低C/N生活污水脱氮技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低C/N生活污水的有机物含量偏低,不能满足常规工艺的脱氮、除磷的碳源要求,致使脱氮、除磷的效果不理想。因此提高低C/N生活污水的脱氮除磷效率成为目前研究的热点问题之一。本文主要是寻找一种针对低C/N生活污水有效的生物脱氮方法。
     本文采用活性污泥吸附低C/N生活污水中的有机物,然后利用澄清池使活性污泥及其吸附的有机物从污水中分离出来,经过碳源形态转化,再投入反硝化过程,为反硝化提供碳源,以达到脱氮的目的。
     首先,进行了原水中系统碳源利用途径的研究,发现厌氧活性污泥对COD的吸附率能达到70%以上;而对NH_4~+-N几乎没有吸附效率,最高仅达到5%。运用厌氧污泥对生活污水进行吸附,可以达到对污水进行碳氮分离的目的。然而,活性污泥吸附有机物后,进行脱附试验发现无论是在搅拌、加次氯酸钠溶液还是进行水解酸化的条件下,活性污泥所吸附的有机物都较难脱附下来。脱附的有机物占其所吸附有机物总量的比例较少,不超过25%。
     其次,考察了澄清池用于活性污泥吸附有机物后的碳氮分离情况,发现澄清池可以较好进行泥水分离,从而实现碳氮分离。通过碳氮分离可以吸附污水中大约50%的COD,而对NH_4~+-N几乎没有吸附,平均吸附率为仅4.0%。
     再次,对系统硝化性能的研究发现,运用活性污泥吸附进水中的有机物后,可以较大幅度地提高曝气生物滤池的硝化效果,使曝气生物滤池出水NH_4~+-N全部降到5mg/L以下。而由于厌氧活性污泥吸附有机物时携带了一部分NH_4~+-N,导致沉淀池出水NH_4~+-N浓度较高,然后在沉淀池后又加了一级曝气生物滤池,使出水NH_4~+-N降低到5mg/L以下。
     最后,研究了反硝化的影响因素及系统缺氧池反硝化效果,发现利用厌氧活性污泥吸附进水中的有机物作为反硝化的碳源,可以取得较好的反硝化效果,经过3h的反硝化反应,出水的NO_3~--N的浓度降低到1mg/L左右。
     本文成功运用厌氧活性污泥吸附进水中的有机物,然后利用这些吸附的有机物作为反硝化的碳源,解决了低C/N生活污水生物脱氮的碳源不足问题,取得了较好的脱碳效果,使出水NH_4~+-N和TN浓度达到GB18918-2002一级A的标准。
     这种方法既减少了进入硝化过程中的有机物,提高了硝化效率,又为反硝化提供碳源,解决了低C/N生活污水生物脱氮的碳源不足的问题,还大量减少了剩余污泥量,节约了污水处理的成本。
As low C/N domestic wastewater contains less organic contents, we can’t get ideal results if we use the traditional nitrogen and phosphorus removal technology to remove nutrient. So how to improve the effect of nitrogen and phosphorus removal of low C/N domestic wastewater has been one of the hottest issues currently. And this paper presented an effective method of biological nitrogen removal that works in low C/N domestic wastewater.
     We used activated sludge to adsorb the organic matters in the low C/N domestic wastewater, and then the clarification pool was used to separate the activated sludge and the adsorbents from wastewater. Thus the organic matters the activated sludge adsorbed which had been changed were input to denitrification process as carbon source in order to obtain the aim of denitrification.
     Firstly, we researched the utilization pathway of the system carbon source from raw water. We found that anaerobic activated sludge could absorb COD more than 70%, but nearly no NH_4~+-N (the highest percentage was only 5% ) could be absorbed. If we used the anaerobic activated sludge to absorb low C/N domestic wastewater, carbon and nitrogen in the raw water would be separated effectively. But the desorption was not very easy. It was very difficult to separate the absorbed organic matters from the activated sludge, no matter to stir or add sodium hypochlorite solution or hydrolyze acidification. At last, the ratio of desorption/absorption was less than 25%.
     Secondly, we investigated the clarification performance of carbon and nitrogen separation after the activated sludge adsorbing the organic matters. Results showed that the clarification pool could separate the activated sludge and the water to complete carbon and nitrogen separation. 50% of the COD could be adsorpted through carbon and nitrogen separation, while almost no NH_4~+-N could be adsorpted with average 4.0% removal of NH_4~+-N.
     Thirdly, the performance of BAF nitrification was greatly improved after using activated sludge absorbing the organic matters in the influent, the concentration of NH_4~+-N in the effluent decreased to less than 5 mg/L. When the anaerobic activated sludge adsorbing organics, it carried a part of NH_4~+-N, causing the NH_4~+-N of the sedimentation tank effluent to be higher. Then another BAF was added fter the sedimentation tank, then the final effluent NH_4~+-N reduced to 5mg/L and reached the first-grade A standard.
     Finally, the factors of denitrification and the effects of denitrification in anoxic bank were studied. Results showed that using the organic matters adsorbed by anaerobic activated sludge from low C/N domestic wastewater as denitrification carbon source could get a better effect of denitrification. The efflent NO3--N concentrations reduced to 1mg/L after 3h’s denitrification in the anoxic bank.
     In a conclusion, using the organic matter adsorpted by anaerobic activated sludge from low C/N domestic wastewater as denitrification carbon source could completely solve the problem that biological nitrogen removal didn’t have sufficient carbon source of low C/N sewage, and the final effluent NH_4~+-N and TN reached the GB 18918-2002 first-grade A standard.
     Using this method could supply carbon source for denitrification and reduce sludge production and save the cost of sewage treatment. Simultaneously, the organic matters of influent in nitrification process was reduced while the nitrification effect was improve.
引文
1国家环境保护总局.中国2008年环境状况公报. 2009
    2方茜,韦朝海.碳氮磷比例失调城市污水的同步脱氮除磷.环境污染治理技术与设备. 2005, (11): 46-50
    3郑兴灿,李亚新.污水除磷脱氮技术.中国建筑工业出版社, 1998: 69-69
    4张小平.固体废物污染控制工程.化学工业出版社, 2004: 156-188
    5 A Iwema, A. Meuier. Influence of Nitrate on Acetic Acid Induced Biological Phosphorus Removal. Water Science and Technology. 1985, 17(11): 289-294
    6许保玖,龙腾锐.当代给水与废水处理原理(第二版),高等教育出版社,2000: 535-536
    7 H. Mogens, H. Poul, L. J. Jes, et al. Wastewater Treatment Biological and Chemical Processes. Chinese Construction and Industrial Press, 2000: 111-113
    8曹国民,赵庆祥,张彤.单级生物脱氮技术的进展.中国给水排水. 2000, 16(2): 20-24
    9孙锦宜.含氮废水处理技术与应用.化学工业出版社, 2006: 170-171
    10吴剑,齐鄂荣,程晓如,等.废水生物脱氮技术的研究发展.武汉大学学报(工学版), 2002, 35(1): 76–79
    11王洪,李梅波.氨氮废水生物处理工艺及研究进展.河南师范大学学报(自然科学版). 2008, 9(5): 97-100
    12高艳玲,马达.污水生物处理新技术.中国建材工业出版社, 2005: 165-168
    13倪春雨,高富丽,杨云龙.工程中常用的几种氧化沟及其发展.科技情报开发与经济. 2007, 17(1): 153-154
    14唐受印,戴友芝,汪大翚.废水处理工程(第二版).化学工业出版社, 2004: 296-296
    15李志刚,易红星.生物脱氮技术研究进展.甘肃科技. 2008, (10): 97-99
    16王弘宇,马放,苏俊峰.好氧反硝化菌株的鉴定及其反硝化特性研究.环境科学. 2007, 28(7): 1547-1552
    17许晓毅,罗固源,吴淑媛. OGO工艺同步硝化—反硝化生物脱氮特性.水处理技术. 2007, 33(4): 18-20
    18张光亚,方柏山,闵航,等.好氧同时硝化—反硝化菌的分离鉴定及系统发育分析.应用与环境生物学报. 2005, 11(2): 226-228
    19王春荣,王宝贞.曝气生物滤池内的自养反硝化作用.中国环境科学. 2004,24(6): 746-749
    20 N. Puznava, M. Payraudeau, D. homberg. Simultaneous Nitrification-denitrification in Biofilters with Real time Aeration Control. Water Science and Technology. 2001, 43(1): 269-276
    21 M. C. M. van Loosdrecht, W. A. J. van Benthum, J. J. Herjnen, et al. Integration of Nitrification and Denitrification in Biofilm Airlift Suspension Reactors. Water Science and Technology. 2000, 41(4-5): 97-103
    22 C. Helmer, S. Kunst. Simultaneous Nitrification-denitrification in an Aerobic Biofilm System. Water Science and Technology. 1998, 37(4-5): 183-187
    23 J. H. Hunik. Engineering Aspects of Nitrification with Immobilized Cells. The Netherlands: Wageningen Agricultural University. 1993, (12): 163-165
    24雒怀庆,胡勇有.影响亚硝化过程和硝化过程因素的动力学模型分析.环境科学学报. 2006, 26(4): 561-566
    25 J. W. Mulder, M. C. M. van Loosdrecht, C. Hellnga, et al. Full-scale Application of the SHARON Process for the Treatment of Rejection Water of Digested Sludge Dewatering. Water Science and Technology. 2001, 43(11): 127-134
    26郑赞永,胡龙兴.低溶解氧下生物膜反应器的亚硝化研究.环境科学与技术. 2006, 29(9): 29-31
    27 Z. Melicz. Partial Nitrification in a High-load Activated Sludge System by Biofilter Backwash Water Recirculation. Water Science and Technology. 2003, 47(11): 93-99
    28 G. Ciudad, O. Rubilar, P. Munoz, et al. Partial Nitrification of High Ammonia Concentration Wastewater as a Part of a Shortcut Biological Nitrogen Removal Process. Process Biochemistry. 2005, 40(5): 1715-1719
    29 C. Fux, D. Huang, A. Monti, et al. Difficulties in Maintaining Long-term Partial Nitritation of Ammonium-rich Sludge Digester Liquids in a Moving-bed Biofilm Reactor(MBBR). Water Science and Technology. 2004, 49(11-12): 53-60
    30王少坡,彭永臻,李军,等. CAST工艺处理低C/N废水中DO对NO2-积累的影响.哈尔滨工业大学学报. 2005, 37(3): 344-347
    31郭海娟,马放,沈耀良. DO和pH值在短程硝化中的作用.环境污染治理技术与设备. 2006, 7(1): 37-40
    32 A. C. Anthonisen, R. C. Loehr, T. B. S. Prakasam, et al. Inhibition of Nitrification by Ammonia and Nitrous Acid. Water Pollution Control Federation. 1976, 48(5): 835-852
    33 J. E. Alleman, R. L. Irvine. Elevated Nitrite Occurrence in BiologicalWastewater Treatment Systems. Water Science and Technology. 1984, 17(2-3): 409-419
    34 D. J. Kim, J. S. Chang, D. I. Lee, et al. Nitrification of High Strength Ammonia Wastewater and Nitrite Accumulation Characteristics. Water Science and Technology. 2003, 47(11): 45-51
    35蔡军,黄荣富.曝气生物滤池硝化脱氮的研究.环境科学与技术. 2006, (12): 22-25
    36邱立平,马军.曝气生物滤池的短程硝化反硝化机理研究.中国给水排水. 2002, (11): 1-4
    37 C. Hellinga, A. J. Schellen, J. W. Mulder, et al. The SHARON Process: Aninnovative Method for Nitrogen Removal From an Ammonium Rich Wastewater . Water Science and Technology. 1998, 37(9): 135-142
    38 L. Kuai, W. Verstraete. Ammonium Removed by the Oxygen-limited Autotrophic Nitrification Denitrification System. Applied and Environmental Microbiology. 1998, 64(11): 4500-4506
    39 A. Mosquera-Corral, F. González, J. L. Campos, et al. Partial Nitrification in a SHARON Reactor in the Presence of Salts and Organic Carbon Compounds. Process Biochemistry. 2005, 40(9): 3109-3118
    40高大文,彭永臻,王淑莹.控制pH实现短程硝化反硝化生物脱氮技术.哈尔滨工业大学学报. 2005, 37(12): 1664-1666
    41 A. A. V. D. Graaf, P. D. Bruijn, L. A. Robertson, et al. Autotrophic Growth of Anaerobic Ammonium-oxidizing Micro-organisms in a Fluidized Bed Reactor. Microbiology. 1996, 142(8): 2187–2196
    42郝晓地, M. V. Loosdrecht.荷兰鹿特丹DOKHAVEN污水处理厂介绍.给水排水. 2003, 29(10): 19-25
    43杨洋,左剑恶,沈平,等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响.环境科学. 2006, 27(4): 691-695
    44 M. S. M. Jetten, M. Strous, J. Schalk, et al. The Anaerobic Oxidation of Ammonium. FEMS Microbiol Reviews. 1998, 22(5): 421-437
    45 N. Chamchoi, S. Nitisoravut, J. E. Schmidt. Inactivation of ANAMMOX Communities under Concurrent Operation of Anaerobic Ammonium Oxidation (ANAMMOX) and Denitrification. Bioresource Technology. 2008, 99(9): 3331-3336
    46 S. Liu, F. Yang, X. Yuan, et al. Evaluation of Oxygen Adaptation and Identification of Functional Bacteriacomposition for Anammox Consortium in Nonwoven Biological Rotating Contactor. Bioresource Technology. 2008,99(17): 8273–8279
    47 I. Fernández, J. R. Vázquez-padín, A. Mosquera-Corral, et al. Biofilm and Granular Systems to Improve Anammox Biomass Retention. Biochemical Engineering Journal. 2008, 42(3): 308-313
    48朱静平,胡勇有,梁辉强.基于SBR反应器的ANAMMOX工艺的启动运行.环境污染治理技术与设备. 2006, 7(2): 30-33
    49 T. Yamamoto, K. Takaki, T. Koyama, et al. Long Term Stability of Partial Nitritation of Swine Wastewater Digester Liquor and Its Subsequent Treatment by Anammox. Bioresource Technology. 2008, 99(14): 6419-6425
    50张龙,肖文德.低浓度氨氮废水的厌氧氨氧化研究.化工环保. 2005, 25(4): 267-370
    51卢俊平,杜宾,孙艳玲,等.亚硝化—厌氧氨氧化组合工艺脱氮研究.中国给水排水. 2006, 22(15): 40-43
    52赵旭涛,顾国维.生物吸附作用的性能探讨.中国给水排水. 1994, 10(3): 28-30
    53 K. Keiding, P. H. Nielsen. Desorption of organic macromolecules from activated sludge: effect of ionic composition. Water research. 1997, 31(7): 1665-1672
    54殷友庭.紊流混凝动力学模式的建立、运用和开发.华东给水排水. 1991,(2): 45-49