左室心肌致密化不全型心肌病分子遗传机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     左室心肌致密化不全心肌病(Left ventricular noncompaction, LVNC)是一种罕见的原发型遗传性心肌病,以心室内存在粗大的肌小梁和深陷隐窝为主要特征,又称为海绵状心肌。本病可单独发生,称为孤立的心室肌致密化不全(IVNM),有时也合并其他先天性心脏病,如Ebstein畸形,房室间隔缺损等。迄今为止,导致疾病的原因不明。一般认为,心肌在胚胎发育过程中,由于各种原因导致心肌致密化过程失败,肌小梁异常粗大,未被吸收,导致小梁隐窝持续存在。临床主要表现为进行性心力衰竭,心律失常,陈旧性附壁血栓和猝死。
     家系遗传调查发现,该疾病以常染色体显性遗传为主,有时也表现为X-连锁遗传和线粒体遗传。已有的分子遗传学研究发现了一些编码肌小节的基因(MYH7, ACTC, MYBPC3, TNNT2),细胞骨架蛋白基因(ZASP, LMNA)以及线粒体蛋白基因(TAZ)可能与LVNC有关系,但是并不能完全解释所有LVNC的发病机制。基于前人的工作,我们推测LVNC的病因或许与线粒体、心肌胚胎发育过程有关。因而,结合传统的研究手段,扩大候选基因筛选范围,从整个基因组的水平对LVNC进行研究,寻找LVNC的真正致病原因。
     研究目的
     利用分子生物学、分子遗传学和高通量测序技术,结合临床和病理特征,探寻LVNC的分子遗传学发病机制。寻找致病原因,为临床诊断和治疗提供依据和方向。
     研究方法和结果
     1)家系分析和组织病理学研究
     对入选的典型LVNC患者的心肌组织标本进行病理学水平研究,发现部分患者心肌组织肌丝排列疏松,心肌间存在严重的纤维化,但是并没有发现特异的共同的病理学表现;心肌组织均存在凋亡现象,患者心肌组织有异常分化现象;心肌组织增殖检测呈阴性。透射电镜结果显示,左室心肌组织肌小节溶解,线粒体结构和定位异常。
     2)对六例LVNC患者左室心肌组织的线粒体基因组进行研究
     提取LVNC患者的线粒体DNA进行全测序,发现227个异常变异,其中157个位于编码区,70个位于非编码区,其中位于MT-CO3的m.9856T>C突变保守系数较高(0.88),但是通过家系分析,排除了作为候选致病基因的可能;利用长PCR片段扩增技术检测患者mtDNA,没有发现mtDNA有大片段的序列缺失或重复:利用real-time PCR技术对mtDNA的拷贝数变化进行研究,结果表明,LVNC患者组心肌mtDNA拷贝数为3840±226.5,正常组心肌mtDNA拷贝数为8266±900.8,P<0.01, LVNC患者心肌mtDNA拷贝数较正常组低。
     3)全外显子组研究
     利用高通量测序技术对四例典型的LVNC患者(IVNC)的基因组DNA进行全外显子组测序,结合临床资料和病理研究,进行生物信息学分析,寻找候选基因。经过分析发现,除了发现编码肌小节蛋白TNNT2、MYBPC3等突变之外,还发现了核编码线粒体蛋白的突变,以及信号通路上的突变。Wnt信号通路异常可能与LVNC的发生有关系。
     结论
     通过对典型的LVNC样本的研究发现患者的心肌组织大量凋亡,且存在异常分化现象;患者组心肌线粒体DNA拷贝数降低,心肌的超微结构显示肌纤维紊乱和线粒体结构异常,提示患者心肌线粒体功能异常。这些是患者发生心力衰竭的原因,但并不是LVNC发生的直接原因;全外显子组测序后结合生物信息学分析发现,LVNC的发生可能与调控胚胎期心脏发育的Wnt信号通路异常有关。
     增加研究样本量和进一步的功能实验研究将有助于揭示LVNC的真正致病原因。
Rational
     LVNC is a rare primary genetic heart disease, characterized by numerous prominent trabeculars and deep intertrabecular recesses in left ventricular. It was previously termed "spongy myocardium" although this term has been abandoned because it underscores the hypothesis that the basic morphogenetic abnormality may be arrest of normal compaction of the loose interwoven mesh of myocardial fibers in the embryo. LVNC may be an isolated finding in the absence of any coexisting cardiac anomaly, called isolated ventricular noncompaction (IVNM),or may be associated with other congenital anomalies, such as Ebstein malformation, ventricular septal defect etc. It is widely accepted that LVNC is caused by noncompaction of the myocardium during embryonic development. The genetic basis of this cardiomyopathy is still largely unsolved and mechanism of the disease remains unclear. The heterogenetiy of the clinical features includes both asymptomatic and symptomatic patients with progressive deterioration in cardiac function that results in congestive heart failure, arrhythmias, thromboembolic events, and sudden cardiac death.
     Clinical study suggested that LVNC is often familiar with predominantly autosomal domiant inheritance. X-linked recessive inheritance and mitochondrion inheritance of neonatal LVNC also have been described. It has been linked to mutations in genes including sarcomere component (MYH7, ACTC, MYBPC3, TNNT2), cytoskeletal protein (ZASP, LMNA) and TAZ (G4.5). However, mutants in all of the above mentioned genes account for only a small percentage of patients. And mutations in the genes encoding sarcomere proteins have been associated with both hypertrophic and dilated cardiomyopathy. In addition, LVNC happened with neuromuscular diseases such as Barth syndrome. G4.5is a candidate gene for Barth syndrome, encoding a metabolism related phosphatide protein which is located in mitochondria. Based on all of these preceding works, we hypothesized that the pathology of LVNC maybe associated with mitochondria or/and abnormalities in development of myocardiocytes. Thus, expanding the scope of candidate gene scanning, even from the whole genome level, may be an effective way to uncover the pathogeny of LVNC.
     Aims The present study was undertaken to investigate the molecular genetic basis of LVNC by using technologies of molecular biology, molecular genetics, and high throughput sequencing.
     Methods and Results
     1) Pedigree counseling and histopathology investigation
     Pathologic study of LVNC patients' myocardium reaveled that, myofilament in some patients'myocardium were loosely arranged and severe fibrosis existed between myocardium. However, no common characteristic of pathology was found. Apoptosis exists in all of the four myocardium samples with some myocardium differentiation possitive; No proliferation of myocardium was found. Results from transmission electron microscope showed that, left ventricular myocardial tissue sarcomere was dissolved, and the structure and location of mitochondria was abnormal.
     2) The investigation to mitochondrial DNA from6LVNC patients
     The patients' mitochondrial genomic DNA (mtDNA) of LVNC were extracted and sequenced.227abnormal variations were found, among which157variations localized in coding region and70variants localized in non-coding region. Mutant conservative index of m.9856T>C in MT-CO3localized in MT-CO3was high, however, it was excluded from candidated disease-causing gene after pedigree analysis; Results from long segment PCR amplification technology showed that, mtDNA in LVNC myocardium was3840±226.5, lowered than that of normal myocardium (8266±900.8, P<0.01).
     3) Whole exome sequencing
     Whole exome sequencing was performed by high-throughput sequencing technologies in four patients with typical LVNC (IVNC). Bioinformatics analysis combined with clinical data and pathologic study reaveled that, abnomalities in Wnt signaling pathway may be one of the causes of LVNC.
     Conclusions
     Although there was no consistent pathological characteristics in six LVNC myocardium specimens, muscle fiber disorders and abnormal mitochondria ultrastructure observed by transmission electron microscope suggested that mitochondria dysfunction; Whole exome sequencing analysis revealed that, LVNC may be associated with abnormalities of cell signaling pathway during embryonic heart development. More information might have been found if the patient number were larger and further function studies of mutation genes are needed to reveal the true etiology of LVNC.
引文
1. Watkins, H., H. Ashrafian, and C. Redwood, Inherited cardiomyopathies. N Engl J Med,2011.364(17):p.1643-56.
    2. Lee, M.S., M. Lill, and R.R. Makkar, Stem cell transplantation in myocardial infarction. Rev Cardiovasc Med,2004.5(2):p.82-98.
    3. Captur, G. and P. Nihoyannopoulos, Left ventricular non-compaction:genetic heterogeneity, diagnosis and clinical course. Int J Cardiol,2010.140(2):p.145-53.
    4. Richardson, P., et al., Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation,1996.93(5):p.841-2.
    5. Maron, B.J., et al., Contemporary definitions and classification of the cardiomyopathies:an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation,2006.113(14):p.1807-16.
    6. Ichida, F., Left ventricular noncompaction. Circ J,2009.73(1):p.19-26.
    7. Aras, D., et al., Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure. J Card Fail,2006.12(9):p.726-33.
    8. Paterick, T.E., et al., Left ventricular noncompaction cardiomyopathy:what do we know? Rev Cardiovasc Med,2010.11(2):p.92-9.
    9. Peters, F. and B.K. Khandheria, Isolated left ventricular noncompaction:what do we really know? Curr Cardiol Rep,2012.14(3):p.381-8.
    10. Ichida, F., et al., Clinical features of isolated noncompaction of the ventricular myocardium:long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol,1999.34(1):p.233-40.
    11. Ergul, Y., et al., Left ventricular non-compaction in children and adolescents: clinical features, treatment and follow-up. Cardiol J,2011.18(2):p.176-84.
    12. Bertini, M., et al., Effects of cardiac resynchronisation therapy on dilated cardiomyopathy with isolated ventricular non-compaction. Heart,2011.97(4):p. 295-300.
    13. Pignatelli, R.H., et al., Clinical characterization of left ventricular noncompaction in children:a relatively common form of cardiomyopathy. Circulation,2003. 108(21):p.2672-8.
    14. Nugent, A.W., et al., The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med,2003.348(17):p.1639-46.
    15. Jenni, R., E.N. Oechslin, and B. van der Loo, Isolated ventricular non-compaction of the myocardium in adults. Heart,2007.93(1):p.11-5.
    16. Gao, X.J., et al., [Incidence of coronary artery disease and outcome of patients with left ventricular noncompaction]. Zhonghua Xin Xue Guan Bing Za Zhi,2011. 39(8):p.725-9.
    17. Lampropoulos, K.M., et al., Contrast echocardiography:contribution to diagnosis of left ventricular non-compaction cardiomyopathy. Hellenic J Cardiol,2011. 52(3):p.265-72.
    18. Gebhard, C., et al., Reduced left ventricular compacta thickness:a novel echocardiographic criterion for non-compaction cardiomyopathy. J Am Soc Echocardiogr,2012.25(10):p.1050-7.
    19. Niemann, M., S. Stork, and F. Weidemann, Left ventricular noncompaction cardiomyopathy:an overdiagnosed disease. Circulation,2012.126(16):p. e240-3.
    20. Madias, J.E., Electrocardiogram in left ventricular hypertrabeculation/noncompaction. Am J Cardiol,2012.109(4):p.599; author reply 599.
    21. Nikolic, A., et al., Left ventricular noncompaction:clinical-echocardiographic study. Vojnosanit Pregl,2012.69(1):p.32-6.
    22. Caselli, S., et al., Three-dimensional echocardiographic characterization of patients with left ventricular noncompaction. J Am Soc Echocardiogr,2012.25(2):p. 203-9.
    23. Baker, G.H., et al., Transthoracic real-time three-dimensional echocardiography in the diagnosis and description of noncompaction of ventricular myocardium. Echocardiography,2006.23(6):p.490-4.
    24. Bowles, K..R. and N.E. Bowles, Genetics of inherited cardiomyopathies. Expert Rev Cardiovasc Ther,2004.2(5):p.683-97.
    25. Jayasinghe, S.R., et al., Genetics and cardiovascular disease:Design and development of a DNA biobank. Exp Clin Cardiol,2009.14(3):p.33-7.
    26. McNally, E. and L. Dellefave, Sarcomere mutations in cardiogenesis and ventricular noncompaction. Trends Cardiovasc Med,2009.19(1):p.17-21.
    27. Klaassen, S., et al., Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation,2008.117(22):p.2893-901.
    28. Dellefave, L.M., et al., Sarcomere mutations in cardiomyopathy with left ventricular hypertrabeculation. Circ Cardiovasc Genet,2009.2(5):p.442-9.
    29. Vatta, M., et al., Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol,2003. 42(11):p.2014-27.
    30. Arad, M., et al., Gene mutations in apical hypertrophic cardiomyopathy. Circulation,2005.112(18):p.2805-11.
    31. Budde, B.S., et al., Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One,2007. 2(12):p.el362.
    32. Rankin, J., et al., Extreme phenotypic diversity and nonpenetrance in families with the LMNA gene mutation R644C. Am J Med Genet A,2008.146A(12):p. 1530-42.
    33. Probst, S., et al., Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet,2011.4(4):p.367-74.
    34. Luedde, M., et al., Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc Res,2010.86(3):p. 452-60.
    35. Finsterer, J., C. Stollberger, and E. Bonner, Acquired noncompaction associated with coronary heart disease and myopathy. Heart Lung,2010.39(3):p.240-1.
    36. Hofer, M., C. Stollberger, and J. Finsterer, Acquired noncompaction associated with myopathy. Int J Cardiol,2007.121(3):p.296-7.
    37. Kenton, A.B., et al., Isolated left ventricular noncompaction is rarely caused by mutations in G4.5, alpha-dystrobrevin and FK Binding Protein-12. Mol Genet Metab,2004.82(2):p.162-6.
    38. Marziliano, N., et al., Barth syndrome associated with compound hemizygosity and heterozygosity of the TAZ and LDB3 genes. Am J Med Genet A,2007.143A(9):p. 907-15.
    39. Phoon, C.K., et al., Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction. J Am Heart Assoc,2012.1(2).
    40. Oechslin, E. and R. Jenni, Left ventricular non-compaction revisited:a distinct phenotype with genetic heterogeneity? Eur Heart J,2011.32(12):p.1446-56.
    41. Paterick, T.E., et al., Left ventricular noncompaction:a 25-year odyssey. J Am Soc Echocardiogr,2012.25(4):p.363-75.
    42. Paterick, T.E., et al., Left ventricular noncompaction cardiomyopathy:what do we know? Rev Cardiovasc Med,2010.11(2):p.92-9.
    43. Zambrano, E., et al., Isolated noncompaction of the ventricular myocardium: clinical and molecular aspects of a rare cardiomyopathy. Lab Invest,2002.82(2):p. 117-22.
    44. Engberding, R., T.M. Yelbuz, and G. Breithardt, Isolated noncompaction of the left ventricular myocardium--a review of the literature two decades after the initial case description. Clin Res Cardiol,2007.96(7):p.481-8.
    45. Hamamichi, Y., et al., Isolated noncompaction of the ventricular myocardium: ultrafast computed tomography and magnetic resonance imaging. Int J Cardiovasc Imaging,2001.17(4):p.305-14.
    46. Edston, E. and N. Perskvist, Histiocytoid cardiomyopathy and ventricular non-compaction in a case of sudden death in a female infant. Int J Legal Med,2009. 123(1):p.47-53.
    47. Xynos, A., et al., Bone marrow-derived hematopoietic cells undergo myogenic differentiation following a Pax-7 independent pathway.Stem Cells,2010.28(5):p. 965-73.
    48. Bruneau, B.G., The developmental genetics of congenital heart disease. Nature, 2008.451(7181):p.943-8.
    49. Lewis, W., et al., Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest, 2007.87(4):p.326-35.
    50. Porter, G.A., Jr., et al., Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog Pediatr Cardiol,2011.31(2):p.75-81.
    51. Zaragoza, M.V., et al., Mitochondrial cardiomyopathies:how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny. Eur J Hum Genet,2011.19(2):p.200-7.
    52. Huang, P., C.A. Galloway, and Y. Yoon, Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS One,2011.6(5):p. e20655.
    53. Ramos, A., et al., Human mitochondrial DNA complete amplification and sequencing:a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis,2009.30(9):p.1587-93.
    54. Kowald, A. and T.B. Kirkwood, Evolution of the mitochondrial fusion-fission cycle and its role in aging. Proc Natl Acad Sci U S A,2011.108(25):p.10237-42.
    55. Carling, P.J., L.M. Cree, and P.F. Chinnery, The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion,2011.11(5): p.686-92.
    56. Reyes, A., et al., Actin and myosin contribute to mammalian mitochondrial DNA maintenance. Nucleic Acids Res,2011.39(12):p.5098-108.
    57. Leinwand, L.A. and R.L. Moss, Medicine. Chemically tuned myosin motors. Science,2011.331(6023):p.1392-3.
    58. Marotta, R., et al., Novel single base pair COX Ⅲ subunit deletion of mitochondrial DNA associated with rhabdomyolysis. J Clin Neurosci,2011.18(2): p.290-2.
    59. Miller, F.J., et al., Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay:lack of change of copy number with age. Nucleic Acids Res,2003.31(11):p. e61.
    60. Huang, X., et al., Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc Natl Acad Sci U S A,2013.110(8):p.2846-51.
    62. Tang, S., et al., Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion,2010.10(4):p.350-7.
    63. Zarrouk Mahjoub, S., et al., Pathogenicity of the transition m.3308T>C in left ventricular hypertrabeculation/noncompaction. Cardiology,2012.122(2):p.116-8.
    64. Kostareva, A., et al., Mice expressing L345P mutant desmin exhibit morphological and functional changes of skeletal and cardiac mitochondria. J Muscle Res Cell Motil,2008.29(1):p.25-36.
    65. Roncarati, R., et al., Doubly heterozygous LMNA and TTN mutations revealed by exome sequencing in a severe form of dilated cardiomyopathy. Eur J Hum Genet, 2013.
    66. Carroll, C.J., et al., Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy. J Med Genet,2013.50(3):p.151-9.
    67. Theis, J.L., et al., Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy. Circ Cardiovasc Genet, 2011.4(6):p.585-94.
    68. Boileau, C., et al., TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet, 2012.44(8):p.916-21.
    69. Klaassen, S., et al., Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation,2008.117(22):p.2893-901.
    70. Probst, S., et al., Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet,2011.4(4):p.367-74.
    71. Bauer, R., et al., Does delta-sarcoglycan-associated autosomal-dominant cardiomyopathy exist? Eur J Hum Genet,2009.17(9):p.1148-53.
    72. Riley, L.G., et al., Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia--MLASA syndrome. Am J Hum Genet,2010.87(1):p.52-9.
    73. Calvo, S.E., et al., High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet,2010.42(10): p.851-8.
    74. Crispim, D., et al., Role of the mitochondrial m.16189T>C variant in type 2 diabetes mellitus in southern Brazil. Diabetes Res Clin Pract,2006.74(2):p.204-6.
    [1]Oechslin E, Jenni R. Left ventricular non-compaction revisited:a distinct phenotype with genetic heterogeneity?[J]. Eur Heart J,2011.
    [2]Gasser T, Dichgans M, Finsterer J, et al. EFNS Task Force on Molecular Diagnosis of Neurologic Disorders:guidelines for the molecular diagnosis of inherited neurologic diseases. Second of two parts[J]. Eur J Neurol,2001,8(5):407-424.
    [3]Pignatelli R H, Mcmahon C J, Dreyer W J, et al. Clinical characterization of left ventricular noncompaction in children:a relatively common form of cardiomyopathy[J]. Circulation,2003,108(21):2672-2678.
    [4]Sa M I, Cabral S, Costa P D, et al. Cardiac involveent in type 1 myotonic dystrophy[J]. Rev Port Cardiol,2007,26(9):829-840.
    [5]Marziliano N, Mannarino S, Nespoli L, et al. Barth syndrome associated with compound hemizygosity and heterozygosity of the TAZ and LDB3 genes[J]. Am J Med Genet A,2007,143A(9):907-915.
    [6]Stollberger C, Finsterer J, Blazek G. Left ventricular hypertrabeculation/ noncompaction and association with additional cardiac abnormalities and neuromuscular disorders[J]. Am J Cardiol,2002,90(8):899-902.
    [7]Tang S, Batra A, Zhang Y, et al. Left ventricular noncompaction is associated with mutations in the mitochondrial genome[J]. Mitochondrion,2010, 10(4):350-357.
    [8]Bleyl S B, Mumford B R, Thompson V, et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome[J]. Am J Hum Genet,1997,61(4):868-872.
    [9]Bleyl S B, Mumford B R, Brown-Harrison M C, et al. Xq28-linked noncompaction of the left ventricular myocardium:prenatal diagnosis and pathologic analysis of affected individuals[J]. Am J Med Genet,1997,72 (3):257-265.
    [10]Bissler J J, Tsoras M, Goring H H, et al. Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle[J]. Lab Invest, 2002,82(3):335-344.
    [11]Yen T Y, Hwu W L, Chien Y H, et al. Acute metabolic decompensation and sudden death in Barth syndrome:report of a family and a literature review[J]. Eur J Pediatr,2008,167(8):941-944.
    [12]Chang B, Momoi N, Shan L, et al. Gonadal mosaicism of a TAZ (G4.5) mutation in a Japanese family with Barth syndrome and left ventricular noncompaction[J]. Mol Genet Metab,2010,100(2):198-203.
    [13]Hoedemaekers Y M, Caliskan K, Majoor-Krakauer D, et al. Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies [J]. Eur Heart J,2007,28(22):2732-2737.
    [14]Michels M, Hoedemaekers Y M, Kofflard M J, et al. Familial screening and genetic counselling in hypertrophic cardiomyopathy:the Rotterdam experience[J]. Neth Heart J,2007,15(5):184-190.
    [15]Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction [J]. Circulation,2008,117(22):2893-2901.
    [16]Monserrat L, Hermida-Prieto M, Fernandez X, et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects[J]. Eur Heart J,2007,28(16):1953-1961.
    [17]Spirito P, Autore C. Apical hypertrophic cardiomyopathy or left ventricular non-compaction? A difficult differential diagnosis[J]. Eur Heart J,2007,28(16):1923-1924.
    [18]Vatta M, Mohapatra B, Jimenez S, et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction[J]. J Am Coll Cardiol,2003,42(11):2014-2027.
    [19]Xing Y, Ichida F, Matsuoka T, et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity [J]. Mol Genet Metab,2006,88(1):71-77.
    [20]Zhou Q, Chu P H, Huang C, et al. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy[J]. J Cell Biol,2001,155(4):605-612.
    [21]Selcen D, Engel A G. Mutations in ZASP define a novel form of muscular dystrophy in humans[J]. Ann Neurol,2005,57(2):269-276.
    [22]Finsterer J, Stollberger C, Wegmann R, et al. Acquired left ventricular hypertrabeculation/noncompaction in myotonic dystrophy type 1[J]. Int J Cardiol,2009,137(3):310-313.
    [23]Finsterer J, Stolberger C, Kopsa W. Noncompaction in myotonic dystrophy type 1 on cardiac MRI[J]. Cardiology,2005,103(3):167-168.
    [24]Grady R M, Grange R W, Lau K S, et al. Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies[J]. Nat Cell Biol,1999,1(4):215-220.
    [25]Ichida F, Tsubata S, Bowles K R, et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome[J]. Circulation,2001,103(9): 1256-1263.
    [26]Jones K J, Compton A G, Yang N, et al. Deficiency of the syntrophins and alpha-dystrobrevin in patients with inherited myopathy[J]. Neuromuscul Disord,2003,13(6):456-467.
    [27]Grady R M, Grange R W, Lau K S, et al. Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies[J]. Nat Cell Biol,1999,1 (4):215-220.
    [28]Miner J H. Laminins and their roles in mammals[J]. Microsc Res Tech,2008, 71(5):349-356.
    [29]Benedetti S, Bertini E, Iannaccone S, et al. Dominant LMNA mutations can cause combined muscular dystrophy and peripheral neuropathy[J]. J Neurol Neurosurg Psychiatry,2005,76(7):1019-1021.
    [30]Rankin J, Auer-Grumbach M, Bagg W, et al. Extreme phenotypic diversity and nonpenetrance in families with the LMNA gene mutation R644C[J]. Am J Med Genet A,2008,146A(12):1530-1542.
    [31]Makita N, Sumitomo N, Watanabe I, et al. Novel SCN5A mutation (Q55X) associated with age-dependent expression of Brugada syndrome presenting as neurally mediated syncope[J]. Heart Rhythm,2007,4(4):516-519.
    [32]Shan L, Makita N, Xing Y, et al. SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia[J]. Mol Genet Metab,2008,93(4): 468-474.
    [33]Zaragoza M V, Arbustini E, Narula J. Noncompaction of the left ventricle: primary cardiomyopathy with an elusive genetic etiology[J]. Curr Opin Pediatr, 2007,19(6):619-627.
    [34]Matsumoto T, Watanabe A, Migita M, et al. Transient cardiomyopathy in a patient with congenital contractural arachnodactyly (Beals syndrome)[J]. J Nippon Med Sch,2006,73(5):285-288.
    [35]Finsterer J, Stollberger C, Wanschitz J, et al. Nail-patella syndrome associated with respiratory chain disorder[J]. Eur Neurol,2001,46(2):92-95.
    [36]Bongers E M, de Wijs I J, Marcelis C, et al. Identification of entire LMX1B gene deletions in nail patella syndrome:evidence for haploinsufficiency as the main pathogenic mechanism underlying dominant inheritance in man[J]. Eur J Hum Genet,2008,16(10):1240-1244.
    [37]Hoedemaekers Y M, Caliskan K, Majoor-Krakauer D, et al. Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies [J]. Eur Heart J,2007,28(22):2732-2737.
    [38]Wessels M W, De Graaf B M, Cohen-Overbeek T E, et al. A new syndrome with noncompaction cardiomyopathy, bradycardia, pulmonary stenosis, atrial septal defect and heterotaxy with suggestive linkage to chromosome 6p[J]. Hum Genet,2008,122(6):595-603.
    [39]Nakamura T, Colbert M, Krenz M, et al. Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome[J]. J Clin Invest,2007,117(8):2123-2132.
    [40]Sarkozy A, Digilio M C, Dallapiccola B. Leopard syndrome[J]. Orphanet J Rare Dis,2008,3:13.
    [41]Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction [J]. Circulation,2008,117(22):2893-2901.
    [42]Corrado G, Checcarelli N, Santarone M, et al. Left ventricular hypertrabeculation/noncompaction with PMP22 duplication-based Charcot-Marie-Tooth disease type 1A[J]. Cardiology,2006,105(3):142-145.
    [43]Shou W, Aghdasi B, Armstrong D L, et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12[J]. Nature,1998,391 (6666):489-492.
    [44]Fichet J, Legras A, Bernard A, et al. Aborted sudden cardiac death revealing isolated noncompaction of the left ventricle in a patient with wolff-Parkinson-white syndrome[J]. Pacing Clin Electrophysiol,2007, 30(3):444-447.
    [45]Wong J A, Bofinger M K. Noncompaction of the ventricular myocardium in Melnick-Needles syndrome[J]. Am J Med Genet,1997,71(1):72-75.
    [46]Finsterer J, Stollberger C. Spontaneous left ventricular hypertrabeculation in dystrophin duplication based Becker's muscular dystrophy[J]. Herz,2001, 26(7):477-481.
    [47]Hofer M, Stollberger C, Finsterer J. Acquired noncompaction associated with myopathy[J]. Int J Cardiol,2007,121(3):296-297.
    [48]Kherbaoui-Redouani L, Eschard C, Bednarek N, et al. [Cutaneous aplasia, non compaction of the left ventricle and severe cardiac arrhythmia:a new case of MLS syndrome (microphtalmia with linear skin defects)][J]. Arch Pediatr,2003,10(3):224-226.
    [49]Battaglia A, Hoyme H E, Dallapiccola B, et al. Further delineation of deletion 1p36 syndrome in 60 patients:a recognizable phenotype and common cause of developmental delay and mental retardation[J]. Pediatrics,2008,121(2):404-410.
    [50]Thienpont B, Mertens L, Buyse G, et al. Left-ventricular non-compaction in a patient with monosomy 1p36[J]. Eur J Med Genet,2007,50(3):233-236.
    [51]Yamaguchi S, Brailey L L, Morizono H, et al. Mutations and polymorphisms in the human ornithine transcarbamylase (OTC) gene[J]. Hum Mutat,2006, 27(7):626-632.
    [52]Kanemoto N, Horigome H, Nakayama J, et al. Interstitial 1q43-q43 deletion with left ventricular noncompaction myocardium[J]. Eur J Med Genet, 2006,49(3):247-253.
    [53]Pauli R M, Scheib-Wixted S, Cripe L, et al. Ventricular noncompaction and distal chromosome 5q deletion[J]. Am J Med Genet,1999,85(4):419-423.
    [54]Madan S, Madan-Khetarpal S, Park S C, et al. Left ventricular non-compaction on MRI in a patient with 22q11.2 distal deletion[J]. Am J Med Genet A,2010,152A(5):1295-1299.
    [55]Sasse-Klaassen S, Probst S, Gerull B, et al. Novel gene locus for autosomal dominant left ventricular noncompaction maps to chromosome 11p15[J]. Circulation,2004,109(22):2720-2723.
    [56]Seres L, Lopez J, Larrousse E, et al. Isolated noncompaction left ventricular myocardium and polymorphic ventricular tachycardia[J]. Clin Cardiol, 2003,26(1):46-48.
    [57]Finsterer J, Stollberger C, Bonner E. Acquired noncompaction associated with coronary heart disease and myopathy[J]. Heart Lung,2010,39(3):240-241.
    [58]Finsterer J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction[J]. Pediatr Cardiol,2009,30(5):659-681.
    [59]Eurlings L W, Pinto Y M, Dennert R M, et al. Reversible isolated left ventricular non-compaction?[J]. Int J Cardiol,2009,136(2):e35-e36.
    [60]Jenni R, Wyss C A, Oechslin E N, et al. Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction [J]. J Am Coll Cardiol, 2002,39(3):450-454.
    [61]Shou, W., et al., Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature,1998.391(6666):p.489-92.
    [62]Acehan, D., et al., Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem,2011.286(2):p.899-908.
    [63]Tang, S., et al., Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion,2010.10(4):p.350-7.