新型二元氧化物阻变薄膜与器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体工业即将进入22nm时代,半导体存储行业面临着技术与基础材料等方面的机遇与挑战。基于传统硅材料的非易失性Flash存储器已不能满足未来技术节点的要求,耐久性差、写入速度低、写入操作中的电压高等问题日益突出。更重要的是,持续的器件等比例缩小使得存储氧化层厚度面临着物理极限,导致电荷泄露变得越来越严重,从而直接影响到存储器的数据保持能力。近年来,阻变存储器(RRAM)作为最有前途的下一代非易失存储技术获得了广泛的关注。与Flash存储技术相比,RRAM具有高密度、低功率和读写速度快等优点。目前,在许多材料中都发现了电阻转变现象。二元系金属氧化物,如过渡金属氧化物和稀土氧化物,由于成分简单、生长过程容易控制、与目前的CMOS工艺兼容等特点,具有显著的应用前景。影响材料的电阻转变特性的因素很多(包括制备工艺、掺杂物质、电极材料等),有多种模型相继提出用于解释电阻转变现象,但是对于其物理本质还没有形成共识。本论文通过制备基于Dy2O3、La2O3、Gd2O3和Hf02等二元氧化物的RRAM器件,研究了相关材料体系和器件结构的阻变行为,并且分析了相关转变机制。进一步地,本文开展了改善基于二元氧化物RRAM器件存储特性的研究工作。具体工作如下:
     (1)基于Dy2O3阻变薄膜研究了界面嵌层对提高RRAM器件的电阻转变特性的作用。分别采用嵌入Ti金属纳米插层、Pt纳米晶插层到Metal/Dy2O3/Pt结构中,形成Pt/Ti/Dy2O3/Pt和Cu/Pt-Nc/Dy2O3/Pt阻变器件。通过上述结构改进工作,有效降低了Metal/Dy2O3/Pt结构器件转变参数的离散性。
     (2)为证实氧空位运动在RRAM转变过程中的关键作用,深入探讨相关电阻转变机制。本论文通过将STEM直观观察和EDS元素分析相结合,对Ag/Dy2O3/Pt器件的Set电压不断增加现象进行分析,成功的观察到Dy203薄膜中氧空位运动,为进一步了解RRAM的物理机制提供了有利的参考。
     (3)根据氧化物与活性金属接触会在界面处生成金属氧化物的界面层,提出了一种使用氧化物层Dy203作为提供氧的牺牲层来氧化金属Ti,使非晶TiOX成为转变功能层材料。通过电学测试,研究发现Pt/TiOx/DyOx/Pt结构器件具有稳定均匀的存储特性。并且通过透射电镜的分析手段,直接证明了在高电阻的非晶TiO、和低电阻的Ti407之间的可逆转变是造成上述结构器件电阻转变的原因。
     (4)首次研究了基于La2O3薄膜RRAM的阻变特性及其电阻转变机制。采用反应磁控溅射的方法在Pt底电极上沉积了La203薄膜,制作了Pt/La2O3/Pt结构的RRAM器件。Pt/La2O3/Pt器件展现了良好的单极性电阻转变行为:低的操作电压(<2V),非常大的开关比(>108),良好的耐久性(>500cycles)。结合器件高/低阻态的电阻随温度变化的特性,以及计算得出的电阻率温度系数和XPS分析结果,表明L,8203薄膜中的由氧空位组成的导电通道的形成和破灭是导致La203薄膜发生可逆电阻转变的原因。
     (5)Hf02在CMOS高k技术的广泛应用使其成为了RRAM研究方面非常重要的材料。针对基于Hf02材料的RRAM器件电学参数波动较大及功耗过高的问题,本文嵌入了非易失性外延CeO2/Nb:SrTiO3异质结来减小器件转变参数离散,其器件结构为Ta/HfO2/CeO2/NSTO.通过异质结的嵌入,有效降低了HfO2基RRAM的电阻转变离散性,并且降低器件整体工作能耗。本实验的设计和结果为Hf02材料在RRAM中的应用提供了参考依据。
     (6)基于未来RRAM在柔性电子器件中的应用,提出了一种具有Cu/Gd2O3/Pt结构的柔性RRAM器件。在高达1O4次弯曲测试后,器件的Set和Reset电压,高低电阻态比都保持稳定,显示了其作为柔性存储器件应用的潜力。结合器件高低阻态电阻随温度变化的特性,以及计算得出的电阻率温度系数结果,表明Cu阳离子在Gd203薄膜中迁移所形成的的导电细丝的通断是Cu/Gd2O3/Pt器件发生电阻转变的根本原因。
     (7)在基于稀土氧化物的透明RRAM器件方面,制备了一种以石墨烯为顶电极ITO为底电极生长在柔性衬底上的低功耗透明存储器件,其器件结构为多层石墨烯MLG/Dy2O3/ITO.该RRAM表现出了单极性电阻转变特性,低工作电流(<100μA),低工作电压(<1V),低功耗(<100μw),高开关比(>105),快转变速度(<60nS)良好的数据保持能力和耐久性。通过分析不同电阻状态下Graphene的拉曼特征谱线,研究了其用于低功耗存储器件的物理机制。
As the building block of semiconductor electronics approaches the22nm regime, a number of fundamental and practical issues start to emerge. In terms of nonvolatile memory, it is generally believed that transistor based flash memory will be close to the end of scaling within about a decade. The novel, non-FET based devices and architectures are likely be needed to satisfy the growing demands for high performance memory and logic electronics applications, In recent years, resistive random access memory (RRAM) has gained significant attention as one of the promising candidates for next generation memory applications. This is due to its anticipated advantages versus flash technology with respect to high density, low power and fast read and write speeds. The main operation mechanism of these devices is a resistance change induced by filament formation and rapture through metal-cations or oxygen vacancies. The resistive swithing phenomeon has been observed in many materials. In this thesis, we focus our attention mainly on the binary transition metal oxide owing to the simple structure, easy fabrication process and compatibility with the complementary metal-oxide semiconductor (CMOS) technology. We have fabricated a series of resistive switcing memories using binary metal oxide, and the electrical performances and the resistive switching mechanism are investigated. The contribution of the current work is how to improve the resistive switching performances of the binary metal oxide based RRAM. The main contents of the thesis are as follows:
     (1) We fabricate the dysprosium oxide based RRAM device. The effects of Ti embedding layer, Pt nanocrystal layer, and different electrode materials on the resistive switching behavior of dysprosium oxide film are systematically investigated.
     (2) The Ag/Dy2O3/Pt structure devices are fabricated and the electrical parameters are investigated. Through STEM and EDX technology, we analysis the phenomenon of Set voltage increseaing with the cycle number increased in Ag/Dy2O3/Pt device with unipolar resistive switching behavior. And we found that the movement of oxygen vacancies is responsible for the resistive switching and failure behavior of Ag/Dy2O3/Pt device.
     (3) The interface between a metal electrode and a metal oxide has important influence on the resistive switching behavior of the RRAM device. We proposed a new way to fabticate super-thin-film based RRAM by using a Dy2O3layer as the oxygen supporting layer to make an active metal Ti layer be oxidized. The electrical parameters indicate the Pt/TiOx/DyOx/Pt structure device has stable resistive switching behavior. And we capture transmission electron microscopy (TEM) images of conductive filaments formation and rupture in the Pt/TiOx/DyOx/Pt device which is the reason of the reversible resistive switching behavior.
     (4) We have investigated the characteristics and mechanism of Pt/La2O3/Pt resistance switching memory with a set of measurements. La2O3were determined as5-10nm nano-polycrystalline with XRD and HRTEM analysis. The Pt/La2O3/Pt device exhibits excellent resistive switching properties, including low switching voltage (<2V), large low/high resistance ratio (>10-8), and good cycling endurance property. The conduction mechanisms of the Pt/La2O3/Pt device were revealed with current-voltage characteristics, which are different in low/high resistance states. Furthermore, XPS analysis and temperature-dependent resistance measurement in low resistance state show that the conducting filaments in Pt/La2O3/Pt device are mainly affected by oxygen-defects rather than metallic La.
     (5) The effects of an intentional interface engineering of a heterogeneous CeO2-Nb:SrTiO3interface on the switching uniformity has been investigated to obtain HfO2-based RRAM with excellent switching characteristics. Switching parameters including set voltage, reset votage, low resistance state, high resistance state, are greatly improved by the interface engineering.
     (6) Flexible RRAM devices, using Gd2O3as the switching layer, are fabricated on plastic substrates at room temperature. The device shows high performance, excellent flexibility, and mechanical endurance in bending tests. No performance degradation occurs, and the stored information is not lost after bending the device to different angles and up to104times. Studies on the temperature-dependent electrical properties reveal that the conducting channels of the low-resistance state are composed of Cu conductive filaments, and the rupture of the Cu conductive filaments switches the device to the high-resistance state.
     (7) The multilayer graphene (MLG)/Dy2O3/ITO device is fabricated which shows unipolar resistance switching with a low operation current (<100μA), low operation voltage (<1V), low power consumption (<100μW), high resistance ratio (>104), fast switching speed (<60ns), reliable data retention and promising cycle endurance properties (>200cycles), which makes a step toward the realization of low-power transparent electronics for next-generation nonvolatile memory application. Raman spectra obtained in pristine state, high resistance state and low resistance state indicate that the lower power consumption of MLG/Dy2O3/ITO device is attributable to the formation of graphene oxide layers.
引文
[1]Kahng D., Sze S. M. A floating gate and its application to memory devices[J]. Bell System Technical Journal,1967, V46(6):1288-1295
    [2]Masuoka F., Asano M., Iwahashi H., et al. A new flash E2PROM cell using triple polysilicon technology [A]. IEEE International Electron Devices Meeting[C], San Francisco, IEEE International,1984, V30:464-467
    [3]International Technology Roadmap For Semiconductors:http://www.itrs.net/,2013
    [4]Market M. The rise of the flash memory market:Its impact on firm behavior and global semiconductor trade patterns[J]. Journal of International Commerce & Economics,2007:137
    [5]付承菊,郭冬云,铁电存储器的研究进展[J].微纳电子技术,2006,V9:414-418
    [6]Scott J. F., De Araujo C. A. P. Ferroelectric memories[J]. Science,1989, V246(4936): 1400-1405
    [7]Kao K. F., Lee C. M., Chen M. J., et al. Ga2Te3Sb5-a candidate for fast and ultralong retention phase-change memory[J]. Advanced Materials,2009, V21(17):1695-1699
    [8]Kolobov A. V., Fons P., Frenkel A. I., et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials,2004, V3(10):703-708
    [9]吴晓薇,郭子政,磁阻随机存取存储器(MRAM)的原理与研究进展[J].信息记录材料,2009,V10:52-56
    [10]Zhu J. G., Zheng Y., Prinz G. A. Ultrahigh density vertical magnetoresistive random access memory[J]. Journal of Applied Physics,2000, V87(9):6668-6673
    [11]Waser R., Dittmann R., Staikov G., et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges[J]. Advanced Materials, 2009, V21:2632-2663
    [12]Sawa A., Resistive switching in transition metal oxides[J]. Materials Today,2008, V11:28-36
    [13]周益春,唐明华,铁电薄膜及铁电存储器的研究进展[J].材料导报:综述篇,2009V23:1-19
    [14]Lai S., Lowrey T. OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications [A]. IEEE International Electron Devices Meeting[C], Washington, IEEE International,2001:36-5
    [15]Bez, R. Chalcogenide PCM:A memory technology for next decade[A]. IEEE International Electron Devices Meeting[C]. Baltimore, IEEE International,2009:1-4
    [16]Im D. H., Lee J. I., Cho S. L., et al. A unified 7.5 nm dash-type confined cell for high performance PRAM device[A]. IEEE International Electron Devices Meeting[C]. IEEE International,2008:1-4
    [17]Simpson R. E., Krbal M., Fons P., et al. Toward the ultimate limit of phase change in Ge2Sb2Te5[J]. Nano Letters,2009, V10(2):414-419
    [18]Baibich M. N., Broto J. M., Fert A., et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Physical Review Letters,1988, V61(21):2472
    [19]Tehrani S., Engel B., Slaughter J. M., et al. Recent developments in magnetic tunnel junction MRAM[J]. IEEE Transactions on Magnetics,2000, V36(5):2752-2757
    [20]Simmons J. G., Verderber R. R. New conduction and reversible memory phenomena in thin insulating films[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1967, V301(1464):77-102
    [21]Liu S. Q., Wu N. J., Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films[J]. Applied Physics Letters,2000, V76(19): 2749-2751
    [22]Meijer G. I. Who wins the nonvolatile memory race?[J]. Science,2008, V319: 1625-1626
    [23]Burr G. W., Kurdi B. N., Scott J. C., et al. Overview of candidate device technologies for storage-class memory[J]. IBM Journal of Research and Development,2008, V52(4.5):449-464
    [24]Waser R., Dittmann R., Staikov G., et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges[J]. Advanced Materials, 2009, V21:2632-2663
    [25]Goux L., Lisoni J. G., Wang X. P., et al. Optimized Ni oxidation in 80-nm contact holes for integration of forming-free and low-power Ni/NiO/Ni memory cells[J]. IEEE Transactions on Electron Devices,2009, V56(10):2363-2368
    [26]Hickmott T. W. Low-Frequency negative resistance in thin anodic oxide films[J]. Journal of Applied Physics,1962, V33(9):2669-2682
    [27]Zhuang W. W., Pan W., Ulrich B. D., et al. Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM)[A]. Electron Devices Meeting[C]. Washington, IEEE International,2002:193-196
    [28]Lu W., Lieber C. M. Nanoelectronics from the bottom up[J]. Nature Materials,2007, V6:841
    [29]Baek I. G., Kim D. C., Lee M. J., et al. Multi-layer cross-point binary oxide resistive memory (OXRRAM) for post-NAND storage application[A]. Electron Devices Meeting[C]. Washington, IEEE International,2005:769
    [30]Jeong D. S., Schroeder H., Waser R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt Stack[J]. Electrochemical and Solid-state Letters, 2007, V10(8):51-53
    [31]Yang J. J., Strukov D. B., Stewart D. R. Memristive devices for computing[J]. Nature Nanotechnology,2013, V8(1):13-24
    [32]Huang H. H., Shih W. C., Lai C. H. Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device[J]. Applied Physics Letters,2010, V96(19):193505.
    [33]Choi B. J., Jeong D. S., Kim S. K. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition[J]. Journal of Applied Physics,2005, V98(3): 033715
    [34]Jeong D. S., Schroeder H., Waser R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt Stack[J]. Electrochemical and solid-state letters, 2007, V10(8):51-53
    [35]Lee D., Choi H., Sim H., et al. Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications[J]. IEEE Electron Device Letters,2005, V26(10):719-721
    [36]Zhang H., Gao B., Sun B., et al. Ionic doping effect in ZrO2 resistive switching memory[J]. Applied Physics Letters,2010, V96(12):123502
    [37]Liu Q., Guan W., Long S., et al. Resistive switching memory effect of ZrO2 films with Zr+implanted[J]. Applied physics letters,2008, V92(1):012117
    [38]Lee H. Y., Chen P. S., Wu T. Y., et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM[A]. Electron Devices Meeting[C]. San Francisco, IEEE International,2008:1-4
    [39]Driscoll T., Kim H. T., Chae B. G., et al. Memory metamaterials[J]. Science,2009, V325(5947):1518-1521
    [40]Driscoll T., Kim H. T., Chae B. G., et al. Phase-transition driven memristive system[J]. Applied physics letters,2009, V95(4):043503
    [41]Sim H., Choi D., Lee D., et al. Reproducible resistance switching characteristics of pulsed laserdeposited polycrystalline Nb2O5[J]. Microelectronic engineering,2005, V80:260-263
    [42]Wei Z., Kanzawa Y., Arita K., et al. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism[A]. Electron Devices Meeting[C]. San Francisco, IEEE International,2008:1-4
    [43]Yang J. J., Zhang M. X., Strachan J. P., et al. High switching endurance in TaOx memristive devices[J]. Applied Physics Letters,2010, V97(23):232102
    [44]Chen S. C., Chang T. C., Chen S. Y., et al. Bipolar resistive switching of chromium oxide for resistive random access memory[J]. Solid-State Electronics,2011, V62(1): 40-43
    [45]Arita M., Kaji H., Fujii T., et al. Resistance switching properties of molybdenum oxide films[J]. Thin Solid Films,2012, V520(14):4762-4767
    [46]Chien W. C., Chen Y. C., Lai E. K., et al. Unipolar switching behaviors of RTO RRAM[J]. IEEE Electron Device Letters,2010, V31(2):126-128
    [47]Shang D. S., Shi L., Sun J. R., et al. Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing[J]. Applied Physics Letters,2010, V96(7):072103
    [48]Zhang S., Long S., Guan W., et al. Resistive switching characteristics of MnOx-based ReRAM[J]. Journal of Physics D:Applied Physics,2009, V42(5):055112
    [49]Yang M. K., Park J. W., Ko T. K., et al. Resistive switching characteristics of TiN/MnO2/Pt memory devices[J]. Physica status solidi (RRL)-Rapid Research Letters, 2010, V4(8-9):233-237
    [50]Odagawa A., Katoh Y., Kanzawa Y., et al. Electroforming and resistance-switching mechanism in a magnetite thin film[J]. Applied Physics Letters,2007, V91(13): 13350
    [51]Inoue I. H., Yasuda S., Akinaga H., et al. Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution[J]. Physical Review B,2008, V77(3):035105
    [52]Shima H., Takano F., Akinaga H., et al. Resistance switching in the metal deficient-type oxides:NiO and CoO[J]. Applied Physics Letters,2007, V91(1): 012901
    [53]Seo S., Lee M. J., Seo D. H., et al. Reproducible resistance switching in polycrystalline NiO films[J]. Applied Physics Letters,2004, V85(23):5655-5657
    [54]Park C, Jeon S. H., Chae S. C., Han, et al. Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures[J]. Applied Physics Letters, 2008, V93(4):042102
    [55]Yang W. Y., Rhee S. W. Effect of electrode material on the resistance switching of Cu2O film[J]. Applied Physics Letters,2007, V91(23):232907
    [56]Xu N., Liu L., Sun X., et al. Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories[J]. Applied Physics Letters,2008, V92(23):232112
    [57]Qi J., Olmedo M., Ren J., et al. Resistive switching in single epitaxial ZnO nanoislands[J]. ACS Nano,2012, V6(2):1051-1058
    [58]Song J., Zhang Y., Xu C., et al. Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage[J]. Nano Letters,2011, VI 1(7):2829-2834
    [59]Kim K. M., Choi B. J., Koo B. W., et al. Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures [J]. Electrochemical and Solid-state Letters,2006, V9(12):343-346
    [60]Lin C. Y., Wu C. Y., Wu C. Y., et al. Bistable resistive switching in AL2O3 memory thin films[J]. Journal of The Electrochemical Society,2007, V154(9):189-192
    [61]Gao X., Xia Y., Ji J., et al. Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films[J]. Applied Physics Letters,2010, V97(19): 193501
    [62]Yao J., Zhong L., Natelson D., et al. Intrinsic resistive switching and memory effects in silicon oxide[J]. Applied Physics A,2011, V102(4):835-839
    [63]Huang R., Zhang L., Gao D., et al. Resistive switching of silicon-rich-oxide featuring high compatibility with CMOS technology for 3D stackable and embedded applications[J]. Applied Physics A,2011, V102(4):927-931
    [64]Hsu C. H., Lin J. S., He Y. D., et al. Optical, electrical properties and reproducible resistance switching of GeO2 thin films by sol-gel process[J]. Thin Solid Films,2011, V519(15):5033-5037
    [65]Cheng C. H., Chen P. C., Liu S. L., et al. Bipolar switching characteristics of low-power GeO resistive memory[J]. Solid-State Electronics,2011, V62(l):90-93
    [66]Nagashima K., Yanagida T., Oka K., et al. Unipolar resistive switching characteristics of room temperature grown SnO2 thin films[J]. Applied Physics Letters,2009, V94(24):242902
    [67]Tulina N. A., Borisenko I. Y., Ionov A. M., et al. Bipolar resistive switching in heterostructures:Bismuth oxide/normal metal[J]. Solid State Communications,2010, VI 50(43):2089-2092
    [68]Ahn Y., Lee J. H., Kim G. H., et al. Concurrent presence of unipolar and bipolar resistive switching phenomena in pnictogen oxide Sb20s films[J]. Journal of Applied Physics,2012, VI 12(11):114105
    [69]Huang S. Y., Chang T. C, Chen M. C., et al. Resistive switching characteristics of Sm2O3 thin films for nonvolatile memory applications[J]. Solid-State Electronics, 2011,V63(1):189-191
    [70]Cao X., Li X., Gao X., et al. Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications[J]. Journal of Applied Physics,2009, V106(7):073723
    [71]Pi C., Ren Y., Liu Z. Q., et al. Unipolar memristive switching in yttrium oxide and RESET current reduction using a yttrium interlayer[J]. Electrochemical and Solid-State Letters,2011, V15(3):5-7
    [72]Sun X., Sun B., Liu L., et al. Resistive switching in films for nonvolatile memory application[J]. IEEE Electron Device Letters,2009, V30(4):334-336
    [73]Pan T. M., Lu C. H. Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature[J]. Applied Physics Letters,2011, V99(11):113509
    [74]Pan T. M., Lu C. H. Switching behavior in rare-earth films fabricated in full room temperature[J]. IEEE Transactions on Electron Devices,2012, V59(4):956-961
    [75]Shen W., Dittmann R., Breuer U., et al. Improved endurance behavior of resistive switching in (Ba,Sr)TiO3 thin films with W top electrode[J]. Applied Physics Letters, 2008, V93(22):222102
    [76]Szot K., Speier W., Bihlmayer G., et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3[J]. Nature Materials,2006, V5(4): 312-320
    [77]Beck A., Bednorz J. G., Gerber C., et al. Reproducible switching effect in thin oxide films for memory applications[J]. Applied Physics Letters,2000, V77(1):139-141
    [78]Chen X., Zhang H., Ruan K., et al. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3 buffered Si substrates[J]. Journal of Alloys and Compounds,2012, V529:108-112
    [79]Liu S. Q., Wu N. J., Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films[J]. Applied Physics Letters,2000, V76(19): 2749-2751
    [80]Hamaguchi M., Aoyama K., Asanuma S., et al. Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films[J]. Applied Physics Letters,2006, V88(14):142508
    [81]Quintero M., Levy P., Leyva A. G., et al. Mechanism of electric-pulse-induced resistance switching in manganites[J]. Physical Review Letters,2007, V98(11): 116601
    [82]Choi B. J., Yang J. J., Zhang, M. X., et al. Nitride memristors[J]. Applied Physics A, 2012, V109(1):1-4
    [83]Patel N. G. Some observations on the switching and memory phenomena in ZnTe-Si[J]. Journal of Materials Science,1986, V21(6):2097-2099
    [84]Hovel H. J. Switching and memory in ZnSe-Ge heterojunctions[J]. Applied Physics Letters,2003, V17(4):141-143
    [85]Yang Y., Ouyang J., Ma L., et al. Electrical switching and bistability in organic/polymeric thin films and memory devices [J]. Advanced Functional Materials, 2006, V16(8):1001-1014
    [86]Lee T., Chen Y. Organic resistive nonvolatile memory materials[J]. MRS Bulletin, 2012, V37(02):144-149
    [87]Russo U., Kamalanathan D., Ielmini D., et al. Study of multilevel programming in programmable metallization cell (PMC) memory [J]. IEEE Transactions on Electron Devices,2009, V56(5):1040-1047
    [88]Stratan I., Tsiulyanu D., Eisele I. A programmable metallization cell based on Ag-As2S3[J]. Journal of Optoelectronics and Advanced Materials,2006, V8: 2117-2119
    [89]Banno N., Sakamoto T., Hasegawa T., et al. Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch[J]. Japanese Journal of Applied Physics, 2006, V45(4S):3666
    [90]Nayak A., Ohno T., Tsuruoka T., et al. Controlling the Synaptic Plasticity of a CU2S Gap-Type Atomic Switch[J]. Advanced Functional Materials,2012, V22(17): 3606-3613
    [91]Wang Z., Griffin P. B., McVittie J., et al. Resistive switching mechanism in ZnxCd1-xS nonvolatile memory devices[J]. IEEE Electron Device Letters,2007, V28(1):14-16
    [92]Liang X. F., Chen Y., Shi L., et al. Resistive switching and memory effects of Agl thin film[J]. Journal of Physics D:Applied Physics,2007, V40(16):4767
    [93]Liang X. F., Chen Y., Chen L., et al. Electric switching and memory devices made from RbAg4I5 films[J]. Applied Physics Letters,2007, V90(2):022508
    [94]Kozicki M. N., Mitkova M. Mass transport in chalcogenide electrolyte films-materials and applications[J]. Journal of Non-crystalline Solids,2006, V352(6):567-577
    [95]Kim C. J., Yoon S. G., Choi K. J., et al. Characterization of silver-saturated Ge-Te chalcogenide thin films for nonvolatile random access memory[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2006, V24(2): 721-724
    [96]Pandian R., Kooi B. J., Oosthoek J. L., et al. Polarity-dependent resistance switching in GeSbTe phase-change thin films:The importance of excess Sb in filament formation[J]. Applied Physics Letters,2009, V95(25):252109
    [97]Meier M., Schindler C., Gilles S., et al. A nonvolatile memory with resistively switching methyl-silsesquioxane[J]. IEEE Electron Device Letters,2009, V30(1): 8-10
    [98]Chen L., Xia Y., Liang X., et al. Nonvolatile memory devices with Gu2S and Cu-Pc bilayered films[J]. Applied Physics Letters,2007, V91(7):073511
    [99]Chen C, Yang Y. C., Zeng F., et al. Bipolar resistive switching in Cu/AIN/Pt nonvolatile memory device[J]. Applied Physics Letters,2010, V97(8):083502
    [100]Jo S. H., Kim K. H., Lu W. Programmable resistance switching in nanoscale two-terminal devices[J]. Nano Letters,2008, V9(1):496-500
    [101]Zhuge F., Dai W., He C. L., et al. Nonvolatile resistive switching memory based on amorphous carbon[J]. Applied Physics Letters,2010, V96(16):163505
    [102]Valov I., Sapezanskaia I., Nayak A., et al. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces[J]. Nature Materials,2012, V11(6): 530-535
    [103]Terabe K., Hasegawa T., Nakayama T., et al. Quantized conductance atomic switch[J]. Nature,2005, V433(7021):47-50
    [104]Yang Y. C., Pan F., Liu Q., et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application[J]. Nano Letters, 2009,9(4):1636-1643
    [105]Xu N., Liu L., Sun X., et al. Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories[J]. Applied Physics Letters,2008, V92(23):232112
    [106]Zhang S., Long S., Guan W., et al. Resistive switching characteristics of MnOx-based ReRAM[J]. Journal of Physics D:Applied Physics,2009, V42(5):055112
    [107]Lee M. J., Han S., Jeon S. H., et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory[J]. Nano Letters,2009, V9(4): 1476-1481
    [108]Yang J. J., Pickett M. D., Li X., et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology,2008, V3(7):429-433
    [109]Yang J. J., Miao F., Pickett M. D., et al. The mechanism of electroforming of metal oxide memristive switches[J]. Nanotechnology,2009, V20(21):215201
    [110]Jeong D. S., Schroeder H., Breuer U., et al. Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere[J]. Journal of Applied Physics,2008, V104(12):123716
    [111]Nian Y. B., Strozier J., Wu. N. J., et al. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides[J]. Physical Review Letters,2007, V98(14):146403
    [112]Sim H., Choi H., Lee D., et al. Excellent resistance switching characteristics of Pt/SrTiO3/schottky junction for multi-bit nonvolatile memory application[A]. Electron Devices Meeting[C]. Washingdon, IEEE International,2005:758-761
    [1]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001
    [2]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004
    [3]孙清清.先进CMOS高k栅介质的实验与理论研究[D].上海:复旦大学,2009
    [4]张志刚.磁控溅射法制备MgxNi1-xO薄膜及其表征[D].山东:山东大学,2006
    [5]Filipescu M., Scarisoreanu N., Moldovan A., et al. High-k dielectric oxide obtained by PLD as solution for gates dielectric in MOS devices[J]. Applied Surface Science, 2007,V253(19):8184-8191
    [6]Delage T., Champeaux C., Catherinot A., et al. High-k BST films deposited on MgO by PLD with and without buffer-layer[J]. Thin Solid Films,2004, V453-454:279-284
    [7]Karakaya K., Barcones B., Rittersma Z. M., et al. Electrical and structural characterization of PLD grown CeO2 HfO2 laminated high-k gate dielectrics[J]. Materials Science in Semiconductor Processing,2006, V9(6):1061-1064
    [8]Zhu J., Li Y. R., Liu Z. G. Fabrication and characterization of pulsed laser deposited HfO2 films for high-k gate dielectric applications[J]. Journal of Physics D:Applied Physics,2004, V37(20):2896
    [9]Rajiv K. S., Narayan J. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model[J]. Physics Review B,1990, V41:8843-8859
    [10]Dijkkamp D., Venkatesan T., Wu X. D., et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J]. Applied Physics Letters,1987, V51(8):619-621
    [11]Barker P., Petty M. C., Adams P., et al. A photolithographic technique for patterning spin-coated polyaniline films[J]. Advanced Materials for Optics and Electronics, 1993, V2(5):233-236
    [12]Michael Q., Julian S. Semiconductor manufacturing technology[M]. Prentice Hall: Untied States edition,2000
    [13]崔铮.微纳米加工技术及其应用[M].北京:高等教育出版社,2005
    [14]周玉.材料分析方法[M].北京:机械工业出版社,2004
    [15]Terry L. A., Leonard C. F., James W. M. Fundamentals of nanoscale film analysis[M]. Springer Science Business Media, Inc,2005
    [16]Mildred S., Dresselhaus, A. J., Mario H., et al. Perspectives on carbon nanotubes and graphene raman spectroscopy[J]. Nano Letters,2010, V10:751-758
    [17]Aarik J., Mandar H., Kirm M., et al. Optical characterization of HfO2 thin films grown by atomic layer deposition[J]. Thin Solid Films,2004, V466(1):41-47
    [18]Yang C, Li X. M., Gu Y. F., et al. ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV[J]. Applied Physics Letters,2008, V93(11):112114
    [19]Kim Y. Analysis of electrical conduction in rare earth gate dielectrics [R]. PHD, thesis, Tokyo Institute of Technology,2005
    [1]Pan T. M., Lu C. H. Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature[J]. Applied Physics Letters,2011, V99(11):113509
    [2]Pan T. M., Lu C. H. Switching behavior in rare-earth films fabricated in full room temperature[J]. IEEE Transactions on Electron Devices,2012, V59(4):956-961
    [3]Chang W. Y., Cheng K. J., Tsai J. M., et al. Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals[J]. Applied Physics Letters,2009, V95(4):042104
    [4]Jung K., Choi J., Kim Y., et al. Resistance switching characteristics in Li-doped NiO[J]. Journal of Applied Physics,2008, V103(3):034504
    [5]Jung R., Lee M. J., Seo S., et al. Decrease in switching voltage fluctuation of Pt/NiOx/Pt structure by process control[J]. Applied physics letters,2007, V91(2): 022112
    [6]Lv H., Wang M., Wan H., et al. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode[J]. Applied Physics Letters,2009, V94(21): 213502
    [7]Sun B., Liu Y. X., Liu L. F., et al. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices[J]. Journal of Applied Physics,2009, V105(6): 061630
    [8]Ko D. S., Kim S. I., Ahn T. Y., et al. Effect of the electrode materials on the resistive switching of Ti4O7[J]. Applied Physics Letters,2012, V101(5):053502
    [9]Diebold U. The surface science of titanium dioxide[J]. Surface Science Reports,2003, V48(5):53-229
    [10]Yang J. J., Strachan J. P., Miao F., et al. Metal/TiO2 interfaces for memristive switches[J]. Applied Physics A,2011, V102(4):785-789.
    [11]Lin C. Y., Wu C. Y., Wu C. Y., et al. Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode[J]. Journal of Applied Physics,2007, V102(9):094101
    [12]Sawa A. Resistive switching in transition metal oxides[J]. Materials today,2008, V11(6):28-36
    [13]Fujiwara K., Yajima T., Nakamura Y., et al. Electrode-geometry control of the formation of a conductive bridge in oxide resistance switching devices[J]. Applied Physics Express,2009, V2(8):081401
    [14]Shen W., Dittmann R., Breuer U., et al. Improved endurance behavior of resistive switching in (Ba,Sr) TiO3 thin films with W top electrode[J]. Applied Physics Letters, 2008, V93(22):222102
    [15]Liu Q., Guan W., Long S., et al. Resistive switching memory effect of ZrO2 films with Zr+ implanted[J]. Applied Physics Letters,2008, V92(01):012117
    [16]Shibuya K., Dittmann R., Mi S., et al. Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films[J]. Advanced Materials,2009, V22(3): 411
    [17]Rozenberg M. J., Inoue I. H., Sanchez M. J. Nonvolatile memory with multilevel switching:a basic model[J]. Physcis Reviews Letters,2004, V92(17):178302
    [18]Fang T. N., Kaza S., Haddad S., ct al. Erase mechanism for copper oxide resistive switching memory cells with nickel electrode[A]. Electron Devices Meeting[C]. San Francisco,2006, IEEE International
    [19]Lin C. C., Lin C. Y., Lin M. H., et al. Voltage-polarity-independent and high-speed resistive switching properties of V-doped SrZrO3 thin films[J]. IEEE Transaction on Electron Devices,2007, V54(12):3146
    [20]Wu X., Zhou P., Li J., et al. Reproducible unipolar resistance switching in stoichiometric ZrO2 films[J]. Applied Physics Letters,2007, V90(18):183507
    [21]Deamaley G., Stoneham A. M., Morgan D. V. Electrical phenomena in amorphous oxide film[J]. Reports Progress in Physics,1970, V33(3):1129
    [22]Jou S., Hwang B. R., Li C. J. Resistance switching properties in Cu/Cu-SiO2/TaN device[A]. Proceedings of the World Congress on engineering[C], London,2011, V2
    [23]Lampert M. A., Mark P. Current injection in solids[M]. New York:Academic Press, 1970
    [24]Sze S. M., Ng K. K. Physics of semiconductor device (3rd ed.)[M]. New Jersy:Wiley, 2007
    [25]Cho E., Han S., Ahn H. S., et al. First-principles study of point defects in rutile TiO2-x[J]. Physics Review B,2006, V73(19):193202
    [26]Jeong D. S., Schroeder H., Waser R. Mechanism for bipolar switching in a Pt/TiO2/Pt resistive switching cell[J]. Physics Review B,2009, V79(19):195317
    [1]Chen J. Y., Hsin C. L., Huang C. W., et al. Dynamic evolution of conducting nanofilament in resistive switching memories[J]. Nano Letters,2013, V13(8): 3671-3677
    [2]Yao J., Zhong L., Zhang Z., et al. Resistive switching in nanogap systems on SiO2 substrates[J]. Small,2009, V5(24):2910-2915
    [3]Yang Y., Lii W., Yao Y., et al. In situ TEM observation of resistance switching in titanate based device[J]. Scientific Reports,2014, V4:3890
    [4]Kwon D. H., Kim K. M., Jang J. H., et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory[J]. Nature Nanotechnology,2010, V5(2):148-153
    [5]Waser R., Dittmann R., Staikov G., et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges[J]. Advanced Materials, 2009, V21(25-26):2632-2663
    [1]Jang J. H., Kwon J. H., Seung R. L., et al. Electrical properties of the amorphous interfacial layer between Al electrodes and epitaxial NiO films[J]. Applied Physics Letters,2012, V100(17):172101
    [2]Liu Z., Zhang P., Meng Y., et al. Effect of TaOx thickness on the resistive switching of Ta/Pro.7Cao.3Mn03/Pt films[J]. Applied Physics Letters,2012, V100(14):143506
    [3]Liao Z. L., Wang Z. Z., Meng Y., et al. Categorization of resistive switching of metal-Pr0.7Cao.3MnO3-metal devices[J]. Applied Physics Letters,2009, V94(25): 253503
    [4]Lv H., Wang M., Wan H., et al. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode[J]. Applied Physics Letters,2009, V94(21): 213502
    [5]Wang Y., Liu Q., Long S., et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications[J]. Nanotechnology,2010, V21(4):045202
    [6]Terai M., Sakotsubo Y., Kotsuji S., et al. Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation[J]. IEEE Electron Device Letters,2010, V31(3):204-206
    [7]Lee H. Y., Chen P. S., Wu T. Y., et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM[A]. IEEE International Electron Devices Meeting[C]. San Francisco,2008, IEEE International: 297-300
    [1]Kwon D. H., Kim K. M., Jang J. H., et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory[J]. Nature Nanotechnology,2010, V5(2):148-153
    [2]Seo S., Lee M. J., Seo D. H., et al. Reproducible resistance switching in polycrystalline NiO films[J]. Applied Physics Letters,2004, V85(23):5655-5657
    [3]Park S., Jung S., Siddik M., et al. Memristive switching behavior in Pr0.7Ca0.3MnO3 by incorporating an oxygen-deficient layer[J]. Physica status solidi (RRL)-Rapid Research Letters,2011, V5(10-11):409-411
    [4]Cao X., Li X., Gao X., et al. Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications[J]. Journal of Applied Physics,2009, V106(7):073723
    [5]Gao X., Xia Y., Xu B., et al. Unipolar resistive switching behaviors in amorphous lutetium oxide films[J]. Journal of Applied Physics,2010, V108(7):074506
    [6]Pan T. M., Lu C. H. Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature[J]. Applied Physics Letters,2011, V99(11):113509
    [7]Atuchin V. V. Comment on "Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature"[Appl. Phys. Lett.99, 113509 (2011)][J]. Applied Physics Letters,2012, V100(7):076101
    [8]Sunding M. F., Hadidi K., Diplas S., et al. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures[J]. Journal of Electron Spectroscopy and Related Phenomena,2011, V184(7):399-409
    [9]Ramana C. V., Vemuri R. S., Kaichev V. V., et al. X-ray photoelectron spectroscopy depth profiling of La2O3/Si thin films deposited by reactive magnetron sputtering[J]. ACS Applied Materials & Interfaces,2011, V3(11):4370-4373
    [10]Sze S. M., Ng K. K. Physics of seiconductor device (3rded.)[M], New Jersy, Wiley, 2007
    [11]Szot K., Speier W., Carius R., et al. Localized metallic conductivity and self-healing during thermal reduction of SrTiO3[J]. Physical review letters,2002, V88(7):075508
    [12]Yan Z., Guo Y., Zhang G., et al. High-Performance programmable memory devices based on Co-Doped BaTiO3[J]. Advanced Materials,2011, V23(11):1351-1355
    [13]Wang Z. Q., Xu H. Y., Li X. H., et al. Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance[J]. IEEE Electron Device Letters,2011, V32(10):1442-1444
    [14]Hu W., Qin N., Wu G., et al. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances[J]. Journal of the American Chemical Society,2012, V34(36):14658-14661
    [15]Hu C. G., Liu H., Dong W. T., et al. La(OH)3 and La2O3 nanobelts-synthesis and physical properties[J]. Advanced Materials,2007, V19(3):470-474
    [16]Gao P., Wang Z., Fu W., et al. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides[J]. Micron,2010, V41(4):301-305
    [17]Atuchin V. V., Kalinkin A. V., Kochubey V. A., et al. Spectroscopic ellipsometry and X-ray photoelectron spectroscopy of La2O3 thin films deposited by reactive magnetron sputtering[J]. Journal of vacuum science & technology A:Vacuum, Surfaces, and Films,2011, V29(2):021004
    [18]Fouquet-Parry V., Paumier F., Guittet M. J., et al. Composition and local bonding in RE-Si-M-O-N (M= Mg, Al; RE= La, Lu) glasses[J]. Applied Surface Science,2008, V254(15):4665-4670
    [19]Magyari-Kope B., Tendulkar M., Park S. G., et al. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides:TiO2, NiO and Pr0.7Ca0.3Mn03[J]. Nanotechnology,2011,V22(25):254029
    [20]Kim K. M., Jeong D. S., Hwang C. S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook[J]. Nanotechnology,2011, V22(25):254002
    [21]Uwamino Y., Ishizuka T., Yamatera H. X-ray photoelectron spectroscopy of rare-earth compounds [J]. Journal of electron spectroscopy and related phenomena, 1984,34(1):67-78
    [22]Park G. S., Li X. S., Kim D. C., et al. Observation of electric-field induced Ni filament channels in poly crystalline NiOx film[J]. Applied Physics Letters,2007, V91(22): 222103
    [23]Yang J. J., Pickett M. D., Li X., et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology,2008, V3(7):429-433
    [1]Vandelli L., Padovani A., Larcher L., et al. Comprehensive physical modeling of forming and switching operations in HfO2 RRAM devices[A]. IEEE International Electron Devices Meeting[C]. Washington,2011, IEEE International:17.5.1-17.5.4
    [2]Zhang H., Liu L., Gao B., et al. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach[J]. Applied Physics Letters,2011,V98(4):042105
    [3]Lee H. Y., Chen P. S., Wu T. Y., et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM [A]. IEEE International Electron Devices Meeting[C]. San Francisco,2008, IEEE International: 1-4
    [4]Diokh T., Le-Roux E., Jeannot S., et al. Investigation of the impact of the oxide thickness and RESET conditions on disturb in HfO2-RRAM integrated in a 65 nm CMOS technology[A]. IEEE International Reliability Physics Symposium[C]. Anaheim,2013, IEEE International:5E.4.1-5E.4.4
    [5]Chen Y. Y., Pourtois G., Adelmann C., et al. Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device[J]. Applied Physics Letters,2012, V100(11):113513
    [6]Tian H., Chen H. Y., Gao B., et al. Monitoring oxygen movement by raman spectroscopy of resistive random access memory with a graphene-Inserted electrod[J] Nano Letters,2013, V13(2):651-657
    [7]Waser R., Aono M. Nanoionics-based resistive switching memories[J]. Nature Materials,2007, V6(11):833-840
    [8]Sawa A. Resistive switching in transition metal oxides[J], Material Today,2008, V11: 28-36
    [1]Briseno A. L., Tseng R. J., Ling M. M., et al. High-performance organic single-crystal transistors on flexible substrate[J]. Advanced Materials,2006, V18(17):2320-2324
    [2]Khang D. Y., Jiang H., Huang Y., et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates [J]. Science,2006, V311(5758): 208-212
    [3]Reuss R. H., Chalamala B. R., Moussessian A., et al. Macroelectronics:perspectives on technology and applications[J]. Proceedings of the IEEE,2005, V93(7): 1239-1256
    [4]http://www.zastella-project.de/; http://www.usdc.org/
    [5]Lee M. J., Han S., Jeon S. H., et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory[J]. Nano Letters,2009, V9(4): 1476-1481
    [6]Yang Y. C., Pan F., Liu Q., et al. Fully room-temperature-fabricated nonvolatile resistive memory forultrafast and high-density memory application[J]. Nano Letters, 2009, V9(4):1636-1643
    [7]Kwon D. H., Kim K. M., Jang J.H., et al. Atomic structure of conducting nanofilaments in TiO2 resistiveswitching memory [J]. Nature Nanotechnology,2010, V5:148-153
    [8]Yang J. J., Pickett M. D., Li X., et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology,2008, V3(7):429-433
    [9]Jeong D., Schroeder H., Waser R. Mechanism for bipolar switching in a Pt/TiO2/Pt resistive switching cell[J]. Physical Review B,2009, V79(19):195317
    [10]Waser R., Aono M. Nanoionics-based resistive switching memories[J]. Nature materials,2007, V6(11):833-840
    [11]Sawa A. Resistive switching in transition metal oxides[J]. Material Today,2008, V11: 28-36
    [12]Yang J. J., Dmitri B. S., Duncan R. S. Memristive devices for computing[J]. Nature Nanotechnology,2013, V8(1):13-24
    [13]Bid A., Bora A., Raychaudhuri A. K. Temperature dependence of the resistance of metallic nanowires of diameter≥ 15nm:applicability of Bloch-Grrneisen theorem[J]. Physical Review B, V74(3):035426
    [14]Guan W., Liu M., Long S., et al. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt[J]. Applied Physics Letters,2008, V93(22):223506
    [1]Yang J. J., Strukov D. B., Stewart D. R. Memristive devices for computing[J]. Nature Nanotechnology,2013, V8(1):13-24
    [2]Thomas G. Materials science:Invisible circuits[J]. Nature,1997, V389(6654): 907-908
    [3]Zhao H., Tu H., Wei F., et al. Characteristics and mechanism of nano-polycrystalline La2O3 thin-film resistance switching memory[J]. Physica status solidi (RRL)-Rapid Research Letters,2013, V7(11):1005-1008
    [4]Chang W. Z., Chu J. P., Wang S. F. Resistive switching behavior of a thin amorphous rare-earth scandate:Effects of oxygen content[J]. Applied Physics Letters,2012, V101(1):012102
    [5]Novoselov K. S., Geim A. K., Morozov S. V., et al. Electric field effect in atomically thin carbon films[J]. Science,2004, V306(5696):666-669
    [6]Lee C, Wei X., Kysar J. W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008, V321(5887):385-388
    [7]Hong A. J., Song E. B., Yu H. S., et al. Graphene flash memory[J]. ACS Nano,2011, V5(10):7812-7817
    [8]Tian H., Chen H. Y., Gao B., et al. Monitoring oxygen movement by raman spectroscopy of resistive random access memory with a graphene-Inserted electrode[J]. Nano Letters,2013, V13(2):651-657
    [9]Ferrari A. C., Meyer J. C., Scardaci V., et al. Raman Spectrum of graphene and graphene layers [J]. Physcs Review Letters,2006, V97(18):187401
    [10]Yao J., Lin J., Dai Y., et al. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene[J], Nature Communication,2012, V3(10):1101
    [11]Seo J. W., Park J. W., Lim K. S., et al. Transparent resistive random access memory and its characteristics for nonvolatile resistive switching[J]. Applied physics letters, 2008, V93(22):223505
    [12]Kim H. D., An H. M., Seo Y., et al. Transparent resistive switching memory using ITO/A1N/ITO capacitors[J]. IEEE Electron Device Letters,2011, V32(8):1125-1127
    [13]Liu K. C, Tzeng W. H., Chang K. M., et al. Bipolar resistive switching effect in Gd2O3 films for transparent memory application[J]. Microelectronic Engineering, 2011,V88(7):1586-1589
    [14]Waser R., Aono M. Nanoionics-based resistive switching memories[J]. Nature Materials,2007, V6(11):833-840