿病性白内障发病的有关因素研究[J].江西医药,2000,35(4):211-212.
    [4]Wong T Y,Loon SC,et al.Theepidemiology of age related eye diseases in Asia.Br J Ophthalmol,2006,90(4):506-11.
    [5]Stitt AW.The maillard reaction in eye diseases.Ann N Y Acad Sci,2005,1043:582-97.
    [6]Franke S,Dawczynski J,Strobel J,et al.Increased levels of advanced glycation end products in human cataractous lenses.J Cataract Refract Surg,2003,29(5):998-1004.
    [7]Ahmed N.Advanced glycation end-products role in pathology of diabetic complications.Diabetes Res Clin Pract,2005,67(1):3-21
    [8]叶琳,蔡小军,邓平.老年核性及皮质性白内障晶状体上皮细胞中TGF-β2的表达.武汉大学学报,2005,26(1):50-52.
    [9]Gotoh N,Perdue NR,et al.An in vitro model of posterior capsular opacity:SPARC and TGF-beta2 minimize epithelial-to-mesenchymal transition in lens epithelium.Invest Ophthalmol Vis Sci,2007,48(10):4679-4687.
    [10]Kim YS,Kim NH,et al.Effect of protocatechualdehyde on receptor for advanced glycation end products and TGF-betal expression in human lens epithelial cells cultured under diabetic conditions and on lens opacity in streptozotoc in diabetic rats.Eur J Pharmacol,2007,569(3):171-179.
    [11]Rencova E.Diabetic ophthalmopathy.Vnitr Lek,2007,53(5):495-497.
    [12]Struck HG,Heider C,Lautenschlager C.Changes in the lens epithelium of diabetic and non-diabetic patients with various forms of opacities in senile cataract[J].Klin Monatsbl Augenheilkd,2000,216(4):204-209.
    [13]Derham BK,Harding JJ.q-crystallin as a molecular chaperone.ProgRetin Eye Res,1999,18(4):463-509.
    [14]Zarina S,Zhao HR,Abraham EC.Advanced glycation end products in human senile and diabetic cataractous lenses.Molecular and Cellular Biochemistry,2000,210:29-34.
    [15]Rajko Pokupec,Miro Kalauz,Niksa Turk,Zdenka Turk.Advanced glycation endproducts in human diabetic and non-diabetic cataractous lenses.Graefe's Arch Clan Exp Ophthalmol,2003,241:378-384.
    [16]Hegde KR,Henein MG,Varma SD.Establishment of mouse as an animal model for study of diabetic cataracts:Biochemical studies[J].Diabetes Obes Metab,2003,5(2):113-119.
    [17]Malone J I,Lowitt S,Cook WR.Nonosmotic diabetic cataracts[J]Pediatr Res,1990,26(3):293-296.
    [18]Hashimoto H.The role of glycation in diabetic patients[J].Nippon Ganke Gakkai Zasshi,1998,102(1):34-36.
    [19]Hashimoto H.The role of glycation in diabetic patients[J].Nippon Ganke Gakkai Zasshi,1998,102(1):34-36.
    [20]黄艳.晶体蛋白糖化作用与白内障[J].国外医学内分泌分册,1999,19 (6):248-251.
    [21]Van-Bockel MA,Hoenders HJ.Glycation-induced cross linking of calf lens crystallins[J].Exp Eye Res,1991,53(1):89-94.
    [22]Dawes LJ,Elliott RM,et al.Oligonucieotide microarray analysis of human lens epithelial cells:TGF-beta regulated gene expression.Mol Vis,2007,13:1181-1197.
    [23]Liu J,Hales AM,Chamberlain CG,et al.Induction of Cataract-like Changes in Rat Lens Epithelial Explants by Transforming Growth Factor.Invest Opthalmol Vis Sci,1994,35(2):388-390.
    [24]吴静,徐锦堂.转化生长因子-B及其在眼科领域的研究进展[J].国外医学眼科学分册,1996,20(6):345-349.
    [25]Srinivasan Y,Lovicu FJ,Overbeek PA.Lens-specific expression of transforming grow the factor B1 in transgenic mice causes anterior subcapsular cataracts[J].J Clin Invest,1998,101(3):625-634.
    [26]McAvoy JW,Schulz MW,Maruno KA,et al.TGF-B2 induced cataract is characterized by epithelial-mesenchymal transition and apoptosis[J].Invest Ophthalmol Vis Sci,1998,39(4):$7.
    [27]Lee EH,Joo CK.Role of transforming growth factor B in trans-differentiation and fibrosis of lens epithelial cells[J].Invest Ophthalmol Vis Sci,1999,40:2025-2032.
    [28]Hong SB,Lee KW,Handa JT.Effect of advanced glycation end products on lens epithelial cells in vitro.Biochem Biophys Res Commun.2000,275(1):53-59.
    [29]McAvoy JW,Chamberlain CG,de Iongh RU,et al.Peter Bishop Lecture:growth factors in lend development and cataract:key roles for fibroblast growth factor and TGF-β.Clin Experimental Ophthalmol,2000,28:133-139.
    [30]Gordon-Thomson C,de Iongh RU,Hales AM,et al.Differential cataract genic potency of TGF-beta 1,-beta 2,and -beta 3 and their expression in the postnatal rat eye.Invest Ophthalmol Vis Sci,1998,39:1399-1409.
    [31]Joo CK,Lee EH,Kim JC,et al.Degeneration and transdifferentiation of human lens epithelial cells in nuclear and anterior polar cataracts[J].J Cataract Refract Surg,1999,25(5):652-658.
    [32]叶琳,蔡小军,邓平.老年核性及皮质性白内障晶状体上皮细胞中TGF-β2的表达.武汉大学学报(医学版),2005,26(1):50-52
    [33]Kottler UB,Junemann AG,et al.Comparative effects of TGF-beta 1 and TGF-beta 2 on extracellular matrix production,proliferation,migration,and collagen contraction of human Tenon's capsule fibroblasts in pseudoexfoliation and primary open-angle glaucoma.Exp Eye Res,2005,80(1):121-134.
    [34]王欣玲,张劲松,于韬.层粘连蛋白和纤维连接蛋白对人晶状体上皮细胞生长特性的影响.中华眼科杂志,2005,41(4):340-345.
    [1]Kyselova Z,Stefek M,et al.Pharmacological prevention of diabetic cataract.J Diabetes Complications,2004,18(2):129-140.
    [2]Bras ID,Colitz CM,etal.Evaluation of advanced glycation end-products in diabetic and inherited canine cataracts.Graefes Arch Clin Exp Ophthalmol,2007,245(2):249-257.
    [3]PokupecR.,Kalauz M,et al.Advanced glycation endproducts in human diabetic and non-diabetic cataractous lenses.Graefes Arch Clin Exp Ophthalmol,2003,241(5):378-384.
    [4]沈钰如,徐隆绍.长期糖基化终末产物与糖尿病并发症.国外医学内分泌学分册,1995,6(2):86-87.
    [5]崔亮,孙宜萍 糖基化终末产物在血管病变中的作用 上海医学2002,25增刊129-130.
    [6]Satish Kumar M,Mrudula T,et al.Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification.Exp Eye Res,2004,79(4):577-583.
    [7]BeebeD.The lens.In:Kaufman,ed.Adler's Physiology of the Eye.St.Louis:Moby,2003:158.
    [8]Sires B.Orbital and ocular anatomy.In:Wright,et al,eds.Textbeok of Ophthalmology.Baltimore:Williams and Wilkins,1997:33
    [9]Bhat SP.The ocular lens epithelium.Biosci Rep,2001,21(4):537-563.
    [10]Sue Menko,A.Lens epithelial cell differentiation.Exp Eye Res,2002,75(5):485-490.
    [11]Wolf,G.Cell cycle regulation in diabetic nephropathy.Kidney Int Suppl,2000,77:S59-66.
    [12]Sherr CJ.Roberts JM.CDK inhibitors:positive and negative regulators of Gl-phase progression.Genes Dev,1999,13(12):1501-1512.
    [13]Fero ML,Rivkon M,Tasch M,et al.A syndrome of multiorgan hyperplasia with features of gigantism,tumorigenesis,and female sterility in P27kipl deficient mice.Cell,1996,85:733-744.
    [14]Rasheed BK,Bigner SH.Genetic alterations in glioma and medullo blastoma[J].Cancer Metastasis Rev,1991,10(4):289-299.
    [15]Luscher B,Eisenman RN.New light on Myc and Myb[J].GenesDev,1990,4:2025-2035.
    [16]Stevens A.The contribution of glycation to cataract formation in diabetes[J].J Am Optom Assoc,1998,69(5):19-30.
    [17]Jiang H,Wang YC.[Cyclin-dependent kinase inhibitors in mammal cells.Sheng Li Ke Xue Jin Zhan,1996,27(2):107-112.
    [18]Tkachov S,Lautenschlager IC.,et al.Changes in the lens epithelium with respect to cataractogenesis:light microscopic and Scheimpflug densitometric analysis of the cataractous and the clear lens of diabetics and non-diabetics.Graefes Arch Clin Exp Ophthalmol,2006,244(5):596-602.
    [19]Michael B.糖基化终末产物在糖尿病并发症中的作用.1994,43:836.
    [20]Rossig L,Jadidi AS,Urbich C,et al.Akt—dependent phosphorylation of p21(Cipl)regulates PCNA binding and proliferation of endothelial cels[J].Mol Cel Biol,2001,21(16):5644-5657.
    [21]Koyama S,Nishiyama Y,et al.Immunohistochemical analysis of cell cycle-regulating protein(p21,p27 and Ki67) expression in endoscopic biopsy samples from patients with gastroesophageal reflux disease]. Nippon Rinsho, 2007,65(5):802-811.
    
    [22] Viallard J F, Lacombe F, et al. Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology]. Cancer Radiother, 2001, 5(2):109-129.
    [23]Fujisda S, Inuzuka M, Tanaka N et al. Expressionof p27is associated with Bax expression and spontaneous apoptosis in oral and oropharyugeal carcinoma[J]. Carcer, 1999, 84(3):315-320
    [24]IonghRU, Wederell E, et al. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs, 2005, 179(1-2):43-55.
    [25] Shigemitsu T, Ishiguro K, et al. Immunocytochemical features of lens after cataract tissue—-signalling molecules (growth factors, cytokines, other signalling molecules), cytoskeleton proteins, cellular and extracellular matrix proteins. Int Ophthalmol, 1999, 23(3):137-144.
    [26] Kornblihtt AR, Gutman A. Molecular biology of the extracellular matrix proteins. Biol Rev Camb Philos Soc, 1988, 63(4):465-507.
    [27] Aggeler J, Park CS, et al.Regulation of milk protein and basement membrane gene expression: the influence of the extracellular matrix. J Dairy Sci,1988, 71(10):2830-2842.
    [28] Akiyama SK, Yamada KM. Fibronectin. Adv Enzymol Relat Areas Mol Biol, 1987,59:1-57.
    [29] Hynes R. Molecular biology of fibronectin. Annu Rev Cell Biol, 1985, 1:67-90.
    [30] Hayashi M. Fibronectin in cell, developmental, and neural biology]. Tanpakushitsu Kakusan Koso, 1984,29(14):1964-1980.
    [31.] McKeown-Longo PJ. Fibronectin-cell surface interactions Rev Infect Dis, 1987,9 Suppl 4:S322-334.
    [32] Padgett R, Reiss WM. TGFbeta superfamily signaling: notes from the desert. Development, 2007, 134(20):3565-3569.
    [33] Kottler UB, Junemann AG, et al. Comparative effects of TGF-beta 1 and TGF-beta 2 on extracellular matrix production, proliferation, migration, and collagen contraction of human Tenon's capsule fibroblasts in pseudoexfoliation and primary open-angle glaucoma. Exp Eye Res, 2005, 80(1) :121-134.
    [34] Gordon-Thomson C, de Iongh RU, et al. Differential cataractogenic potency of TGF-betal, -beta2, and -beta3 and their expression in the postnatal rat eye. Invest Ophthalmol Vis Sci, 1998,39(8) :1399-1409.
    [35] Border WA , Ruoslahti E. Transforming growth factor - beta in disease : the dark side of tissue repair. J Clin Invest,1992,90:1-7.
    [36] Qi L, Fu YY, et al. Effect of advanced glycation end products on the human gingival fibroblast proliferation and type I collagen synthesis.]. Zhonghua Kou Qiang Yi Xue Za Zhi, 2008, 43(1):12-15.
    [1]林炜栋,青春,陆树良.糖尿病AGEs的形成机制与生物学效应.中华国际医学杂志,2001,1(1):61-63.
    [2]沈钰如,徐隆绍.长期糖基化终末产物与糖尿病并发症.国外医学内分泌学分册,1995,6(2):86-87.
    [3]Pugliese G,Pricci F,Romeo G,et al.Upregulation of mesangial growth factor and extracellular matrix synthesis by advanced glycation end products via a receptor- mediated mechanism[J].Diabetes,1997,46:1881-1887.
    [4]Twigg SM,Chen MM,Joly AH,et al.Advanced glycation end products up-regulate connective tissue growth factor(insulin-like growth factor binding protein related protein in human fibroblasts:a potential mechanism for expansion of extracellular matrix in diabetes mellitus[J].Endocrinology,2001,142:1760-1769.
    [5]Struck HG,Heider C,LautenschlAGEsr C.Changes in the lens epithelium of diabetic and non-diabetic patients with various forms of opacities in senile cataract[J].Klin Monatsbl Augenheilkd,2000,216(4):204-209.
    [6]Ivers RQ,Cumming RG,Mitchell P,et al.Diabetes and risk of fracture:The blue mountains eye study[J].Diabetes Care,2001,24(7):1198-1203.
    [7]夏小平,张晓,夏海涛.糖尿病性白内障发病的有关因素研究[J].江西医 药,2000, 35(4):211-212.
    
    [8] Matsumoto K, Ikeda K, Horiuchi S, Zhao H, Abraham EC. Immunochemical evidence for increased formation of advanced glycation end products and inhibition by aminoguanidine in diabetic rat lenses [J]. Biochem Biophys Res Commun, 1997, 241(2): 352 -354.
    [9] Swamy-Mruthinti S , Shaw SM, Zhao HR, Green K, Abraham EC. Evidence of a glycemic threshold for the development of cataracts in diabetic rats [J]. Curr Eye Res, 1999, 18(6): 423-429.
    [10] Derham BK, Harding JJ. α-crystallin as a molecular chaperone [J]. Prog Retin Eye Res, 1999, 18 (4) : 463-509.
    
    [11] Ahmed N. Advanced glycation endproducts-—role in pathology of diabetic complications [J]. Diabetes Res Ci In Pract, 2005; 67(1) : 3—21.
    [12] Ganea E,Rixon KC,Harding JJ. Binding of glucose, galactose and pyridoxal phosphate to lens crystal 1 ins[J]. Biochim Biophys Acta,1994,1226(3):286-290.
    [13] Cherian M, Smith JB, Jiang XY,Abraham EC. Influence of protein-glutathione mixed disulfide on the chaperone-like function of α-crysatllin[J].J Biol Chem, 1997, 272(46) :29099-29103.
    [14] Petrash JM, Tarle I, Wilson DK, Quiocho FA. Aldose reducatse catlysis and crysatllography. Insights from recent advances in enzyme structure and funciton[J]. Diabetes, 1994, 43(8):955-959.
    [15] Kinoshiat JH. Mechanisms initiating cataract formation. Proctor Lecture[J].In vest Ophthalmol,1974,13(10):713-724.
    [16]Lee AYW,Chung SK,Chung SS.Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens[J].Proc Natl Acad Sci,1995,92(7):2780-2784.
    [17]Stevens A.The contribuiton of glycation to cataract formation in diabetes[J].J Am Optom Assoc,1998,69(8):519-530.
    [18]Hegde KR,Henein MG,Varma SD.Establishment of mouse as an animal model for study of diabetic cataracts:Biochemical studies[J].Diabetes Obes Metab,2003,5(2):113-119.
    [19]严宏,李明勇,Harding JJ.白内障药物治疗的研究现状[J].国外医学眼科学分册,2002,26(3):151-156.
    [20]Pereira PC,Fernandes R,Ramalho JS,et al.A technical approach to the evaluation of glucose oxidation:Implications for diabetic cataract[J].Ophthalmic Res,1996,28(5):275-283.
    [21]Ozmen B,Ozmen D,Erkin E,et al.Lens superoxide dismutase and catalase activities in diabetic cataract[J].Clin Biochem,2002,35(1):69-72.
    [22]Altomare E,Vendemiale G,Grattagilano I,Angelini P,et al.Human diabetic cataract:role of lipid peroxidation[J].Diabete Meatb,1995,21(3):173-179.
    [23]唐建.白内障发病机制的分子学研究进展[J].眼科新进展,2003,23(1):52 -55.
    [24]Malone JI,Lowit S,Cook W R.Nonosmotic diabetic cataracts[J].Pediatr Res,1990,27(3):293-296.
    [25]Lee AYW,Chung SS.Contribui tons of polyol pathway to oxidative stress in diabetic cataract[J].FASEB J,1999,13(1):23-30.
    [26]Obrosova IG,Stevens MJ.Effect of dietary taurine supplementation on GSH and NAD(P)-redox status,lipid peroxidation,and energy metabolism in diabetic precataractous lens[J].Invest Ophthalmol Vis Sci,1999,40(3):680-688.
    [27]Kilic F,Trevithick JR.Modelling conical cataractogenesis,16.Leakage of lactate dehydrogenase:a new method for following cataract development in cultured lenses[J].Biochem Mol Biol Int,1995,35(5):1143-1152.
    [28]Kutlu M,Nazroglu M,Simsek H,et al.Moderate exercise combined with dietary vitamins C and E counteracts oxidative stress in the kidney and lens of streptozotocin-induced diabetic rat[J].Int J Vitam Nutr Res,2005,75(1):71-80.
    [29]葛奎,陆树良,青春.氨基胍与糖尿病的创面难愈性[J].中华医学杂志,2004,84(11):966-968.
    [30]Monnier VM.Aminoguanidine and diabetic neuropathy[J].Eur J Endocrinel,1996,134(4):398-400.
    [31]Williamson JR,Chang K,Frangos M,et al.Hyperglycemic pseudohypoxia and diabeitc compilcaitons[J].Diabetes,1993,42(6):801-813.
    [32]Tilton RG,Chang K,Hasan KS,et al.Prevention of diabetic vascular dysfunction by guanidines.Inhibition of nitric oxide synthase versus advanced glycation end-product formation[J].Diabetes,1993,42(2):221-232.
    [33]Miyauchi Y,ShikamaH,Takasu T,et al.Slowing of peripheral motor nerve conduction was ameliorated by aminoguanidine in streptozocin -induced diabetic rats[J].Eur J Endocrinol,1996,134(4):467-473.
    [34]Pugliezse G,Tilton R G,Williamson J R.Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease[J].Diabetes Metab Rev,1991,7(1):35-59.
    [35]Singh R,Barden A,Mori T,Beilin L.Advanced glycation end-products:a review.Diabetologia,2001,44(2):129-146.
    [36]程梅芬,肖洁.蛋白体外非酶糖化及氨基胍,二甲双胍的抑制作用[J].上海医科大学学报,1998,25(1):35-38.
    [37]Bron AJ,Sparrow J,Brown NA,et al.The lens in diabetes.Eye,1993,7:260-275.
    [38]Inomata M,Hayashi M,Shumiya S,et al.Aminoguanidine-treatment results in the inhibition of lens opacification and calpain-mediated proteolysis in Shumiya cataract rats(SCR)[J].J Biochem Tokyo,2000,128(5):771-776.
    [39]宋丹青,宋旭,蔡年生.氨基胍单盐酸盐的合成及对大鼠半乳糖性白内障预防作用的研究[J].中国新药杂志,2002,11(1):72-74.
    [40]Chert AS,Taguchi T,Sugiura M,et al.Pyridoxal-aminoguanidine adduct is more effective than aminoguanidine in preventing neuropathy and cataract in diabetic rats. Horm Metab Res, 2004,36:183-187.
    [41] Nabekura T, Koizumi Y, Nakao M, Tomohiro M, et al. Delay of cataract development in hereditary cataract UPL rats by disulfiram and aminoguanidine [J]. Exp Eye Res, 2003,76(2):169-174.