环境因素、Caspase凋亡通路相关基因多态性与结直肠癌风险的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     结直肠癌的发病率和死亡率在全球仍持续增加。据估计,2007年结直肠癌的新发病例数接近120万,死亡63万,分别比2000年增加了27%和28%。虽然我国属于结直肠癌的传统低发区,但近年来我国结直肠癌的发病率也呈明显上升趋势,根据中国国家癌症数据库资料表明,结直肠癌是中国1991~2005年期间发病率上升速度最快的第三大恶性肿瘤,仅次于肺癌、女性乳腺癌。
     对结直肠癌的病因学研究表明,结直肠癌的发生是一个多因素、多阶段的过程,是由环境因素和遗传因素综合作用的结果。环境因素对于结直肠癌的形成和进展起到了重要的作用,其至少可以解释约70%的散发性结直肠癌的发生,饮食和生活方式被认为与结直肠癌的发病尤为密切。然而接触同样的环境暴露,并不是每一个个体都会发病,由基因多态决定的个体肿瘤易感性的不同是导致结直肠癌发生的遗传基础。目前发现,许多肿瘤的发生并非单纯由细胞无限增殖所引起,细胞凋亡途径受阻或凋亡功能丧失已成为一些肿瘤发生的重要诱因,而由Caspase家族介导的凋亡是机体最主要的凋亡方式,可能成为影响结直肠癌易感性的潜在遗传因素。
     因此,本次研究以我国结直肠癌高发区浙江省嘉善县为研究现场,开展以自然人群为基础的病例对照研究,通过传统流行病学和分子流行病学的有机结合,全面分析影响结直肠癌发病风险的环境暴露因素和Caspase凋亡通路基因多态性,深入探讨基因与环境因素之间的潜在交互作用,为结直肠癌的病因学研究提供流行病学线索,并为结直肠癌的人群防治和干预措施的制定提供科学依据。
     材料和方法
     研究以浙江省嘉善县作为研究现场,采用以人群为基础的病例-对照研究设计。在2002-2008年间,根据嘉善县肿瘤登记所的监测资料收集结直肠癌存活病例498例,采用随机抽样的方法从健康人群中抽取无肿瘤患病史的嘉善县常住居民838例作为对照。现场调查阶段获取研究对象的调查问卷资料和血样;实验设计阶段以候选功能基因多态策略和Tag SNP策略综合筛选Caspase凋亡通路上的基因多态;实验检测阶段应用改良盐析法提取DNA,以PCR-RFLP法检测拟研究的基因多态;数据分析阶段,联合应用单因素Logistic回归分析、叉生分析、分层分析、多因子降维分析、分类回归树分析等多种方法及模型,评估环境暴露、Caspase凋亡通路上基因多态的主效应、基因—基因、基因—环境联合效应与结直肠癌发病风险的关联。
     结果
     病例组和对照组的人口学特征分布均衡,肿瘤家族史在两组间分布无统计学差异。未发现饮酒相关变量与结直肠癌发病存在统计学关联。吸烟但不吸入烟雾者相比吸烟且吸入烟雾人群,结直肠癌的发病风险降低(OR=0.41,95%CI:0.24-0.70),但是非吸烟人群与烟雾吸入的吸烟人群相比结直肠癌的风险效应值无统计学意义(OR=1.22,95%CI:0.86-1.72)。随着平均吸烟量的增加,结直肠癌的发病风险也相应增加。但是未发现累积吸烟量与结直肠癌发病风险存在统计学关联。饮茶对于结直肠癌的发病风险呈保护性效应,其效应值为0.49(95%CI:0.36-0.66)。饮茶量的增加与结直肠癌的发病风险呈剂量反应关系(P trend=0.05),年均饮茶量超过3kg的个体,其结直肠癌的发病风险可降低69%(OR=0.31,95%CI:0.18-0.54)。饮食也与结直肠癌的发生存在显著关联,红肉摄入量大于19.45kg/年的个体,相比参照组小于等于4.2kg/年的个体,结直肠癌的发病风险可降低36%(OR=0.64,95%CI:0.45-0.91)。白肉的摄入量与结直肠癌的发生呈反向关联,年摄入量大于2.4kg以上剂量组,均可显著降低结直肠癌的发生风险。红烧鱼的摄入则可增加结直肠癌的发病风险,年摄入量超过7.2kg的个体发生结直肠癌的风险是参照组的1.64倍(95%CI:1.17-2.30)。
     对Caspase凋亡通路相关基因多态与结直肠癌关联的主效应分析表明Caspase3 rs4647693 AA基因型对结直肠癌易感性具有保护效应,Caspase8 rs3769818和rs3834129两多态的单体型A-Ins可显著增加直肠癌的发病风险。以环境因素分层,发现在不饮酒人群中,Caspase8 rs3769818 GA携带者相比GG携带者结直肠癌的发病风险增加了32%(OR=1.32,95%CI:1.00-1.74);Caspase3rs4647693 AA携带者相比GG携带者结直肠癌的发病风险降低了58%(OR=0.42,95%CI:0.19-0.93);Caspase3 rs2696056 GC携带者较GG携带者则增加了42%(OR=1.42,95%CI:1.02-1.96)的发病风险。基因-基因的两因素交互分析结果表明Caspase8 rs3769818和Caspase3 rs4647693的多态基因型存在协同效应,但是交互效应值无统计学意义(OR=0.71,95%CI:0.44-1.15)。Caspase8 rs3769818 A等位基因和Caspase3 rs12108497 C等位基因者相比于同时携带Caspase8 rs3769818GG和Caspase3 rs12108497 C等位基因的个体,患结直肠癌的风险增加了45%(OR=1.45,95%CI:1.05-2.02),但是上述两多态的交互效应也无统计学意义(OR=0.67,95%CI:0.42-1.06)。
     应用MDR和CART两种软件探索结直肠癌发生的基因-基因、基因-环境高阶交互效应模型,结果表明环境因素对结直肠癌的发生居主导作用,Caspase凋亡通路上的低外显性基因多态对结直肠癌的发生贡献较小,它们可能以凋亡基因Caspase3-DNA修复基因PARP1-细胞周期调控基因p21的协同作用模式参与结直肠癌的发生发展。
     结论
     环境因素特别是饮食是嘉善县居民结直肠癌发生的主要影响因素,Caspase3 Tag SNP rs4647693通过隐性效应模式降低了个体对结直肠癌的遗传易感性。在基因-环境的交互作用中,仍以环境暴露对结直肠癌发病风险起主导作用。研究结果尚需大样本、多中心的流行病学研究予以验证。
Backgrouds and Objectives
     The incidence and mortality of colorectal cancer show increasing tendency worldwide. It was estimated that the new cases in 2007 would be approximate 1 200 000 and the death cases would be 630 000, a total increase of 27% and 28% respectively, compared with the figures in 2000. While the incidence tends to be low in China, however, during the past decades, there has been remarkable increase in the incidence of colorectal cancer. According to the Chinese National Cancer Database of 2003, colorectal cancer is one of the three cancers with most rapidly increasing incidence in the country between 1991 and 2003, and finally it ranks the third commonest malignant tumor, just behind lung cancer and female breast cancer.
     Most common human cancers, including colorectal cancer, have a multifactorial etiology involving complex interplay of genetic susceptibility and environmental exposures. It is widely accepted that environmental factors play key roles in the development and progression of colorectal cancer. The proportion of colorectal cancer attributed to environmental factors has been estimated to be above 70%. Diet and lifestyles are considered to be intimately associated with colorectal cancer risk. However, exposure to the same environmental factors, not everyone will develop colorectal cancer. Genetic polymorphisms have a key role in individual predisposition to colorectal cancer. It was found that progressive inhibition or evasion of apoptosis has been found during the transformation of colorectal epithelium to carcinoma, indicating that dysfunction of apoptosis has an important role in colorectal tumorigenesis. Apoptosis, which is mainly mediated by caspase family, play an important role in the maintenance of tissue homeostasis and inhibition of tumor formation in organisms. Apoptotic capacity is a subject of significant interindividual variations, which are largely attributed to hereditary traits. Genetic polymorphisms located within cell death genes may influence apoptosis activity. Low activity of apoptosis would favor cancer development because of the failure to eliminate cellular clones carrying DNA damage and propensity to inflammation.
     In order to explore the effect of environmental exposure, genetic polymorphisms in caspase mediated apoptosis pathway as well as the interactions between selected genes and environmental factors on colorectal cancer risk, a population-based case-control study was conducted in Jiashan County, Zhejiang Province, of which both field questionnaire survey and laboratory genotyping detection were adopted.
     Materials and Methods
     From May 1989 to April 1990, a prospective cohort study based on a colorectal cancer survey was initiated in Jiashan County, Zhejiang Province, China. Subsequently, a cancer surveillance and registry system covering the whole population in Jiashan County was established to report new patients with various cancers. Between 2002 and 2008,498 CRC cases had been recruited in this study, based on the surveillance and registry system. All of the CRC cases were confirmed by histological diagnosis. However, patients with other malignant disease in their medical history were excluded from this study. Simultaneously,838 controls without the history of cancer were selected randomly from the corresponding population. All participants were Han Chinese residents.
     During the field survey, a structured questionnaire, including demographic characteristics, personal habits (cigarette smoking, alcohol drinking, etc) and health factors (family history of cancer at any site including all first- and second-degree relatives of both genders, medical and dietary history, etc) and 5 ml venous blood sample were collected from each subject. A combinative strategy of functional genetic polymorphisms and tagging singlenucleotide polymorphisms was applied to the selection of susceptible biomarker in apoptosis mediated pathway. Tagging single-nucleotide polymorphisms were selected by searching Han Chinese data from the HapMap project using the Tagger program. The genomic DNA was extracted from peripheral blood samples using modified salting-out procedure. For determination of the selected genetic polymorphisms, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) assay was performed. Multiple statistical methods were used when estimating the major effect and the interactive effect of environmental factors and the genetic polymorphisms involved in caspase mediated apoptosis pathway, including Logistic regression, stratified analysis, crossover analysis, Multifactor Dimensionality Reduction (MDR) analysis and Classification And Regression Tree (CART) analysis.
     Results
     The demographic characteristics and family history of cancer did not differ significantly between cases and controls. There was no association between variables concerning drinking and colorectal cancer risk. Smokers without smoke inhalation had lower risk of suffering from colorectal cancer compared with smoke inhalation smokers (OR=0.41, 95%CI:0.24-0.70), while nonsmokers did not show significant difference in colorectal cancer risk when compared with smoke inhalation smokers (OR= 1.22,95%CI:0.86-1.72). An increased risk of colorectal cancer was indicated by the higher daily cigarette consumption of smoking. But the association between the accumulated cigarette consumption and colorectal cancer risk was not significant. Tea drinking could significantly decrease the colorectal cancer risk about 51%(OR=0.49,95%CI: 0.36-0.66). Significant dose-response relationships were found for the average amount of tea consumed by year (P trend=0.01). The reduction in risk was most evident among those who consume tea above 3kg a year (OR=0.31,95%CI:0.18-0.54). Diet showed strong association with colorectal cancer risk. Individuals who consumed red meat more than 19.45kg every year, has a significant 36% decreased risk of colorectal cancer (OR=0.64,95%CI:0.45-0.91), compared with individuals in the lowest category. Higher chicken consumption showed a protective effect on colorectal cancer risk. While source-boiled fish has a significantly positive association with colorectal cancer. The risk of suffering colorectal cancer of people who consumed source-boiled fish more than 7.2kg one year is 1.64 times higher than the reference group (95%CI:1.17-2.30). In this study, totally 12 genetic polymorphisms of 5 genes involved in caspase mediated apoptosis pathway were analyzed, of which eight were potential functional genetic polymorphisms and four are tagging single nucleotide polymorphisms. It was found that Caspase3 rs4647693 AA genotype had a protective effect on susceptibility to colorectal cancer (OR=0.50,95%CI:0.26-0.95). The carriers with haplotype A-Ins in Caspase8 rs3769818 and rs3834129 showed an increased risk of rectal cancer (OR=1.28,95%CI: 1.00-1.63). Among the non-drinkers, it was found that compared with Caspase8 rs3769818 GG genotype carriers, the GA genotype carriers had a 32% increased risk of colorectal cancer (OR=1.32,95%CI:1.00-1.74); the AA genotype of rs4647693 in the Caspase3 gene was associated with decreased risk compared with homozygotes of the major alleles (OR=0.42,95%CI:0.19-0.93); the rs2696056 GC genotype in Caspase3 gene was significantly associated with increased cancer risk compared with the GG genotype (OR=1.42,95%CI:1.02-1.96). Crossover analysis suggested that Caspase8 rs3769818 had combined effects with Caspase3 rs4647693 GG risk genotype. Combinative effect was also observed between Caspase8 rs3769818 and Caspase3 rs12108497. However, neither of the interactions between the SNPs had statistical significance.
     High order interaction models were explored by MDR and CART methods. Both of the two data-mining methods indicated that environmental factors played an important role in the colorectal cancer risk. The selected genetic polymorphisms may further modify the colorectal cancer risk but not as a main effect.
     Conclusions
     Our findings verified the important influence of environmental factors on CRC risk. Caspase3 rs4647693 has an independent effect on colorectal cancer risk with recessive model. Further studies with large sample size are warranted to validate our findings.
引文
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA:a cancer journal for clinicians 2005;55(2):74-108.
    2. Yang L, Parkin DM, Ferlay J, Li L, Chen Y. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 2005;14(1):243-250.
    3. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA:a cancer journal for clinicians 2009;59(6):366-378.
    4. Parkin DM. International variation. Oncogene 2004;23(38):6329-6340.
    5. Benson AB,3rd. Epidemiology, disease progression, and economic burden of colorectal cancer. J Manag Care Pharm 2007; 13(6 Suppl C):S5-18.
    6. Ahmed FE. Gene-gene, gene-environment& multiple interactions in colorectal cancer. Journal of environmental science and health 2006;24(1):1-101.
    7. Vermeulen K, Van Bockstaele DR, Berneman ZN. Apoptosis:mechanisms and relevance in cancer. Annals of hematology 2005;84(10):627-639.
    8. Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene 2003; 22 (53):8543-8567.
    9. Imyanitov EN. Gene polymorphisms, apoptotic capacity and cancer risk. Human genetics 2009;125(3):239-246.
    10. Zhang Z, Qiu L, Wang M, Tong N, Li J, Zhang Z. The FAS ligand promoter polymorphism, rs763110 (-844C>T), contributes to cancer susceptibility:evidence from 19 case-control studies. Eur J Hum Genet 2009;17(10):1294-1303.
    11. Zhang Z, Xue H, Gong W et al. FAS promoter polymorphisms and cancer risk:a meta-analysis based on 34 case-control studies. Carcinogenesis 2009;30(3):487-493.
    12. Tang NP, Wu YM, Wang B, Ma J. Systematic review and meta-analysis of the association between P53 codon 72 polymorphism and colorectal cancer. Eur J Surg Oncol 2010.
    13. Cunningham D, Atkin W, Lenz HJ et al. Colorectal cancer. Lancet 2010;375(9719):1030-1047.
    14. Fan C, Jin M, Chen K, Zhang Y, Zhang S, Liu B. Case-only study of interactions between metabolic enzymes and smoking in colorectal cancer. BMC cancer 2007;7:115.
    15. Chen K, Yu WP, Ma XY, Yao KY, Zheng S, Jiang QT. Association of drinking water source and colorectal cancer incidence:a prospect cohort study. Ai zheng= Aizheng= Chinese journal of cancer 2004;23(5):550-554.
    16.陈坤,宋亮,金明娟等.叶酸代谢酶基因多态与结直肠癌易感性的关系.中华肿瘤杂志 2006;28(6):4.
    17.杜灵彬 余,汪祥辉,牟瀚舟.浙江省4个肿瘤登记地区2004年恶性肿瘤发病资料分析.中国肿瘤 2008;17:270-273.
    18. Yee YK, Tan VP, Chan P, Hung IF, Pang R, Wong BC. Epidemiology of colorectal cancer in Asia. Journal of gastroenterology and hepatology 2009;24(12):1810-1816.
    19. Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer:a quantitative overview of the epidemiological evidence. International journal of cancer 2009;125(1):171-180.
    20. Limsui D, Limburg PJ. Cigarette smoking and colorectal cancer risk:a burning issue. Gastroenterology 2008;135(2):704-705.
    21. Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality:systematic review and meta-analysis. International journal of cancer 2009; 124(10):2406-2415.
    22. Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels AB, Maisonneuve P. Smoking and colorectal cancer:a meta-analysis. Jama 2008;300(23):2765-2778.
    23. Tsoi KK, Pau CY, Wu WK, Chan FK, Griffiths S, Sung JJ. Cigarette smoking and the risk of colorectal cancer:a meta-analysis of prospective cohort studies. Clin Gastroenterol Hepatol 2009;7(6):682-688 e681-685.
    24. Wei YS, Lu JC, Wang L et al. Risk factors for sporadic colorectal cancer in southern Chinese. World J Gastroenterol 2009;15(20):2526-2530.
    25. Giovannucci E, Rimm EB, Stampfer MJ et al. A prospective study of cigarette smoking and risk of colorectal adenoma and colorectal cancer in U.S. men. Journal of the National Cancer Institute 1994;86(3):183-191.
    26. Baan R, Straif K, Grosse Y et al. Carcinogenicity of alcoholic beverages. The lancet oncology 2007;8(4):292-293.
    27. Mizoue T, Inoue M, Wakai K et al. Alcohol drinking and colorectal cancer in Japanese:a pooled analysis of results from five cohort studies. American journal of epidemiology 2008;167(12):1397-1406.
    28. Mizoue T, Tanaka K, Tsuji I et al. Alcohol drinking and colorectal cancer risk:an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Japanese journal of clinical oncology 2006;36(9):582-597.
    29. Moskal A, Norat T, Ferrari P, Riboli E. Alcohol intake and colorectal cancer risk:a dose-response meta-analysis of published cohort studies. International journal of cancer 2007;120(3):664-671.
    30. Gao CM, Takezaki T, Wu JZ et al. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males. World J Gastroenterol 2008;14(32):5078-5083.
    31. Ji BT, Dai Q, Gao YT et al. Cigarette and alcohol consumption and the risk of colorectal cancer in Shanghai, China. Eur J Cancer Prev 2002; 11(3):237-244.
    32. Boehm K, Borrelli F, Ernst E et al. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane database of systematic reviews (Online) 2009(3):CD005004.
    33. Yang G, Shu XO, Li H et al. Prospective cohort study of green tea consumption and colorectal cancer risk in women. Cancer Epidemiol Biomarkers Prev 2007;16(6):1219-1223.
    34. Sun CL, Yuan JM, Koh WP, Yu MC. Green tea, black tea and colorectal cancer risk:a meta-analysis of epidemiologic studies. Carcinogenesis 2006;27(7):1301-1309.
    35. Sun CL, Yuan JM, Koh WP, Lee HP, Yu MC. Green tea and black tea consumption in relation to colorectal cancer risk:the Singapore Chinese Health Study. Carcinogenesis 2007;28(10):2143-2148.
    36. Santarelli RL, Pierre F, Corpet DE. Processed meat and colorectal cancer:a review of epidemiologic and experimental evidence. Nutrition and cancer 2008;60(2):131-144.
    37. Alexander DD, Cushing CA, Lowe KA, Sceurman B, Roberts MA. Meta-analysis of animal fat or animal protein intake and colorectal cancer. The American journal of clinical nutrition 2009;89(5):1402-1409.
    38. Kimura Y, Kono S, Toyomura K et al. Meat, fish and fat intake in relation to subsite-specific risk of colorectal cancer:The Fukuoka Colorectal Cancer Study. Cancer science 2007;98(4):590-597.
    39. Marques-Vidal P, Ravasco P, Ermelinda Camilo M. Foodstuffs and colorectal cancer risk:a review. Clinical nutrition (Edinburgh, Scotland) 2006;25(1):14-36.
    40. English DR, MacInnis RJ, Hodge AM, Hopper JL, Haydon AM, Giles GG. Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2004;13(9):1509-1514.
    41. Williams CD, Satia JA, Adair LS et al. Dietary patterns, food groups, and rectal cancer risk in Whites and African-Americans. Cancer Epidemiol Biomarkers Prev 2009;18(5):1552-1561.
    42. Sugawara Y, Kuriyama S, Kakizaki M et al. Fish consumption and the risk of colorectal cancer:the Ohsaki Cohort Study. British journal of cancer 2009;101(5):849-854.
    43. Noe M, Schroy P, Demierre MF, Babayan R, Geller AC. Increased cancer risk for individuals with a family history of prostate cancer, colorectal cancer, and melanoma and their associated screening recommendations and practices. Cancer Causes Control 2008;19(1):1-12.
    44. Strate LL, Syngal S. Hereditary colorectal cancer syndromes. Cancer Causes Control 2005;16(3):201-213.
    45. Butterworth AS, Higgins JP, Pharoah P. Relative and absolute risk of colorectal cancer for individuals with a family history:a meta-analysis. Eur J Cancer 2006;42(2):216-227.
    46. Watson AJ. An overview of apoptosis and the prevention of colorectal cancer. Critical reviews in oncology/hematology 2006;57(2):107-121.
    47. Yang SY, Sales KM, Fuller B, Seifalian AM, Winslet MC. Apoptosis and colorectal cancer:implications for therapy. Trends in molecular medicine 2009;15(5):225-233.
    48. Grutter MG. Caspases:key players in programmed cell death. Current opinion in structural biology 2000;10(6):649-655.
    49. Kumar S. Caspase function in programmed cell death. Cell death and differentiation 2007;14(1):32-43.
    50. Fulda S. Caspase-8 in cancer biology and therapy. Cancer letters 2009;281(2):128-133.
    51. Sun T, Gao Y, Tan W et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 2007;39(5):605-613.
    52. Wang M, Zhang Z, Tian Y, Shao J, Zhang Z. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter associated with risk and progression of bladder cancer. Clin Cancer Res 2009;15(7):2567-2572.
    53. Cybulski C, Wokolorczyk D, Gliniewicz B et al. A six-nucleotide deletion in the CASP8 promoter is not associated with a susceptibility to breast and prostate cancers in the Polish population. Breast Cancer Res Treat 2008; 112(2):367-368.
    54. Haiman CA, Garcia RR, Kolonel LN, Henderson BE, Wu AH, Le Marchand L. A promoter polymorphism in the CASP8 gene is not associated with cancer risk. Nat Genet 2008;40(3):259-260; author reply 260-251.
    55. Son JW, Kang HK, Chae MH et al. Polymorphisms in the caspase-8 gene and the risk of lung cancer. Cancer Genet Cytogenet 2006;169(2):121-127.
    56. Chen K, Zhao H, Hu Z et al. CASP3 polymorphisms and risk of squamous cell carcinoma of the head and neck. Clin Cancer Res 2008;14(19):6343-6349.
    57. Hosgood HD,3rd, Baris D, Zhang Y et al. Caspase polymorphisms and genetic susceptibility to multiple myeloma. Hematological oncology 2008;26(3):148-151.
    58. Jang JS, Kim KM, Choi JE et al. Identification of polymorphisms in the Caspase-3 gene and their association with lung cancer risk. Molecular carcinogenesis 2008;47(5):383-390.
    59. Lan Q, Zheng T, Chanock S et al. Genetic variants in caspase genes and susceptibility to non-Hodgkin lymphoma. Carcinogenesis 2007;28(4):823-827.
    60. Xu HL, Xu WH, Cai Q et al. Polymorphisms and haplotypes in the caspase-3, caspase-7, and caspase-8 genes and risk for endometrial cancer:a population-based, case-control study in a Chinese population. Cancer Epidemiol Biomarkers Prev 2009;18(7):2114-2122.
    61. Stram DO. Tag SNP selection for association studies. Genet Epidemiol 2004;27(4):365-374.
    62. Xu Z, Kaplan NL, Taylor JA. Tag SNP selection for candidate gene association studies using HapMap and gene resequencing data. Eur J Hum Genet 2007; 15(10):1063-1070.
    63. The International HapMap Project. Nature 2003;426(6968):789-796.
    64. Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P. Caspases in cell survival, proliferation and differentiation. Cell death and differentiation 2007;14(1):44-55.
    65. Nasiri H, Forouzandeh M, Rasaee MJ, Rahbarizadeh F. Modified salting-out method:high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. J Clin Lab Anal 2005;19(6):229-232.
    66. Choi JE, Park SH, Jeon HS et al. No association between haplotypes of three variants (codon 81,284, and 762) in poly(ADP-ribose) polymerase gene and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 2003;12(9):947-949.
    67. Li C, Liu Z, Wang LE et al. Genetic variants of the ADPRT, XRCC1 and APE1 genes and risk of cutaneous melanoma. Carcinogenesis 2006;27(9):1894-1901.
    68. Konishi R, Sakatani S, Kiyokane K, Suzuki K. Polymorphisms of p21 cyclin-dependent kinase inhibitor and malignant skin tumors. Journal of dermatological science 2000;24(3):177-183.
    69. Lewis RC, Bostick RM, Xie D et al. Polymorphism of the cyclin D1 gene, CCND1, and risk for incident sporadic colorectal adenomas. Cancer Res 2003;63(23):8549-8553.
    70. de la Chapelle A. Genetic predisposition to colorectal cancer. Nature reviews 2004;4(10):769-780.
    71. Ghavami S, Hashemi M, Ande SR et al. Apoptosis and cancer:mutations within caspase genes. Journal of medical genetics 2009;46(8):497-510.
    72. Wang ZB, Liu YQ, Cui YF. Pathways to caspase activation. Cell biology international 2005;29(7):489-496.
    73. Li C, Zhao H, Hu Z et al. Genetic variants and haplotypes of the caspase-8 and caspase-10 genes contribute to susceptibility to cutaneous melanoma. Hum Mutat 2008;29(12):1443-1451.
    74. Yang M, Sun T, Wang L et al. Functional variants in cell death pathway genes and risk of pancreatic cancer. Clin Cancer Res 2008; 14(10):3230-3236.
    75. Gangwar R, Mandhani A, Mittal RD. Caspase 9 and caspase 8 gene polymorphisms and susceptibility to bladder cancer in north Indian population. Ann Surg Oncol 2009;16(7):2028-2034.
    76. Pittman AM, Broderick P, Sullivan K et al. CASP8 variants D302H and-652 6N ins/del do not influence the risk of colorectal cancer in the United Kingdom population. Br J Cancer 2008;98(8):1434-1436.
    77. Frank B, Rigas SH, Bermejo JL et al. The CASP8-652 6N del promoter polymorphism and breast cancer risk:a multicenter study. Breast Cancer Res Treat 2008;111(1):139-144.
    78. Shephard ND, Abo R, Rigas SH et al. A breast cancer risk haplotype in the caspase-8 gene. Cancer Res 2009;69(7):2724-2728.
    79. Sergentanis TN, Economopoulos KP. Association of two CASP8 polymorphisms with breast cancer risk:a meta-analysis. Breast Cancer Res Treat 2010;120(1):229-234.
    80. Yin M, Yan J, Wei S, Wei Q. CASP8 polymorphisms contribute to cancer susceptibility:evidence from a meta-analysis of 23 publications with 55 individual studies. Carcinogenesis 2010.
    81. Miao R, Gu H, Liu H et al. Tagging single nucleotide polymorphisms in MBD4 are associated with risk of lung cancer in a Chinese population. Lung cancer (Amsterdam, Netherlands) 2008;62(3):281-286.
    82. Gayther SA, Song H, Ramus SJ et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer research 2007;67(7):3027-3035.
    83. Dunning AM, Healey CS, Baynes C et al. Association of ESR1 gene tagging SNPs with breast cancer risk. Human molecular genetics 2009;18(6):1131-1139.
    84. Quaye L, Song H, Ramus SJ et al. Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer. British journal of cancer 2009;100(6):993-1001.
    85. Chowdhury I, Tharakan B, Bhat GK. Caspases-an update. Comparative biochemistry and physiology 2008;151(1):10-27.
    86. Masutani M, Nakagama H, Sugimura T. Poly(ADP-ribosyl)ation in relation to cancer and autoimmune disease. Cell Mol Life Sci 2005;62(7-8):769-783.
    87. Miwa M, Masutani M. PolyADP-ribosylation and cancer. Cancer science 2007;98(10):1528-1535.
    88. Wang XG, Wang ZQ, Tong WM, Shen Y. PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochemical and biophysical research communications 2007;354(1):122-126.
    89. Cao WH, Wang X, Frappart L et al. Analysis of genetic variants of the poly(ADP-ribose) polymerase-1 gene in breast cancer in French patients. Mutation research 2007;632(1-2):20-28.
    90. Durocher F, Labrie Y, Ouellette G, Simard J. Genetic sequence variations and ADPRT haplotype analysis in French Canadian families with high risk of breast cancer. Journal of human genetics 2007;52(12):963-977.
    91. Figueroa JD, Malats N, Real FX et al. Genetic variation in the base excision repair pathway and bladder cancer risk. Human genetics 2007;121(2):233-242.
    92. Hao B, Wang H, Zhou K et al. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer research 2004;64(12):4378-4384.
    93. Jiang J, Zhang X, Yang H, Wang W. Polymorphisms of DNA repair genes: ADPRT, XRCC1, and XPD and cancer risk in genetic epidemiology. Methods in molecular biology (Clifton, NJ 2009;471:305-333.
    94. Li C, Hu Z, Lu J et al. Genetic polymorphisms in DNA base-excision repair genes ADPRT, XRCC1, and APE1 and the risk of squamous cell carcinoma of the head and neck. Cancer 2007;110(4):867-875.
    95. Miao X, Zhang X, Zhang L et al. Adenosine diphosphate ribosyl transferase and x-ray repair cross-complementing 1 polymorphisms in gastric cardia cancer. Gastroenterology 2006;131(2):420-427.
    96. Zhai X, Liu J, Hu Z et al. Polymorphisms of ADPRT Val762Ala and XRCC1 Arg399Glu and risk of breast cancer in Chinese women:a case control analysis. Oncology reports 2006; 15(1):247-252.
    97. Zhang X, Miao X, Liang G et al. Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer research 2005;65(3):722-726.
    98. Zhang Y, Newcomb PA, Egan KM et al. Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2006;15(2):353-358.
    99. Stern MC, Conti DV, Siegmund KD et al. DNA repair single-nucleotide polymorphisms in colorectal cancer and their role as modifiers of the effect of cigarette smoking and alcohol in the Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev 2007;16(11):2363-2372.
    100. Berndt SI, Huang WY, Fallin MD et al. Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer research 2007;67(3):1395-1404.
    101. Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 2002;1(8):639-649.
    102. Pietsch EC, Humbey O, Murphy ME. Polymorphisms in the p53 pathway. Oncogene 2006;25(11):1602-1611.
    103. Ma H, Jin G, Hu Z et al. Variant genotypes of CDKN1A and CDKN1B are associated with an increased risk of breast cancer in Chinese women. Int J Cancer 2006;119(9):2173-2178.
    104. Li G, Liu Z, Sturgis EM et al. Genetic polymorphisms of p21 are associated with risk of squamous cell carcinoma of the head and neck. Carcinogenesis 2005;26(9):1596-1602.
    105. Kibel AS, Suarez BK, Belani J et al. CDKN1A and CDKN1B polymorphisms and risk of advanced prostate carcinoma. Cancer Res 2003;63(9):2033-2036.
    106. Wang W, Spitz MR, Yang H, Lu C, Stewart DJ, Wu X. Genetic variants in cell cycle control pathway confer susceptibility to lung cancer. Clin Cancer Res 2007;13(19):5974-5981.
    107. Choi YY, Kang HK, Choi JE et al. Comprehensive assessment of P21 polymorphisms and lung cancer risk. J Hum Genet 2008;53(1):87-95.
    108. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1:polymorphism, aberrant splicing and cancer risk. Oncogene 2006;25(11):1620-1628.
    109. Schernhammer ES, Tranah GJ, Giovannucci E et al. Cyclin D1 A870G polymorphism and the risk of colorectal cancer and adenoma. Br J Cancer 2006;94(6):928-934.
    110. Probst-Hensch NM, Sun CL, Van Den Berg D, Ceschi M, Koh WP, Yu MC. The effect of the cyclin D1 (CCND1) A870G polymorphism on colorectal cancer risk is modified by glutathione-S-transferase polymorphisms and isothiocyanate intake in the Singapore Chinese Health Study. Carcinogenesis 2006;27(12):2475-2482.
    111. Jiang J, Wang J, Suzuki S et al. Elevated risk of colorectal cancer associated with the AA genotype of the cyclin D1 A870G polymorphism in an Indian population. J Cancer Res Clin Oncol 2006;132(3):193-199.
    112. Le Marchand L, Seifried A, Lum-Jones A, Donlon T, Wilkens LR. Association of the cyclin D1 A870G polymorphism with advanced colorectal cancer. JAMA 2003;290(21):2843-2848.
    113. Tan XL, Nieters A, Kropp S, Hoffmeister M, Brenner H, Chang-Claude J. The association of cyclin Dl G870A and E-cadherin C-160A polymorphisms with the risk of colorectal cancer in a case control study and meta-analysis. Int J Cancer 2008;122(11):2573-2580.
    114. Pabalan N, Bapat B, Sung L, Jarjanazi H, Francisco-Pabalan O, Ozcelik H. Cyclin D1 Pro241Pro (CCND1-G870A) polymorphism is associated with increased cancer risk in human populations:a meta-analysis. Cancer Epidemiol Biomarkers Prev 2008; 17(10):2773-2781.
    115. Breiman L, Friedman, J. H., Olshen, R. A.& Stone, C. J. Classification and regression trees. Belmont, CA:Wadsworth International Group 1984.
    116. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics (Oxford, England) 2003;19(3):376-382.
    117. Thomas DC, Baurley JW, Brown EE et al. Approaches to complex pathways in molecular epidemiology:summary of a special conference of the American Association for Cancer Research. Cancer research 2008;68(24):10028-10030.
    118. Teh SK, Zheng W, Ho KY, Teh M, Yeoh KG, Huang Z. Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques. Journal of biomedical optics 2008;13(3):034013.
    119. Goel R, Misra A, Kondal D et al. Identification of insulin resistance in Asian Indian adolescents:classification and regression tree (CART) and logistic regression based classification rules. Clinical endocrinology 2009;70(5):717-724.
    120. Julien R, Levy JI, Adamkiewicz G et al. Pesticides in urban multiunit dwellings: hazard identification using classification and regression tree (CART) analysis. Journal of the Air& Waste Management Association (1995) 2008;58(10):1297-1302.
    121. Elkins DA, Yokomizo A, Thibodeau SN et al. Luteinizing hormone beta polymorphism and risk of familial and sporadic prostate cancer. The Prostate 2003;56(1):30-36.
    122. Gupta A, Valimaki VV, M JV et al. Variable number of tandem repeats polymorphism in parathyroid hormone-related protein as predictor of peak bone mass in young healthy Finnish males. European journal of endocrinology/European Federation of Endocrine Societies 2008;158(5):755-764.
    123. Ritchie MD, Hahn LW, Roodi N et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001;69(1):138-147.
    124. Cho YM, Ritchie MD, Moore JH et al. Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia 2004;47(3):549-554.
    125. Tsai CT, Hwang JJ, Ritchie MD et al. Renin-angiotensin system gene polymorphisms and coronary artery disease in a large angiographic cohort:detection of high order gene-gene interaction. Atherosclerosis 2007; 195(1):172-180.
    126. Garcia-Magarinos M, Lopez-de-Ullibarri I, Cao R, Salas A. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction. Annals of human genetics 2009;73(Pt 3):360-369.
    127. Liu Y, Scheurer ME, E1-Zein R et al. Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol Biomarkers Prev 2009;18(1):204-214.
    128. Chen M, Kamat AM, Huang M et al. High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk. Carcinogenesis 2007;28(10):2160-2165.
    129. Briollais L, Wang Y, Rajendram I et al. Methodological issues in detecting gene-gene interactions in breast cancer susceptibility:a population-based study in Ontario. BMC medicine 2007;5:22.
    1. Lichtenstein P, Holm NV, Verkasalo PK et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. The New England journal of medicine 2000;343(2):78-85.
    2. Aaltonen LA, Salovaara R, Kristo P et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. The New England journal of medicine 1998;338(21):1481-1487.
    3. Yee YK, Tan VP, Chan P, Hung IF, Pang R, Wong BC. Epidemiology of colorectal cancer in Asia. Journal of gastroenterology and hepatology 2009; 24 (12):1810-1816.
    4. de Jong MM, Nolte IM, te Meerman GJ et al. Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2002;11(11):1332-1352.
    5. Kruglyak L, Nickerson DA. Variation is the spice of life. Nature genetics 2001;27(3):234-236.
    6. Ahmed FE. Gene-gene, gene-environment& multiple interactions in colorectal cancer. Journal of environmental science and health 2006;24(1):1-101.
    7. Nebert DW. Role of genetics and drug metabolism in human cancer risk. Mutation research 1991;247(2):267-281.
    8. Landi MT, Bertazzi PA, Shields PG et al. Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans. Pharmacogenetics 1994;4(5):242-246.
    9. Chen K, Jiang QT, He HQ. Relationship between metabolic enzyme polymorphism and colorectal cancer. World J Gastroenterol 2005;11(3):331-335.
    10. Smith CA, Moss JE, Gough AC, Spurr NK, Wolf CR. Molecular genetic analysis of the cytochrome P450-debrisoquine hydroxylase locus and association with cancer susceptibility. Environmental health perspectives 1992;98:107-112.
    11. Watanabe J, Hayashi S, Kawajiri K. Different regulation and expression of the human CYP2E1 gene due to the Rsal polymorphism in the 5'-flanking region. Journal of biochemistry 1994;116(2):321-326.
    12. Le Marchand L, Donlon T, Seifried A, Wilkens LR. Red meat intake, CYP2E1 genetic polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2002;11(10 Pt 1):1019-1024.
    13. Kiss I, Sandor J, Pajkos G, Bogner B, Hegedus G, Ember I. Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1,2E1, and glutathione-S-transferase M1 enzymes. Anticancer research 2000;20(1B):519-522.
    14. Morita M, Le Marchand L, Kono S et al. Genetic polymorphisms of CYP2E1 and risk of colorectal cancer:the Fukuoka Colorectal Cancer Study. Cancer Epidemiol Biomarkers Prev 2009; 18(1):235-241.
    15. Windmill KF, Gaedigk A, Hall PM, Samaratunga H, Grant DM, McManus ME. Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Toxicol Sci 2000;54(1):19-29.
    16. Sorensen M, Autrup H, Olsen A, Tjonneland A, Overvad K, Raaschou-Nielsen O. Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer. Cancer letters 2008;266(2):186-193.
    17. Nothlings U, Yamamoto JF, Wilkens LR et al. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2009; 18(7):2098-2106.
    18. Epplein M, Wilkens LR, Tiirikainen M et al. Urinary isothiocyanates; glutathione S-transferase M1, T1, and P1 polymorphisms; and risk of colorectal cancer:the Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 2009;18(1):314-320.
    19. Little J, Sharp L, Masson LF et al. Colorectal cancer and genetic polymorphisms of CYP1A1, GSTM1 and GSTT1:a case-control study in the Grampian region of Scotland. International journal of cancer 2006; 119(9):2155-2164.
    20. Fan CH, Jin MJ, Zhang Y et al. [Association between genetic polymorphisms of metabolic enzymes and susceptibility of colorectal cancer]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine] 2006;40(1):13-17.
    21. Glatt H, Meinl W. Pharmacogenetics of soluble sulfotransferases (SULTs). Naunyn-Schmiedeberg's archives of pharmacology 2004;369(1):55-68.
    22. Fan C, Jin M, Chen K, Zhang Y, Zhang S, Liu B. Case-only study of interactions between metabolic enzymes and smoking in colorectal cancer. BMC cancer 2007;7:115.
    23. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey AB, Harper PA. Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2008;17(11):3098-3107.
    24. Chen K, Fan CH, Jin MJ et al. [A case-control study on the association between the genetic polymorphism of sulfotransferase 1A1, diet and susceptibility of colorectal cancer]. Zhonghua zhong liu za zhi [Chinese journal of oncology] 2006;28(9):670-673.
    25. Friedberg EC. DNA damage and repair. Nature 2003;421 (6921):436-440.
    26. Gillet LC, Scharer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chemical reviews 2006;106(2):253-276.
    27. Wang F, Chang D, Hu FL et al. DNA repair gene XPD polymorphisms and cancer risk:a meta-analysis based on 56 case-control studies. Cancer Epidemiol Biomarkers Prev 2008;17(3):507-517.
    28. Joshi AD, Corral R, Siegmund KD et al. Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways and colorectal cancer risk. Carcinogenesis 2009;30(3):472-479.
    29. Francisco G, Menezes PR, Eluf-Neto J, Chammas R. XPC polymorphisms play a role in tissue-specific carcinogenesis:a meta-analysis. Eur J Hum Genet 2008;16(6):724-734.
    30. Qiu L, Wang Z, Shi X, Wang Z. Associations between XPC polymorphisms and risk of cancers:A meta-analysis. Eur J Cancer 2008;44(15):2241-2253.
    31. Hansen RD, Sorensen M, Tjonneland A et al. XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer. Mutation research 2007;619(1-2):68-80.
    32. Wang B, Wang D, Huang G, Zhang C, Xu DH, Zhou W. XRCC1 polymorphisms and risk of colorectal cancer:a meta-analysis. International journal of colorectal disease 2010;25(3):313-321.
    33. Stern MC, Siegmund KD, Conti DV, Corral R, Haile RW XRCC1, XRCC3, and XPD polymorphisms as modifiers of the effect of smoking and alcohol on colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 2006;15(12):2384-2390.
    34. Weiss JM, Goode EL, Ladiges WC, Ulrich CM. Polymorphic variation in hOGG1 and risk of cancer:a review of the functional and epidemiologic literature. Molecular carcinogenesis 2005;42(3):127-141.
    35. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411(6835):366-374.
    36. Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ. Mismatch repair polymorphisms and the risk of colorectal cancer. International journal of cancer 2007; 120(7):1548-1554.
    37. Yu JH, Bigler J, Whitton J, Potter JD, Ulrich CM. Mismatch repair polymorphisms and colorectal polyps:hMLH1-93G>A variant modifies risk associated with smoking. The American journal of gastroenterology 2006;101(6):1313-1319.
    38. Maddocks OD, Short AJ, Donnenberg MS, Bader S, Harrison DJ. Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PloS one 2009;4(5):e5517.
    39. Tranah GJ, Bugni J, Giovannucci E et al. O6-methylguanine-DNA methyltransferase Leu84Phe and Ile143Val polymorphisms and risk of colorectal cancer in the Nurses' Health Study and Physicians' Health Study (United States). Cancer Causes Control 2006; 17(5):721-731.
    40. Moreno V, Gemignani F, Landi S et al. Polymorphisms in genes of nucleotide and base excision repair:risk and prognosis of colorectal cancer. Clin Cancer Res 2006;12(7 Pt 1):2101-2108.
    41. Goodman JE, Mechanic LE, Luke BT, Ambs S, Chanock S, Harris CC. Exploring SNP-SNP interactions and colon cancer risk using polymorphism interaction analysis. International journal of cancer 2006;118(7):1790-1797.
    42. Mort R, Mo L, McEwan C, Melton DW. Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer. British journal of cancer 2003;89(2):333-337.
    43. Stern MC, Conti DV, Siegmund KD et al. DNA repair single-nucleotide polymorphisms in colorectal cancer and their role as modifiers of the effect of cigarette smoking and alcohol in the Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev 2007;16(11):2363-2372.
    44. Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms:cancer implications. Nature reviews 2009;9(2):95-107.
    45. Koushik A, Tranah GJ, Ma J et al. p53 Arg72Pro polymorphism and risk of colorectal adenoma and cancer. International journal of cancer 2006;119(8):1863-1868.
    46. Tang NP, Wu YM, Wang B, Ma J. Systematic review and meta-analysis of the association between P53 codon 72 polymorphism and colorectal cancer. Eur J Surg Oncol 2010.
    47. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1:polymorphism, aberrant splicing and cancer risk. Oncogene 2006;25(11):1620-1628.
    48. Pabalan N, Bapat B, Sung L, Jarjanazi H, Francisco-Pabalan O, Ozcelik H. Cyclin D1 Pro241Pro (CCND1-G870A) polymorphism is associated with increased cancer risk in human populations:a meta-analysis. Cancer Epidemiol Biomarkers Prev 2008;17(10):2773-2781.
    49. Tan XL, Nieters A, Kropp S, Hoffmeister M, Brenner H, Chang-Claude J. The association of cyclin D1 G870A and E-cadherin C-160A polymorphisms with the risk of colorectal cancer in a case control study and meta-analysis. International journal of cancer 2008;122(11):2573-2580.
    50. Sun T, Gao Y, Tan W et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 2007;39(5):605-613.
    51. Pittman AM, Broderick P, Sullivan K et al. CASP8 variants D302H and-652 6N ins/del do not influence the risk of colorectal cancer in the United Kingdom population. Br J Cancer 2008;98(8):1434-1436.
    52. Hazra A, Chanock S, Giovannucci E et al. Large-scale evaluation of genetic variants in candidate genes for colorectal cancer risk in the Nurses' Health Study and the Health Professionals' Follow-up Study. Cancer Epidemiol Biomarkers Prev 2008; 17(2):311-319.
    53. de la Chapelle A. Genetic predisposition to colorectal cancer. Nature reviews 2004;4(10):769-780.
    54. Zhang Y, Liu B, Jin M et al. Genetic polymorphisms of transforming growth factor-betal and its receptors and colorectal cancer susceptibility:a population-based case-control study in China. Cancer letters 2009;275(1):102-108.
    55. Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 2009;10(6):353-358.
    56. Carvajal-Carmona LG, Churchman M, Bonilla C et al. Comprehensive assessment of variation at the transforming growth factor {beta} type 1 receptor locus and colorectal cancer predisposition. Proceedings of the National Academy of Sciences of the United States of America 2010.
    57. Landi S, Moreno V, Gioia-Patricola L et al. Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer research 2003;63(13):3560-3566.
    58. Theodoropoulos G, Papaconstantinou I, Felekouras E et al. Relation between common polymorphisms in genes related to inflammatory response and colorectal cancer. World J Gastroenterol 2006;12(31):5037-5043.
    59. Garrity-Park MM, Loftus EV, Jr., Bryant SC, Sandborn WJ, Smyrk TC. Tumor necrosis factor-alpha polymorphisms in ulcerative colitis-associated colorectal cancer. The American journal of gastroenterology 2008;103(2):407-415.
    60.沈洪兵靳.基因组时代的肿瘤遗传易感性研究现状与挑战.中国肿瘤外科杂志2009;1(1).
    61. Frazer KA, Ballinger DG, Cox DR et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449(7164):851-861.
    62. Amundadottir LT, Sulem P, Gudmundsson J et al. A common variant associated with prostate cancer in European and African populations. Nature genetics 2006;38(6):652-658.
    63. Yeager M, Xiao N, Hayes RB et al. Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. Human genetics 2008;124(2):161-170.
    64. Zanke BW, Greenwood CM, Rangrej J et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nature genetics 2007;39(8):989-994.
    65. Poynter JN, Figueiredo JC, Conti DV et al. Variants on 9p24 and 8q24 are associated with risk of colorectal cancer:results from the Colon Cancer Family Registry. Cancer research 2007;67(23):11128-11132.