海藻中溴酚化合物的化学合成、结构修饰及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病是一种代谢类综合症,主要特点是胰岛素抵抗、高血糖和高胰岛素血症。实验研究表明,蛋白酪氨酸磷酸酶1B(PTP1B)作为胰岛素转导信号的负调控因子,已经成为治疗2型糖尿病和肥胖症的新靶点。
     松节藻纲(Rhodomelaceae)海藻富含溴酚类物质,广泛分布于中国、日本、朝鲜半岛及大西洋北岸。在对采自我国青岛沿海的松节藻Rhodomela confervoides的研究中分离得到大量溴酚类化合物,其中四个表现出强烈的抑制蛋白酪氨酸磷酸酶1B(PTP1B)的活性,尤以化合物3-溴-4-[(2′,3′-二溴-4′,5′-二羟基苯基)-甲基]-5-[(乙氧基)-甲基]-1,2-苯二酚(BPN)活性最为明显(IC50=0.84μmol/L)。为了研究BPN的体内降糖活性,本文采用了化学合成的方法来解决化合物的药源问题。
     1、对松节藻Rhodomela confervoides乙酸乙酯相萃取物进行了分离纯化,采用正相硅胶色谱、凝胶Sephadex LH-20色谱和重结晶等纯化手段,从50 kg松节藻干样品中分离得到9.9 g BPN,同时得到其它结构溴酚类化合物7个。但是,由于松节藻中各类次生代谢产物复杂多样,致使分离纯化过程耗费大量时间和精力。
     2、对化合物BPN进行了化学合成。以香兰素为原料,通过8步反应(主要包括溴代、Wolff-Kishner-Huang还原、Friedel–Crafts烷基化等反应)成功合成了目标化合物BPN,总产率为14.4%。通过对合成路线中各步反应条件的优化,建立了一条合成该类化合物较理想的路线。通过该路线,制备BPN 35 g,为体内降糖活性研究提供了充足的药源。
     3、以BPN为先导化合物,以其结构为基本骨架,设计合成了溴酚衍生物31个,其中新化合物26个。合成的化合物经过1HNMR、13CNMR、EIMS及HRESIMS进行了结构鉴定。
     4、对该类化合物的构效关系进行了初步分析:
     a.如图所示的溴代二苯甲烷(酮)结构单元是该类化合物显示PTP1B酶抑制活性的基本结构单元,对该结构的破坏将使化合物的活性消失。
     b.支链R3的类型和长度对化合物的活性起着非常重要的作用。
     c.化合物的活性随着苯环上溴原子取代的增加而增加。
     5、对合成的目标BPN进行了动物体内急性毒性试验,受试动物未见急性毒性反应。利用STZ-DM大鼠模型,对化合物BPN进行了体内降糖活性筛选,发现化合物BPN体内降糖活性明显。
Type 2 diabetes, is a complex metabolic disease characterized by insulin resistance, hyperglycemia and hyperinsulinemia. Evidence from biochemistry and genetic studies supported that PTP1B, a key negative regulator of insulin signal transduction, was a major target for a novel therapeutic strategy for the treatment of diabetes and obesity.
     The family Rhodomelaceae, distributed widely in China, Japan, and Korean Peninsula, are known to contain bromophenols. Four bromophenols isolated from Rhodomela confervoides collected at the coast of Qingdao, China, showed potent Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity, especially the compound named 3,4-dibromo-5-(2-bromo-6-(ethoxymethyl)- 3,4-dihydroxybenzyl)benzene -1,2–diol (BPN)(IC50=0.84μmol/L). In order to further study its hypoglycemic activity in vivo, the compound BPN was synthesized.
     1. 9.9 g BPN and 7 bromophenols were isolated from EtOAc-soluble portion of 50kg red alga R. confervoides by chromatography including normal phase silica gel, Sephadex LH-20 gel and recrystallization. However, it is hard to isolate BPN from R. confervoides, because constituent of R. confervoides makes separation and purification process of BPN taking a lot of money and time.
     2. The targeting compound BPN was synthesized in 8 steps with an overall yield of 14.4%, employing bromination, Wolff-Kishner-Huang reduction and Friedel-Crafts reaction as key steps. A practical approach was established after the optimization of each reaction. 35 g BPN was synthesized via this synthetic route. 3. 31 compounds (including 26 new compounds) were synthesized and the structures of these compounds were elucidated by spectroscopic methods including 1HNMR, 13CNMR, EIMS and HRESIMS.
     4. Based on the inhibition of these compounds, the preliminary structure-activity relationships of the screened compounds were revealed as followed:
     (a). Bromo-diphenyl methane (one) structural unit is necessary for the compounds to behave the PTP1B inhibitory activity. Once the structure is destroyed, the inhibitory activity will disappear.
     (b). The length of R3 plays an important role in structure-activity relationship of the screened compounds.
     (c). The increasing of bromine number on benzyl ring could upgrade potency of PTP1B inhibitory activity.
     5. The acute toxicity test in mice was carried out, and the compound showed no obvious acute toxicity. The oral antihyperglycemic effects of BPN were investigated on streptozotocin-induced experimental diabetes in rats. Oral administration of BPN resulted in a reduction in blood glucose.
引文
[1] Bialy L., Waldmann H. Inhibitors of protein tyrosine phosphatases: nextgeneration drugs. Angew. Chem. Int.Ed., 2005, 44: 3814 - 3839.
    [2] Tonks N. K., Diltz D. C., Fischer E. H. Demonstration that the leukocyte common antigen (CD45) is a protein tyrosine phosphatase. Biochemistry, 1988, 27(24): 8695–8701.
    [3] Haj F. G., Verveer P. J., Squire A., et al. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science, 2002, 295: 1708-1711.
    [4] Burke T. R., Zhang Z. Y. Protein-tyrosine phosphatases: Structure, mechanism, and inhibitor discovery. Biopolymers (Peptide Science), 1998, 47: 225–241.
    [5] Taylor S. D. Inhibitors of protein tyrosine phosphatase 1B (PTP1B). Curr. Top. Med. Chem. ,2003, 3: 759–782.
    [6] Johnson T.O., Ermolieff J., Jirouesk M.R., et al. Probing acid replacements of thiophene PTP1B inhibitors. Nat. Rev.Drugdisc, 2002, 1: 696-709.
    [7] Ahmad F., Azevedo J. L., Goldstein B. J., et al. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin. Invest., 1997, 100: 449-458.
    [8] Ahmad F., Considine R.V., Goldstein B.J., et al. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism, 1997, 46(10): 1140-1145.
    [9] Egawa K., Maegawa H., Kashiwagi A., et al. Protein-tyrosine Phosphatase-1B Negatively Regulates Insulin Signaling in L6 Myocytes and Fao Hepatoma Cells. J. Biol. Chem,. 2001, 276(13): 10207-10211.
    [10] Ahmad F., Li P.M., Goldstein B.J., et al. Osmotic Loading of Neutralizing Antibodies Demonstrates a Role for Protein-tyrosine Phosphatase 1B in Negative Regulation of the Insulin Action Pathway. J. Biol. Chem., 1995, 270: 20503-20508.
    [11] Elchebly M., Payette P., Michaliszyn E., et al. Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene. Science, 1999, 283(5407): 1544-1548.
    [12] Klaman L. D., Boss O., Peroni O. D., et al. Increased Energy Expenditure, Decreased Adiposity, and Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phosphatase 1B-Deficient Mice. Mol.Cell. Biochem., 2000, 20(15): 5479-5489.
    [13] Wang X. Y., Bergdahl K., Heijbel A., et al. Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors. Mol. Cell. Endo., 2001, 173(1~2): 109-119.
    [14] Goldstein B., Ahmad F., Ding W., et al. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol.Cell. Biochem., 1998, 182(1~2): 91-99.
    [15] Cheng A., Dube N., Gu F., et al. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur. J. Biochem., 2002, 269: 1050–1059.
    [16] Penninger J. M., Irie-Sasaki J., Sasaki T., et al. CD45: New jobs for an old acquaintance. J. Nat. Immunol., 2001, 2: 389–396.
    [17] Qu C. K. Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim. Biophys. Acta., 2002, 1592: 297–301.
    [18] Hoffman B. T., Nelson M. R., Burdick K., et al. Protein tyrosine phosphatases: Strategies for distinguishing proteins in a family containing multiple drug targets and anti-targets. Curr. Pharm. Des., 2004, 10: 1161–1181.
    [19] Arabaci G., Guo X. C., Beebe K. D., et al.α-Haloacetophenone derivatives as photoreversible covalent inhibitors of protein tyrosine phosphatases. J. Am. Chem. Soc., 1999, 121: 5085–5086.
    [20] Arabaci G., Yi T., Fu H., et al.α-Bromoacetophenone derivatives as neutral protein tyrosine phosphatase inhibitors: Structure-activity relationship. Bioorg. Med. Chem. Lett., 2002, 12: 3047–3050.
    [21] Fu H., Park J., Pei D. Peptidyl aldehydes as reversible covalent inhibitors of protein tyrosine phosphatases. Biochemistry, 2002, 41: 10700–10709.
    [22] Veber D. F., Thompson S. K. The therapeutic potential of advances in cysteine protease inhibitor design. Curr. Opin. Drug Discovery Dev., 2000, 3: 362–369.
    [23] Moran E. J., Sarshr S., Cargill J. F., et al. Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B. J. Am. Chem. Soc., 1995, 117: 10787–10788.
    [24] Park J., Pei D. Trans-β-nitrostyrene derivatives as slow-binding inhibitors of proteintyrosine phosphatases. Biochemistry, 2004, 43: 15014–15021.
    [25] Moretto A. F., Kirincich S. J., Xu W. X., et al. Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. 2006, 14(7): 2162-2177.
    [26] Wan Z.-K., Lee J., Xu W., et al. Monocyclic thiophenes as protein tyrosine phosphatase1B inhibitor: Capturing interactions with Asp48. Bioorg. Med. Chem. Lett., 2006, 16(18): 4941-4945.
    [27] Puius Y. A., Zhao Y., Sullivan M., et al. Identification of a second aryl phosphate-binding site in protein tyrosine phosphatase1B: A paradigm for inhibitor design. Proc Natl Acad Sci., 1997, 94(25): 13420-13425.
    [28] Iversen L. F., Andersen H. S., Moller K. B., et al. Steric hindrance as a basis for structure-based design of selective inhibitors of protein tyrosine phosphatases. Biochemistry, 2001, 40(49): 14812-14820.
    [29] Wilson D. P., Wan Z.-K., Xu W. X., et al. Structure-based optimization of protein tyrosine phosphatase1B inhibitors: From the active site to the second phosphotyrosine binding site. J. Med. Chem., 2007, 50(19): 4681-4698.
    [30] Black E., Breed J., Breeze A. L., et al. A.Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorg. Med. Chem. Lett., 2005, 15: 2503–2507.
    [31] Barnes D., Coppola G. M., Stams T., et al. (Novartis AG). 1-Orthofluorophenyl-substituted 1,2,5-thiadiazolidinone derivatives as PTPase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO 2007067612.
    [32] Barnes D., Bebernitz G. R., Coppola G. M., et al. (Novartis AG). 1,2,5-Thiadiazolidine derivatives useful for treating conditions mediated by protein tyrosine phosphatases (PTPase) and their preparation and pharmaceutical compositions. WO 2007067613.
    [33] Barnes D., Coppola G. M., Damon R. E., et al. (Novartis AG). 1,1,3-Trioxo-1,2,5-thiadiazolidines as PTPase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO 2007067614.
    [34] Barnes D., Bebernitz G. R., Coppola G. M., et al. (Novartis AG). Thiazolidinone compounds as protein tyrosine phosphatase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO 2007067615.
    [35] Combs A. P., Yue E. W., Bower M., et al. Structure-based design and discovery of proteintyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. J. Med. Chem., 2005, 48 (21): 6544-6548.
    [36] Combs A. P., Zhu W., Crawley M. L., et al. Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. J. Med. Chem., 2006, 49(13): 3774-3789.
    [37] Yue E. W., Wayland B., Douty B., et al. Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: Synthesis and structure-activity relationships of a peptide scaffold. Bioorg. Med. Chem. 2006, 14(17): 5833-5849.
    [38] Andersen H. S., Iversen L. F., Jeppesen C. B., et al. 2-(Oxalyl-amino)-benzoic acid is a general, competitive inhibitor of protein-tyrosine phosphatases. J. Biol. Chem., 2000, 275: 7101–7108.
    [39] Zhang Z. Y., Wang Y., Wu L., et al. The Cys(X)5Arg catalytic motif in phosphoester hydrolysis. Biochemistry, 1994, 33: 15266–15270.
    [40] Denu J.M., Dixon J. E. Protein tyrosine phosphatases: Mechanisms of catalysis and regulation. Curr. Opin. Chem. Biol., 1998, 2: 633–641.
    [41] Andersen H. S., Olsen O. H., Iversen L.F., et al. Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of protein-tyrosine phosphatase 1B. J. Med. Chem., 2002, 45: 4443–4459.
    [42]Shuker S. B., Hajduk P. J., Meadows R. P., et al. Discovering high-affinity ligands for proteins: SAR by NMR. Science, 1996, 274: 1531–1534.
    [43] Hajduk P. J., Sheppard G., Nettesheim D. G., et al. Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR. J. Am. Chem. Soc., 1997, 119: 5818–5827.
    [44] Liu G., Szczepankiewicz B. G., Pei Z., et al. Discovery and structure-activity relationship of oxalylarylaminobenzoic acids as inhibitors of protein tyrosine phosphatase 1B. J. Med. Chem., 2003, 46: 2093–2103.
    [45] Xin Z., Oost T. H., Abad-Zapatero C., et al. Potent, selective inhibitors of protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2003, 13: 1887–1890.
    [46] Liu G., Xin Z., Liang H., Abad-Zapatero C., et al. Selective protein tyrosine phosphatase 1B inhibitors: Targeting the second phosphotyrosine binding site with non-carboxylic acid-containing ligands. J. Med. Chem., 2003, 46: 3437–3440.
    [47] Pei Z., Li X., Liu G., et al. Discovery and SAR of novel, potent and selective protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2003, 13: 3129–3132.
    [48] Xin Z., Liu G., Abad-Zapatero C., et al. Identification of a monoacid-based, cell permeable, selective inhibitor of protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2003, 13: 3947–3950.
    [49] Bleasdale J. E., Ogg D., Palazuk B. J., et al. Small molecule peptidomimetics containing a novel phosphotyrosine bioisostere inhibit protein tyrosine phosphatase 1B (PTP1B) and augment insulin action. Biochemistry, 2001, 40: 5642–5654.
    [50] Larsen S. D., Barf T., Liljebris C., et al. Synthesis and biological activity of a novel class of small molecular weight peptidomimetic competitive inhibitors of protein tyrosine phosphatase 1B. J. Med. Chem., 2002, 45: 598–622.
    [51] Liljebris C., Larsen S. D., Ogg D., et al. Investigation of potential bioisosteric replacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase 1B: Identification of a tetrazole-containing inhibitor with cellular activity. J. Med. Chem., 2002, 45: 1785–1798.
    [52] Larsen S. D., Stevens F. C., Lindberg T. J., et al. Modification of the N-terminus of peptidomimetic protein tyrosine phosphatase 1B (PTP1B) inhibitors: Identification of analogues with cellular activity. Bioorg. Med. Chem. Lett., 2003, 13: 971–975.
    [53] Liu G., Xin Z., Pei Z., et al. Fragment screening and assembly: A highly efficient approach to a selective and cell active protein tyrosine phosphatase 1B inhibitor. J. Med. Chem., 2003, 46: 4232–4235.
    [54] Zhao H., Liu G., Xin Z., et al. Isoxazole carboxylic acids as protein tyrosine phosphatase 1B (PTP1B) inhibitors. Bioorg. Med. Chem. Lett., 2004, 14: 5543–5546.
    [55] Dufresne C., Roy P., Wang Z., et al. The development of potent non-peptidic PTP-1B inhibitors. Bioorg. Med. Chem. Lett., 2004, 14: 1039–1042.
    [56] Lau C. K., Bayly C. I., Gauthier J. Y., et al. Structure based design of a series of potent and selective non peptidic PTP-1B inhibitors. Bioorg. Med. Chem. Lett., 2004, 14: 1043–1048.
    [57] Na M. K., Won K. O., Young H. K., et al. Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum. Bioorg. med. chem. Lett., 2006, 16(11):3061–3064.
    [58] Na M. K., Cui L., Min B. S., et al. Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe koreana. Bioorg. med. chem. Lett., 2006, 16(12): 3273–3276.
    [59] Thuong P. T., Lee C. H., Dao T. T., et al. Triterpenoids from the Leaves of Diospyros kaki (Persimmon) and Their Inhibitory Effects on Protein Tyrosine Phosphatase 1B. J. Nat. Prod. 2008, 71: 1775–1778
    [60] Ma M., Wang S. J., et al. Triterpenes with protein tyrosine phosphotase 1B inhibitory activity from Macaranga adenantha. Chinese Traditional and Herbal Drugs, 2006, 37 (8): 1128-1131.
    [61] Han Y. M., Oh H., Na M. K., et al. PTP1B inhibitory effect of abietane diterpenes isolated from Salvia miltiorrhiza. Biol. Pharm. Bull., 2005, 28: 1795–1797.
    [62] Na M. K., Jang J. P., et al. Protein Tyrosine Phosphatase-1B Inhibitory Activity of Isoprenylated Flavonoids Isolated from Erythrina mildbraedii. J. Nat. Prod., 2006, 69: 1572-1576.
    [63] Cui L., Ndinteh D. T., Na M. K., et al. Isoprenylated Flavonoids from the Stem Bark of Erythrina abyssinica. J. Nat. Prod., 2007, 70: 1039-1042.
    [64] Long C., Phuong T. T., Hyun S. L., et al. Flavanones from the stem bark of Erythrina abyssinica. Bioorg. Med. Chem., 2008, 16(24): 10356–10362.
    [65] Shim Y. S., Kim K. C., Chi D. Y., et al. Formylchromone derivatives as a novel class of protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2003, 13: 2561–2563.
    [66] Shim Y. S., Kim K. C., Lee K. A., et al. Formylchromone derivatives as irreversible and selective inhibitors of human protein tyrosine phosphatase 1B. Kinetic and modeling studies. Bioorg. Med. Chem., 2005, 13: 1325–1332.
    [67] Liljebris C., Martinsson J., Tedenborg L., et al. Synthesis and biological activity of a novel class of pyridazine analogues as non-competitive reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B). Bioorg. Med. Chem., 2002, 10: 3197–3212.
    [68] Cheon H. G., Kim S. M., Yang S. D., et al. Discovery of a novel protein tyrosine phosphatase-1B inhibitor, KR61639: Potential development as an antihyperglycemic agent.Euro. J. Pharm., 2004, 485: 333–339.
    [69] Fan, X., Xu, N.-J., Shi, J.-G., et al. A new brominated phenylpropylaldehyde and its dimethyl acetal from red alga Rhodomela confervoids. Chin. Chem. Lett., 2003, 14(10): 1045-1047.
    [70] Fan, X., Xu, N.-J., Shi, J.-G., et al. Bromophenols from the red alga Rhodomela confervoids. J. Nat. Prod., 2003, 66(3): 455-458.
    [71] Fan, X., Xu, N.-J., et al A New poly Brominated Dibenzylphenol from Rhodomela confervoides. Chin. Chem. Lett., 2003, 14: 807-809.
    [72] Xu, N.-J., Fan, X., et al. Antibacterial bromophenols from the marine red alga Rhodomela confervoids. Phytochemistry, 2003, 62: 1221-1224.
    [73] Xu, X. L., Song, F. H., Wang S. J., et al. Dibenzyl bromophenols with diverse dimerization patterns from the brown alga Leathesia nana. J. Nat. Prod. 2004, 67(10): 1661-1666.
    [74] Xu, X. L., Fan, X., et al. Bromophenols from the brown alga Leathesia nana. Journal of Asian Natural Products Research, 2004, 6(3): 217-221.
    [75] Xu, X. L., Fan, X., et al. A-New Bromophenol from the Brown Alga Leathesia nana. Chin. Chem. Lett., 2004, 15(6): 661-663.
    [76] Zhao, J. L., Fan, X., Wang S. J., et al. Bromophenol derivatives from the red alga Rhodomela confervoides. J. Nat. Prod., 2004, 67: 1032-1035.
    [77] Liu, Q. W., Fan, X., Han, L. J., et al. Crystal structure of (5R, 10R)-2, 7-dibromo-3, 8-dihydroxy-5, 10-dimethoxy-5, 10-dihydrochromeno [5,4,3-ced] chromene sesquihydrate, C16H12Br2O6·15H2O. Zeitschrift fur Kristallographie-New Crystal Structures, 2005, 220(1): 25-26.
    [78]史大永,范晓,韩丽君.溴酚类化合物在制备治疗恶性肿瘤药物中的应用,中国专利200710014328.9.
    [79]史大永,韩丽君,范晓.溴酚化合物在制备治疗血栓性心脑血管疾病药物中的应用,中国专利200710014327.4.
    [80]史大永,范晓,韩丽君.海洋溴酚类化合物在制备治疗恶性肿瘤药物中的应用,中国专利200710015299.8.
    [81]史大永,韩丽君,范晓柳全文.两种溴酚类化合物在制备治疗恶性肿瘤药物中的应用,中国专利200710015296.4.
    [82]史大永,韩丽君,范晓.溴酚化合物在制备治疗T2DM和肥胖症药物中的应用,中国专利200710015297.9.
    [83]史大永,韩丽君,范晓等.海洋溴酚化合物在制备治疗血栓性心脑血管疾病药物中的应用,中国专利200710015298.3.
    [84]范晓,马成俊,韩丽君.溴酚类化合物在蛋白质酪氨酸磷酸酯酶抑制中的应用,中国专利200510046293.8
    [1] Fan X., Xu N. J. ,Shi J. G. Bromophenols from the Red Alga Rhodomela confervoides. Journal of Natural Products, 2003, 66(3): 455-458.
    [2] Shi D., Xu F., Li X., et al. Bromophenol derivatives from algae, novel inhibitors of PTP1B as potential agents for treatment of T2DM. Journal of Biotechnology, 2008, 136(Supplement 1): S590-S591.
    [3] Lundgren, L., Olsson, K. Theander, O., Synthesis of some bromophenols present in red algae. Acta Chem. Scand. B., 1979,33, pp. 105–108.
    [4] Ma M., Zhao J. L., Wang S., et al. Bromophenols Coupled with Nucleoside Bases and Brominated Tetrahydroisoquinolines from the Red Alga Rhodomela confervoides. Journal of Natural Products, 2007, 70(3): 337-341.
    [5] Ma M., Zhao J., Wang S., et al. Bromophenols Coupled with Methylγ-Ureidobutyrate and Bromophenol Sulfates from the Red Alga Rhodomela confervoides. Journal of Natural Products, 2006, 69(2): 206-210.
    [6] Xu N. J., Fan X., Yan X., et al. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry, 2003, 62(8): 1221-1224.
    [7] Zhao J., Fan X., Wang S., et al. Bromophenol Derivatives from the Red Alga Rhodomela confervoides. Journal of Natural Products, 2004, 67(6): 1032-1035.
    [8] Zhao J., Ma M., Wang S., et al. Bromophenols Coupled with Derivatives of Amino Acids and Nucleosides from the Red Alga Rhodomela confervoides. Journal of Natural Products, 2005, 68(5): 691-694.
    [1] Kang D. W., Ryu H., Lee J., et al. Halogenation of 4-hydroxy-3-methoxybenzyl thiourea TRPV1 agonists showed enhanced antagonism to capsaicin. Bioorganic & Medicinal Chemistry Letters, 2007, 17(1): 214-219.
    [2] Fürstner A., Stelzer F., Rumbo A., et al. Total Synthesis of the Turrianes and Evaluation of Their DNA-Cleaving Properties. Chemistry - A European Journal, 2002, 8(8): 1856-1871.
    [3] Chhattise P. K., Ramaswamy A. V. ,Waghmode S. B. Regioselective, photochemical bromination of aromatic compounds using N-bromosuccinimide. Tetrahedron Letters, 2008, 49(1): 189-194.
    [4] Wang Y.-C. ,Georghiou P. E. First Enantioselective Total Synthesis of (?)-Tejedine. Organic Letters, 2002, 4(16): 2675-2678.
    [5] Huleatt P. B., Choo S. S., Chua S., et al. Expedient routes to valuable bromo-5,6-dimethoxyindole building blocks. Tetrahedron Letters, 2008, 49(36): 5309-5311.
    [6] Kubo I., Ochi M., Shibata K., et al. Effect of a Marine Algal Constituent on the Growth of Lettuce and Rice Seedlings. Journal of Natural Products, 1990, 53(1): 50-56.
    [7] Ford P. W. ,Davidson B. S. Synthesis of varacin, a cytotoxic naturally occurring benzopentathiepin isolated from a marine ascidian. The Journal of Organic Chemistry, 1993, 58(17): 4522-4523.
    [8] Smyth T. P. ,Corby B. W. Industrially Viable Alternative to the Friedel?Crafts Acylation Reaction: Tamoxifen Case Study. Organic Process Research & Development, 1997, 1(4): 264-267.
    [9] Di Vona M. L. ,Rosnati V. Zinc-promoted reactions. 1. Mechanism of the Clemmensen reaction. Reduction of benzophenone in glacial acetic acid. The Journal of Organic Chemistry, 1991, 56(13): 4269-4273.
    [10] Kabalka G. W. ,Baker J. D. New mild conversion of ketones to the corresponding methylene derivatives. The Journal of Organic Chemistry, 1975, 40(12): 1834-1835.
    [11] Lown J. W., Sondhi S. M., Mandal S. B., et al. Synthesis and redox properties ofchromophore modified glycosides related to anthracyclines. The Journal of Organic Chemistry, 1982, 47(22): 4304-4310.
    [12] Nystrom R. F. ,Berger C. R. A. Reduction of Organic Compounds by Mixed Hydrides. II. Hydrogenolysis of Ketones and Alcohols1. Journal of the American Chemical Society, 1958, 80(11): 2896-2898.
    [13] Lau C. K., Dufresne C., Belanger P. C., et al. Reductive deoxygenation of aryl aldehydes and ketones and benzylic, allylic, and tertiary alcohols by zinc iodide-sodium cyanoborohydride. The Journal of Organic Chemistry, 1986, 51(15): 3038-3043.
    [14] West C. T., Donnelly S. J., Kooistra D. A., et al. Silane reductions in acidic media. II. Reductions of aryl aldehydes and ketones by trialkylsilanes in trifluoroacetic acid. Selective method for converting the carbonyl group to methylene. The Journal of Organic Chemistry, 1973, 38(15): 2675-2681.
    [15] Gribble G. W., Kelly W. J. ,Emery S. E. Reactions of Sodium Borohydride in Acidic Media; VII. Reduction of Diaryl Ketones in Trifluoroacetic Acid. Synthesis, 1978, 1978(10): 763-765.
    [16] Wittmer F. B. ,Raiford L. C. OXIDATION OF 3,4-DIMETHOXYCINNAMIC ACID AND SUBSTITUTION PRODUCTS WITH ALKALINE POTASSIUM PERMANGANATE SOLUTION. The Journal of Organic Chemistry, 1945, 10(6): 527-532.
    [17] Yang L., Williams D. E., Mui A., et al. Synthesis of Pelorol and Analogues: Activators of the Inositol 5-Phosphatase SHIP. Organic Letters, 2005, 7(6): 1073-1076.
    [18] Glombitza K. W., Sukopp I. ,Wiedenfeld H. Antibiotics from Algae XXXVII. Rhodomelol and Methylrhodomelol from Polysiphonia lanosa. Planta Med, 1985, 51(05): 437-440.
    [19] Fan X., Xu N. J. ,Shi J. G. Bromophenols from the Red Alga Rhodomela confervoides. Journal of Natural Products, 2003, 66(3): 455-458.
    [20]Fan X, Liu Q W, Han L J,et al. 3-bromo-4-(3-bromo-4,5-dihydroxyphenylmethyl) -5-(ethoxymethyl)-1,2-benzenediol, and its preparation method and applications. Faming Zhuanli Shenqing Gongkai Shuomingshu, 2006, 200410087506.7.
    [21] Takenaka Y., Tanahashi T., Nagakura N., et al. Phenyl Ethers from Cultured Lichen Mycobionts of Graphis scripta var. serpentina and G. rikuzensis. ChemInform, 2003, 34(49).
    [22] Utz C. G. ,Shechter H. Kinetics of decomposition of rigid diazo compounds: substituent effects on the rates of thermolysis of 10-diazoanthrones. The Journal of Organic Chemistry, 1985, 50(26): 5705-5709.
    [1]孙敬方.动物实验方法学.北京:人民卫生出版社.2001
    [2] Xia T, Wang Q. Antihyperglycemic effect of Cucurbita ficifolia fruit extract in streptozotocin-induced diabetic rats. Fitoterapia, 2006, 77(7-8): 530-533.
    [3] Sharma S. B., Nasir A., Prabhu K. M., et al. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J Ethnopharmacol, 2006, 104(3): 367-373.