水中高氯酸盐的分析方法及其光催化还原去除的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高氯酸盐被广泛应用于军事、烟火、皮革加工等领域。ClO4–可以与I–竞争并导致人体甲状腺功能紊乱,这会给人体健康带来危害。它具有溶解度高、吸附性低及稳定性强的特点,是可快速扩散的持久型无机污染物。我国作为军事、航天大国和主要的焰火生产与消费国家,可以预期存在着高氯酸盐的环境污染问题,应该积极开展与之相关的研究。本文建立了一种水中痕量ClO4–的检测方法,并首次对哈尔滨地区高氯酸盐分布进行调查分析,研发出一种光催化还原去除水中ClO4–的方法,这对于面对潜在的环境风险以及制定应急措施具有重大的现实意义。
     在建立水中痕量ClO4–的检测方法的过程中,首先通过考察抑制电流、淋洗液浓度、淋洗液流速和柱温对离子色谱法检测ClO4–的影响并确定最佳检测条件;然后以ClO4–的回收率为评价标准,确定PWAX型固相萃取柱的最佳富集条件;最后,将固相萃取富集ClO4–的过程与离子色谱法检测ClO4–联立,即固相萃取-离子色谱法检测水样中痕量ClO4–。结果表明,当预处理体积为1L,水样中ClO4–的浓度为1-15μg/L,Cl–和SO42–的浓度均小于或等于30mg/L时,固相萃取-离子色谱法可以代替离子色谱串联质谱法测定水样中的ClO4–浓度,方法检出限为0.15μg/L,最低检出限为0.60μg/L,ClO4–回收率在99.7%-100.5%之间。
     通过检测哈尔滨地区浅层地下水、地表水、雨水、雪以及表层土壤在各个时期所含ClO4–的浓度,对哈尔滨地区高氯酸盐分布特征及其影响因素进行分析总结。研究发现,雪和表层土壤中的ClO4–主要来自春节期间烟花爆竹的燃放,只有春节期间取得的雪样中可以检测到ClO4–(0.02-0.15μg/L),且ClO4–平均浓度在除夕之夜达到最高值(0.13μg/L)。哈尔滨地区的松花江和阿什河中常年含有ClO4–,在松花江和阿什河漫滩区的浅层地下水中ClO4–浓度通常高于远离漫滩区的浅层地下水中ClO4–浓度。此外,春季时期浅层地下水和地表水中ClO4–浓度要高于秋季。
     采用溶胶凝胶法研制了负载型Cu-TiO2/SiO2催化剂,通过对比催化剂对ClO4–的还原效果筛选出最优催化剂——Cu2+和TiO2的质量比为0.5%时制得的Cu-TiO2/SiO2催化剂(Cu0.5)。以Cu0.5作为催化剂,考察O2、催化剂浓度、空穴清除剂浓度、光生电子(e–)、pH、羟基自由基、反应温度以及水中几种常见离子对光催化还原ClO4–的影响。结果表明,在无氧条件下,当以Cu0.5为催化剂(10g/L),空穴清除剂柠檬酸的初始浓度为0.15mmol/L(pH=3.63),再以2mL/min的速度向系统中持续投加浓度为1.5mmol/L的柠檬酸,反应温度为368±0.5K,当ClO4–浓度为0.001mmol/L,经过260min的反应后,ClO4–的去除率可以达到95%左右。当ClO4的初始浓度不同时,ClO4还原反应均符合一级反应动力学。在光催化还原ClO4–的过程中,ClO3–和Cl–分别为中间产物和最终产物,ClO4–被光催化系统中的e–和CO2还原,其中CO2是柠檬酸被h+氧化过程中生成的中间产物。
Perchlorate is widely used in military industry, fireworks industry, leatherworking and so on. It interferes with the uptake of iodine into the thyroid and mayaffect human health. It is one of the persistent inorganic pollutants and has some feature such as high solubility, low absorbability and high stability. China is not only a great power in aviation and spaceflight military affairs field but also a main producing country of fireworks, so there may be the problem of perchlorate pollution and the concerning research should be carried out. An analytical method about the determination of trace perchlorate in groundwater was built. The perchlorate distribution in Harbin and a method about removing perchlorate from water were studied. All these researches have great realistic significance to the potential environmental risks and development of relevant contingency planning emergency measures.
     The analytical method of the determination of trace perchlorate in groundwater is studied. At first, the optimumdetecting conditions were found by studying the influences of suppressor current, eluent concentration, eluent velocity and column temperature on detecting perchlorate by using ion chromatography (IC). Then, the optimumgathering conditions of PWAX were found. PWAX is one kind of solid phase extraction (SPE) column. At last, the course of perchlorate gathering and detecting perchlorate by using IC were combined, namely determination of trace perchlorate in water by SPE-IC. The results indicate that when the perchlorate concentration in water ranges from1μg/L to15μg/L, and thechloridionconcentration and sulfate concentration are both smaller than30mg/L, the limit of detection is0.60μg/L and the recovery ranges from99.7%to100.5%.
     Seasonal variation and influencing factors of perchlorate distribution in groundwater, surface water, rain, snow and surface soilwere studiedin differentperiods in Harbin and its vicinity, China. Results indicate that perchlorate only can be detected in snow during the spring festival and the perchlorate concentration ranged from0.02μg/L to0.15μg/L. In addition, the mean concentration can reach the maximum (0.13μg/L).Perchlorate concentrations in groundwater and surface water decrease after rainy season in summer.Groundwater samples collected in the floodplain areas of the Songhua River and the Ashi River containedhigher perchlorate concentrations than that far away with the rivers.
     Cu–TiO2/SiO2catalystswere prepared by the sol–gel dip-coating method. The catalyst has the best catalyticactivity when the nominal mass ratio of Cu2+to TiO2is0.5%(Cu0.5).The influences of oxygen, catalyst concentration, hole scavengerconcentration, e, pH, hydroxyl radical, reaction temperature and common ions on photocatalytic perchlorate reduction were studied. Results indicate that the efficiency of perchlorate reductioncan reach95%after260min irradiation (368±0.5K) when the initial perchlorate concentration and citric acidconcentration are0.001mmol/L and0.15mmol/L, citric acid (1.5mmol/L) is added to the system at a constant speed2mL/min. The reaction of perchlorate reduction matches first-order dynamical reaction equation when the initial perchlorate concentrations are different.Cl is identified as the end product and ClO3is the intermediate in the course of perchlorate reduction. Perchlorate is reduced by e and CO2, CO2is the intermediate when citric acid is oxidated by photogenerated hole.
引文
[1] Tang Y L, Liang S, Guo H C, et al. Adsorptive characteristics of perchloratefrom aqueous solutions by MIEX resin[J]. Colloids and Surfaces A-physicochemical and Engineering Aspects,2013,417:26-31.
    [2] Dasgupta P K, Martinelango P K, Jackson W A, et al. The origin of naturallyoccurring perchlorate: The role of atmospheric processes[J]. EnvironmentalScience&Technology,2005,39(6):1569-1575.
    [3] Zhao H P, Ontiveros-Valencia A, Tang Y N, et al. Using a two-stagehydrogen-based membrane biofilm reactor (MBfR) to achieve completeperchlorate reduction in the presence of nitrate and sulfate[J]. EnvironmentalScience&Technology,2013,47(3):1565-1572.
    [4] Gu B H, Dong W J, Brown G M, et al. Complete degradation of perchloratein ferric chloride and hydrochloric acid under controlled temperature andpressure[J]. Environmental Science&Technology,2003,37(10):2291-2295.
    [5] Zhang Y, Liu X M, Li Q. Effective electrochemically controlled process forperchlorate removal using poly(aniline-co-o-aminophenol)/multiwalledcarbon nanotubes[J]. Journal of Applied Polymer Science,2013,128(3):1625-1631.
    [6] Urbansky E T, Schock M R. Issues in managing the risks associated withperchlorate in drinking water[J]. Journal of Environmental Management,1999,56(2):79-95.
    [7] Borjan M, Marcella S, Blount B, et al. Perchlorate exposure in lactatingwomen in an urban community in New Jersey[J]. Science of the TotalEnvironment,2011,409(3):460-464.
    [8] Hou P, Cannon F S, Brown N R, et al. Granular activated carbon anchoredwith quaternary ammonium/epoxide-forming compounds to enhanceperchlorate removal from groundwater[J]. Carbon,2013,53:197-207.
    [9] Nerenberg R. Breathing Perchlorate[J]. Science,2013,340(6128):38-39.
    [10] Jain R B. Impact of pregnancy and other factors on the levels of urinaryperchlorate, thiocyanate, and nitrate among females aged15-44years: Datafrom National Health and Nutrition Examination Survey:2003-2008.[J].Chemosphere,2013,91(7).
    [11] Sung H P, Batchelor B, Chunwoo L, et al. Perchlorate degradation using atitanium and membrane hybrid (TMH) system: Transport, adsorption,chemical reduction[J]. Journal of Membrane Science,2012,390-391:84-92.
    [12] Srinivasan R, Sorial G A. Treatment of perchlorate in drinking water: Acritical review[J]. Separation and Purification Technology,2009,69(1):7-21.
    [13] Yu L L, Jarrett J M, Davis W C, et al. Characterization of perchlorate in anew frozen human urine standard reference material[J]. Analytical andBioanalytical Chemistry,2012,404(6-7):1877-1886.
    [14] DasGupta P K, Dyke J V, Kirk A B, et al. Perchlorate in the United States.Analysis of relative source contributions to the food chain[J]. EnvironmentalScience&Technology,2006,40(21):6608-6614.
    [15] Catling D C, Claire M W, Zahnle K J, et al. Atmospheric origins ofperchlorate on Mars and in the Atacama[J]. Journal of GeophysicalResearch-Planets,2010,115.
    [16] Kang N, Jackson W A, Dasgupta P K, et al. Perchlorate production by ozoneoxidation of chloride in aqueous and dry systems[J]. Science of the TotalEnvironment,2008,405(1-3):301-309.
    [17] Lybrand R A, Michalski G, Graham R C, et al. The geochemical associationsof nitrate and naturally formed perchlorate in the Mojave Desert, California,USA[J]. Geochimica Et Cosmochimica Acta,2013,104:136-147.
    [18] Kannan K, Praamsma M L, Oldi J F, et al. Occurrence of perchlorate indrinking water, groundwater, surface water and human saliva from India[J].Chemosphere,2009,76(1):22-26.
    [19] Kosaka K, Asami M, Matsuoka Y, et al. Occurrence of perchlorate indrinking water sources of metropolitan area in Japan[J]. Water Research,2007,41(15):3474-3482.
    [20] Quinones O, Oh J E, Vanderford B, et al. Perchlorate assessment of theNakdong and Yeongsan watersheds, Republic of Korea[J]. EnvironmentalToxicology and Chemistry,2007,26(7):1349-1354.
    [21] Ellington J J, Wolfe N L, Garrison A W, et al. Determination of perchloratein tobacco plants and tobacco products[J]. Environmental Science&Technology,2001,35(15):3213-3218.
    [22] Martinelango P K, Tian K, Dasgupta P K. Perchlorate in seawater-Bioconcentration of iodide and perchlorate by various seaweed species[J].Analytica Chimica Acta,2006,567(1):100-107.
    [23] Cheng Q Q, Perlmutter L, Smith P N, et al. A study on perchlorate exposureand absorption in beef cattle[J]. Journal of Agricultural and Food Chemistry,2004,52(11):3456-3461.
    [24] Sanchez C A, Blount B C, Valentin-Blasini L, et al. Perchlorate in the feed-dairy continuum of the southwestern United States[J]. Journal ofAgricultural and Food Chemistry,2008,56(13):5443-5450.
    [25] Dodds E D, Kennish J M, von Hippel F A, et al. Quantitative analysis ofperchlorate in extracts of whole fish homogenates by ion chromatography:comparison of suppressed conductivity detection and electrospray ionizationmass spectrometry[J]. Analytical and Bioanalytical Chemistry,2004,379(5-6):881-887.
    [26] Kirk A B, Martinelango P K, Tian K, et al. Perchlorate and iodide in dairyand breast milk[J]. Environmental Science&Technology,2005,39(7):2011-2017.
    [27] Snyder S A, Pleus R C, Vanderford B J, et al. Perchlorate and chlorate indietary supplements and flavor enhancing ingredients[J]. Analytica ChimicaActa,2006,567(1):26-32.
    [28] El Aribi H, Le Blanc Y J C, Antonsen S, et al. Analysis of perchlorate infoods and beverages by ion chromatography coupled with tandem massspectrometry (IC-ESI-MS/MS)[J]. Analytica Chimica Acta,2006,567(1):39-47.
    [29] Murray C W, Egan S K, Kim H, et al. US food and drug administration'stotal diet study: Dietary intake of perchlorate and iodine[J]. Journal ofExposure Science and Environmental Epidemiology,2008,18(6):571-580.
    [30] Oldi J F, Kannan K. Perchlorate in human blood serum and plasma:Relationship to concentrations in saliva[J]. Chemosphere,2009,77(1):43-47.
    [31] Shi Y L, Zhang P, Wang Y W, et al. Perchlorate in sewage sludge, rice,bottled water and milk collected from different areas in China[J].Environment International,2007,33(7):955-962.
    [32] Wu Q, Zhang T, Sun H W, et al. Perchlorate in tap water, groundwater,surface waters, and bottled water from China and its association with otherinorganic anions and with disinfection byproducts[J]. Archives ofEnvironmental Contamination and Toxicology,2010,58(3):543-550.
    [33] Zhang T, Wu Q, Sun H W, et al. Perchlorate and iodide in whole bloodsamples from infants, children, and Adults in Nanchang, China[J].Environmental Science&Technology,2010,44(18):6947-6953.
    [34]姜苏,李院生,马红梅,等.环境中高氯酸盐的来源、污染现状及其分析方法[J].地球科学进展,2010(6):617-624.
    [35] Urbansky E T. Quantitation of perchlorate ion: Practices and advancesapplied to the analysis of common matrices[J]. Critical Reviews inAnalytical Chemistry,2000,30(4):311-343.
    [36] Jackson P E, Laikhtman M, Rohrer J S. Determination of trace levelperchlorate in drinking water and ground water by ion chromatography[J].Journal of Chromatography A,1999,850(1-2):131-135.
    [37]蔡亚岐,史亚利,张萍,等.高氯酸盐的环境污染问题[J].化学进展,2006(11):1554-1564.
    [38] Jackson P E, Gokhale S, Streib T, et al. Improved method for thedetermination of trace perchlorate in ground and drinking waters by ionchromatography[J]. Journal of Chromatography A,2000,888(1-2):151-158.
    [39]史亚利.离子色谱与API2000(IC/MS/MS)联用分析食品和饮料中的高氯酸盐[J].环境化学,2006(1):117-120.
    [40] Lamb J D, Simpson D, Jensen B D, et al. Determination of perchlorate indrinking water by ion chromatography using macrocycle-based concentrationand separation methods[J]. Journal of Chromatography A,2006,1118(1):100-105.
    [41] Wagner H P, Pepich B V, Pohl C, et al. Selective method for the analysis ofperchlorate in drinking waters at nanograrn per liter levels, using two-dimensional ion chromatography with suppressed conductivity detection[J].Journal of Chromatography A,2007,1155(1):15-21.
    [42] Wagner H P, Pepich B V, Pohl C, et al. US Environmental ProtectionAgency Method314.1, an automated sample preconcentration/matrixelimination suppressed conductivity method for the analysis of trace levels(0.50mu g/L) of perchlorate in drinking water[J]. Journal ofChromatography A,2006,1118(1):85-93.
    [43] AN178使用二维离子色谱和抑制电导检测器检测预富集后饮用水中痕量高氯酸盐[J].环境化学,2007(6):869-871.
    [44] Roehl R, Slingsby R, Avdalovic N, et al. Applications of ionchromatography with electrospray mass spectrometric detection to thedetermination of environmental contaminants in water[J]. Journal ofChromatography A,2002,956(1-2):245-254.
    [45] Kirk A B, Smith E E, Tian K, et al. Perchlorate in milk[J]. EnvironmentalScience&Technology,2003,37(21):4979-4981.
    [46] Backus S M, Klawuun P, Brown S, et al. Determination of perchlorate inselected surface waters in the Great Lakes Basin by HPLC/MS/MS[J].Chemosphere,2005,61(6):834-843.
    [47] Li Y T, George E J. Reversed-phase liquid chromatograhy/electrosprayionization tandem mass spectrometry for analysis of perchlorate in water[J].Journal of Chromatography A,2006,1133(1-2):215-220.
    [48] Pisarenko A N, Stanford B D, Quinones O, et al. Rapid analysis ofperchlorate, chlorate and bromate ions in concentrated sodium hypochloritesolutions[J]. Analytica Chimica Acta,2010,659(1-2):216-223.
    [49] Mahmudov R, Huang C P. Perchlorate removal by activated carbonadsorption[J]. Separation and Purification Technology,2010,70(3):329-337.
    [50] Na C Z, Cannon F S, Hagerup B. Perchlorate removal via iron-preloadedGAC and borohydride regeneration[J]. Journal American Water WorksAssociation,2002,94(11):90-102.
    [51] Chen W F, Cannon F S, Rangel-Mendez J R. Ammonia-tailoring of GAC toenhance perchlorate removal. I: Characterization of NH3thermally tailoredGACs[J]. Carbon,2005,43(3):573-580.
    [52] Parette R, Cannon F S. The removal of perchlorate from groundwater byactivated carbon tailored with cationic surfactants[J]. Water Research,2005,39(16):4020-4028.
    [53] Parette R, Cannon F S, Weeks K. Removing low ppb level perchlorate, RDX,and HMX from groundwater with cetyltrimethylammonium chloride (CTAC)pre-loaded activated carbon[J]. Water Research,2005,39(19):4683-4692.
    [54] Gao N Y, Xu J H, Deng Y, et al. Perchlorate removal by granular activatedcarbon coated with cetyltrimethyl ammonium bromide[J]. Journal of Colloidand Interface Science,2011,357(2):474-479.
    [55] Patterson J P, Parette R, Cannon F S. Oxidation of intermediate sulfurspecies (thiosulfate) by free chlorine to increase the bed life of tailoredgranular-activated carbon removing perchlorate[J]. EnvironmentalEngineering Science,2010,27(10):835-843.
    [56] Jang M, Cannon F S, Parette R B, et al. Combined hydrous ferric oxide andquaternary ammonium surfactant tailoring of granular activated carbon forconcurrent arsenate and perchlorate removal[J]. Water Research,2009,43(12):3133-3143.
    [57] Xie Y H, Li S Y, Wang F, et al. Removal of perchlorate from aqueoussolution using protonated cross-linked chitosan[J]. Chemical EngineeringJournal,2010,156(1):56-63.
    [58] Kumar E, Bhatnagar A, Choi J A, et al. Perchlorate removal from aqueoussolutions by granular ferric hydroxide (GFH)[J]. Chemical EngineeringJournal,2010,159(1-3):84-90.
    [59] Lien H L, Yu C C, Lee Y C. Perchlorate removal by acidified zero-valentaluminum and aluminum hydroxide[J]. Chemosphere,2010,80(8):888-893.
    [60] Lv L A, Wang W, Wei M, et al. Bromide ion removal from contaminatedwater by calcined and uncalcined MgAl-CO3layered double hydroxides[J].Journal of Hazardous Materials,2008,152(3):1130-1137.
    [61] Chatelet L, Bottero J Y, Yvon J, et al. Competition between monovalent anddivalent anions for calcined and uncalcined hydrotalcite: Anion exchangeand adsorption sites[J]. Colloids and Surfaces a-Physicochemical andEngineering Aspects,1996,111(3):167-175.
    [62] Lv L, Wu X M, Wang Y L, et al. Removal of perchlorate contaminants bycalcined Zn/Al layered double hydroxides: Equilibrium, kinetics, andcolumn studies[J]. Desalination,2010,256(1-3):136-140.
    [63] Kim J Y, Komarneni S, Parette R, et al. Perchlorate uptake by syntheticlayered double hydroxides and organo-clay minerals[J]. Applied ClayScience,2011,51(1-2):158-164.
    [64] Meng X G, Baidas S, Gao B Y. Perchlorate removal by quaternary aminemodified reed[J]. Journal of Hazardous Materials,2011,189(1-2):54-61.
    [65] Yoon Y, Amy G, Cho J W, et al. Transport of perchlorate (ClO4-) throughNF and UF membranes[J]. Desalination,2002,147(1-3):11-17.
    [66] Yoon Y, Amy G, Yoon J. Effect of pH and conductivity on hindereddiffusion of perchlorate ions during transport through negatively chargednanofiltration and ultrafiltration membranes[J]. Desalination,2005,177(1-3):217-227.
    [67] Yoon J, Amy G, Chung J, et al. Removal of toxic ions (chromate, arsenate,and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltrationmembranes[J]. Chemosphere,2009,77(2):228-235.
    [68] Huq H P, Yang J S, Yang J W. Removal of perchlorate from groundwater bythe polyelectolyte-enhanced ultrafiltration process[J]. Desalination,2007,204(1-3):335-343.
    [69] Roach J D, Tush D. Equilibrium dialysis and ultrafiltration investigations ofperchlorate removal from aqueous solution usingpoly(diallyldimethylammonium) chloride[J]. Water Research,2008,42(4-5):1204-1210.
    [70] Roquebert V, Booth S, Cushing R S, et al. Electrodialysis reversal (EDR)and ion exchange as polishing treatment for perchlorate treatment[J].Desalination,2000,131(1-3):285-291.
    [71] Tripp A R, Clifford D A. Ion exchange for the remediation of perchlorate-contaminated drinking water[J]. Journal American Water Works Association,2006,98(4):105-114.
    [72] Gu B H, Brown G M, Maya L, et al. Regeneration of perchlorate (ClO4-)-loaded anion exchange resins by a novel tetrachloroferrate (FeCl4-)displacement technique[J]. Environmental Science&Technology,2001,35(16):3363-3368.
    [73] Gu B H, Ku Y K, Brown G M. Sorption and desorption of perchlorate andU(VI) by strong-base anion-exchange resins[J]. Environmental Science&Technology,2005,39(3):901-907.
    [74] Gu B H, Brown G M, Chiang C C. Treatment of perchlorate-contaminatedgroundwater using highly selective, regenerable ion-exchangetechnologies[J]. Environmental Science&Technology,2007,41(17):6277-6282.
    [75] Kim T H, Jang M, Park J K. Bifunctionalized mesoporous molecular sievefor perchlorate removal[J]. Microporous and Mesoporous Materials,2008,108(1-3):22-28.
    [76] Hristovski K, Westerhoff P, Moller T, et al. Simultaneous removal ofperchlorate and arsenate by ion-exchange media modified withnanostructured iron (hydr)oxide[J]. Journal of Hazardous Materials,2008,152(1):397-406.
    [77] Xiong Z, Zhao D, Harper W F. Sorption and desorption of perchlorate withvarious classes of ion exchangers: A comparative study[J]. Industrial&Engineering Chemistry Research,2007,46(26):9213-9222.
    [78] Chung J, Shin S, Oh J. Characterization of a microbial community capable ofreducing perchlorate and nitrate in high salinity[J]. Biotechnology Letters,2009,31(7):959-966.
    [79] Bender K S, Shang C, Chakraborty R, et al. Identification, characterization,and classification of genes encoding perchlorate reductase[J]. Journal ofBacteriology,2005,187(15):5090-5096.
    [80] Rikken G B, Kroon A G M, VanGinkel C G. Transformation of (per)chlorateinto chloride by a newly isolated bacterium: Reduction and dismutation[J].Applied Microbiology and Biotechnology,1996,45(3):420-426.
    [81] Thrash J C, Ahmadi S, Torok T, et al. Magnetospirillum bellicus sp nov., anovel dissimilatory perchlorate-reducing alphaproteobacterium isolated froma bioelectrical reactor[J]. Applied and Environmental Microbiology,2010,76(14):4730-4737.
    [82] Ahn C H, Oh H, Ki D, et al. Bacterial biofilm-community selection duringautohydrogenotrophic reduction of nitrate and perchlorate in ion-exchangebrine[J]. Applied Microbiology and Biotechnology,2009,81(6):1169-1177.
    [83] Ghosh A, Pakshirajan K, Ghosh P K, et al. Perchlorate degradation using anindigenous microbial consortium predominantly Burkholderia sp[J]. Journalof Hazardous Materials,2011,187(1-3):133-139.
    [84] Miller J P, Logan B E. Sustained perchlorate degradation in an autotrophic,gas-phase, packed-bed bioreactor[J]. Environmental Science&Technology,2000,34(14):3018-3022.
    [85] Sahu A K, Conneely T, Nusslein K R, et al. Biological PerchlorateReduction in Packed Bed Reactors Using Elemental Sulfur[J].Environmental Science&Technology,2009,43(12):4466-4471.
    [86] Yu X Y, Amrhein C, Deshusses M A, et al. Perchlorate reduction byautotrophic bacteria in the presence of zero-valent iron[J]. EnvironmentalScience&Technology,2006,40(4):1328-1334.
    [87] Choi Y C, Li X, Raskin L, et al. Chemisorption of oxygen onto activatedcarbon can enhance the stability of biological perchlorate reduction in fixedbed biofilm reactors[J]. Water Research,2008,42(13):3425-3434.
    [88] Fuller M E, Hatzinger P B, Condee C W, et al. Combined treatment ofperchlorate and RDX in ground water using a fluidized bed reactor[J].Ground Water Monitoring and Remediation,2007,27(3):59-64.
    [89] Brown J C, Snoeyink V L, Raskin L, et al. The sensitivity of fixed-bedbiological perchlorate removal to changes in operating conditions and waterquality characteristics[J]. Water Research,2003,37(1):206-214.
    [90] Choi H, Silverstein J. Effluent recirculation to improve perchlorate reductionin a fixed biofilm reactor[J]. Biotechnology and Bioengineering,2007,98(1):132-140.
    [91] Xiao Y Y, Roberts D J, Zuo G Y, et al. Characterization of microbialpopulations in pilot-scale fluidized-bed reactors treating perchlorate-andnitrate-laden brine[J]. Water Research,2010,44(14):4029-4036.
    [92] Venkatesan A K, Sharbatmaleki M, Batista J R. Bioregeneration ofperchlorate-laden gel-type anion-exchange resin in a fluidized bed reactor[J].Journal of Hazardous Materials,2010,177(1-3):730-737.
    [93] Choi Y C, Li X, Raskin L, et al. Effect of backwashing on perchlorateremoval in fixed bed biofilm reactors[J]. Water Research,2007,41(9):1949-1959.
    [94] Hatzinger P B. Perchlorate biodegradation for water treatment[J].Environmental Science&Technology,2005,39(11):239a-247a.
    [95] Hatzinger. P B, Whittier. M C, Arkins. M D, et al. In-situ and ex-situbioremediation options for treating perchlorate in groundwater[J].Remediation,2002,12(2):69-85.
    [96] Cramer. R J, Yates. C, Hatzinger. P, et al. Field demonstration of in-situperchlorate bioremediation at building1419[J]. Naval Ordnance Safety andSecurity Activity, Naval Sea Systems Command Technical Report,2004(NOSSA-TR-2004-001).
    [97] Wan B, Chen M B, Zhou X Y, et al. Preparation of Ag/TiO2Nanotube andIts Photocatalytic Performance[J]. Rare Metal Materials and Engineering,2009,38(11):2012-2016.
    [98] Moore A M, De Leon C H, Young T M. Rate and extent of aqueousperchlorate removal by iron surfaces[J]. Environmental Science&Technology,2003,37(14):3189-3198.
    [99] Oh S Y, Chiu P C, Kim B J, et al. Enhanced reduction of perchlorate byelemental iron at elevated temperatures[J]. Journal of Hazardous Materials,2006,129(1-3):304-307.
    [100] Abu-Omar M M, McPherson L D, Arias J, et al. Clean and efficient catalyticreduction of perchlorate[J]. Angewandte Chemie-International Edition,2000,39(23):4310-4313.
    [101] Abuomar M M, Espenson J H. Facile abstraction of successive oxygen-atomsfrom perchlorate ions by methylrhenium doxide[J]. Inorganic Chemistry,1995,34(25):6239-6240.
    [102] Wang C, Huang Z D, Lippincott L, et al. Rapid Ti(III) reduction ofperchlorate in the presence of beta-alanine: Kinetics, pH effect, complexformation, and beta-alanine effect[J]. Journal of Hazardous Materials,2010,175(1-3):159-164.
    [103] Huang C P, Wang D M, Shah S I, et al. Catalytic reduction of perchlorate byH2gas in dilute aqueous solutions[J]. Separation and PurificationTechnology,2008,60(1):14-21.
    [104] Hurley K D, Shapley J R. Efficient heterogeneous catalytic reduction ofperchlorate in water[J]. Environmental Science&Technology,2007,41(6):2044-2049.
    [105] Choe J K, Shapley J R, Strathmann T J, et al. Influence of rheniumspeciation on the stability and activity of Re/Pd bimetal catalysts used forperchlorate reduction[J]. Environmental Science&Technology,2010,44(12):4716-4721.
    [106] Zhang Y X, Hurley K D, Shapley J R. Heterogeneous catalytic reduction ofperchlorate in water with Re-Pd/C catalysts derived from an oxorhenium(V)molecular precursor[J]. Inorganic Chemistry,2011,50(4):1534-1543.
    [107] Almeida C M V B, Giannetti B F, Rabockai T. Electrochemical study ofperchlorate reduction at tin electrodes[J]. Journal of ElectroanalyticalChemistry,1997,422(1-2):185-189.
    [108] Rusanova M Y, Polaskova P, Muzikar M, et al. Electrochemical reduction ofperchlorate ions on platinum-activated nickel[J]. Electrochimica Acta,2006,51(15):3097-3101.
    [109] Lang G G, Sas N S, Ujvari M, et al. The kinetics of the electrochemicalreduction of perchlorate ions on rhodium[J]. Electrochimica Acta,2008,53(25):7436-7444.
    [110] Wang D M, Lin H Y, Shah S I, et al. Indirect electrochemical reduction ofperchlorate and nitrate in dilute aqueous solutions at the Ti-waterinterface[J]. Separation and Purification Technology,2009,67(2):127-134.
    [111]黄锦勇,刘国光,张万辉,等. TiO2光催化还原重金属离子的研究进展[J].环境科学与技术,2008(12).
    [112] Kudo A, Domen K, Maruya K, et al. Photocatalytic reduction of NO3-fromNH3over Pt-TiO2[J]. Chemistry Letters,1987(6):1019-1022.
    [113] Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction ofnitrite and nitrate ions to ammonia on Ru/TiO2catalysts[J]. Journal ofPhotochemistry and Photobiology A-Chemistry,1995,89(1):67-68.
    [114] Ranjit K T, Viswanathan B. Photocatalytic reduction of nitrite and nitrateions to ammonia on M/TiO2catalysts[J]. Journal of Photochemistry andPhotobiology A-Chemistry,1997,108(1):73-78.
    [115] Kominami H, Furusho A, Murakami S, et al. Effective photocatalyticreduction of nitrate to ammonia in an aqueous suspension of metal-loadedtitanium(IV) oxide particles in the presence of oxalic acid[J]. CatalysisLetters,2001,76(1-2):31-34.
    [116]温福宇,杨金辉,宗旭,等.太阳能光催化制氢研究进展[J].化学进展,2009(11).
    [117] Bao N Z, Shen L M, Takata T, et al. Self-templated synthesis of nanoporousCdS nanostructures for highly efficient photocatalytic hydrogen productionunder visible[J]. Chemistry of Materials,2008,20(1):110-117.
    [118] Leung M K H, Meng N, Leung D Y C, et al. A review and recentdevelopments in photocatalytic water-splitting using TiO2for hydrogenproduction[J]. Renewable&Sustainable Energy Reviews,2007,11(3):401-425.
    [119] Yang M, Zhang Y C, Dai W M, et al. Synthesis of SnS2/SnO2nanocompositefor visible light-driven photocatalytic reduction of aqueous Cr(VI)[J]. Stafa-zurich: Trans Tech Publications Ltd,2013:46-49.
    [120] Giannakas A E, Seristatidou E, Deligiannakis Y, et al. Photocatalytic activityof N-doped and N-F co-doped TiO2and reduction of chromium(VI) inaqueous solution: An EPR study[J]. Applied Catalysis B-Environmental,2013,132:460-468.
    [121] Xu Z, Bai S, Liang J, et al. Photocatalytic reduction of Cr(VI) by citric andoxalic acids over biogenetic jarosite.[J]. Materials science&engineering. C,Materials for biological applications,2013,33(4).
    [122] Arabatzis I M, Stergiopoulos T, Andreeva D, et al. Characterization andphotocatalytic activity of Au/TiO2thin films for azo-dye degradation[J].Journal of Catalysis,2003,220(1):127-135.
    [123] Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement ofphotocatalytic activity by metal deposition: characterisation and photonicefficiency of Pt, Au and Pd deposited on TiO2catalyst[J]. Water Research,2004,38(13):3001-3008.
    [124] Costa L L, Prado A. TiO2nanotubes as recyclable catalyst for efficientphotocatalytic degradation of indigo carmine dye[J]. Journal ofPhotochemistry and Photobiology A-Chemistry,2009,201(1):45-49.
    [125]彭英春,龙应钊,孙慧萍,等. NiOx修饰TiO2纳米管光催化还原Cr(Ⅵ)离子研究[J].化学世界,2009(11).
    [126]张鹏翔.色谱分析中的检出限和测定下限及其确定方法[J].内蒙古科技与经济,2009(06).
    [127]姜曼曼.松花江哈尔滨段动态水环境容量及其价值研究[D].哈尔滨工业大学环境科学与工程,2010:
    [128] Kounaves S P, Stroble S T, Anderson R M, et al. Discovery of naturalperchlorate in the Antarctic dry valleys and its global implications[J].Environmental Science&Technology,2010,44(7):2360-2364.
    [129]臧志鹏.新型固相萃取吸附剂的制备及其对溶液样品中痕量元素吸附性能的研究[D].兰州大学,2010:
    [130]王彩娟. TurboFlow在线固相萃取—液质联用全自动技术在药物残留检测中的应用研究[D].郑州大学分析化学,2013:
    [131]苏怀龙.哈尔滨地下水高氯酸盐背景调查及其光催化还原工艺研究[D].哈尔滨工业大学环境科学与工程,2011:
    [132]杨春英,杭义萍,钟新林.离子色谱法同时测定饮用水中5种消毒剂副产物[J].分析化学,2007(11).
    [133] Dasgupta P K, Martinelango P K, Jackson W A, et al. The origin of naturallyoccurring perchlorate: The role of atmospheric processes[J]. EnvironmentalScience&Technology,2005,39(6):1569-1575.
    [134] Wilkin R T, Fine D D, Burnett N G. Perchlorate behavior in a municipal lakefollowing fireworks displays[J]. Environmental Science&Technology,2007,41(11):3966-3971.
    [135] Munster J, Hanson G N, Jackson W A, et al. The fallout from fireworks:perchlorate in total deposition[J]. Water Air and Soil Pollution,2009,198(1-4):149-153.
    [136] Loosmore G A, Cederwall R T. Precipitation scavenging of atmosphericaerosols for emergency response applications: testing an updated model withnew real-time data[J]. Atmospheric Environment,2004,38(7):993-1003.
    [137] Shi Y L, Zhang N, Gao J M, et al. Effect of fireworks display on perchloratein air aerosols during the Spring Festival[J]. Atmospheric Environment,2011,45(6):1323-1327.
    [138] Wilkin R T, Fine D D, Burnett N G. Perchlorate behavior in a municipal lakefollowing fireworks displays[J]. Environmental Science&Technology,2007,41(11):3966-3971.
    [139] Wu Q, Oldi J F, Kannan K. Fate of perchlorate in a man-made reflectingpond following a fireworks display in Albany, New York, USA[J].Environmental Toxicology and Chemistry,2011,30(11):2449-2455.
    [140] Urbansky E T, Brown S K. Perchlorate retention and mobility in soils[J].Journal of Environmental Monitoring,2003,5(3):455-462.
    [141] Hatzinger P B. Perchlorate biodegradation for water treatment[J].Environmental Science&Technology,2005,39(11):239a-247a.
    [142] Song. L. Discussion On the Environmental Problem of Groundwater inHarbin[J]. Heilongjiang Science and Technology of Water Conservancy (inChinese),2002,4(7):39-40.
    [143] Motzer W E. Perchlorate: Problems, detection, and solutions[J].Environmental Forensics,2001,2(4):301-311.
    [144] Plummer L N, Bohlke J K, Doughten M W. Perchlorate in Pleistocene andHolocene groundwater in North-Central New Mexico[J]. EnvironmentalScience&Technology,2006,40(6):1757-1763.
    [145] Parker D R, Seyfferth A L, Reese B K. Perchlorate in groundwater: Asynoptic survey of "Pristine" sites in the coterminous United States[J].Environmental Science&Technology,2008,42(5):1465-1471.
    [146] Kannan K, Praamsma M L, Oldi J F, et al. Occurrence of perchlorate indrinking water, groundwater, surface water and human saliva from India[J].Chemosphere,2009,76(1):22-26.
    [147] Fram M S, Belitz K. Probability of Detecting perchlorate under naturalconditions in deep groundwater in California and the southwestern UnitedStates[J]. Environmental Science&Technology,2011,45(4):1271-1277.
    [148] Barron L, Nesterenko P N, Paull B. Rapid on-line preconcentration andsuppressed micro-bore ion chromatography of part per trillion levels ofperchlorate in rainwater samples[J]. Analytica Chimica Acta,2006,567(1):127-134.
    [149] Hamadanian M, Sarabi A S, Mehra A M, et al. Efficient visible-light-induced photocatalytic degradation of MO on the Cr-nanocrystalline titania-S[J]. Applied Surface Science,2011,257(24):10639-10644.
    [150] Litter M I. Heterogeneous photocatalysis-transition metal ions inphotocatalytic systems[J]. Applied Catalysis B-Environmental,1999,23(2-3):89-114.
    [151] Zhu L H, Wang N, Deng K J, et al. Visible light photocatalytic reduction ofCr(VI) on TiO2in situ modified with small molecular weight organicacids[J]. Applied Catalysis B-Environmental,2010,95(3-4):400-407.
    [152] Xu Y H, Zeng Z X. The preparation, characterization, and photocatalyticactivities of Ce-TiO2/SiO2[J]. Journal of Molecular Catalysis a-Chemical,2008,279(1):77-81.
    [153] Zou X J, Li X Y, Qu Z P, et al. Photocatalytic degradation of gaseoustoluene over TiO2-SiO2composite nanotubes synthesized by sot-gel withtemplate technique[J]. Materials Research Bulletin,2012,47(2):279-284.
    [154] Koci K, Mateju K, Obalova L, et al. Effect of silver doping on the TiO2forphotocatalytic reduction of CO2[J]. Applied Catalysis B-Environmental,2010,96(3-4):239-244.
    [155] Jakob M, Levanon H, Kamat P V. Charge distribution between UV-irradiated TiO2and gold nanoparticles: Determination of shift in the Fermilevel[J]. Nano Letters,2003,3(3):353-358.
    [156] Anderson J A, Sa J, Fernandez-Garcia M. Photoformed electron transferfrom TiO2to metal clusters[J]. Catalysis Communications,2008,9(10):1991-1995.
    [157] Sa J, Aguera C A, Gross S, et al. Photocatalytic nitrate reduction over metalmodified TiO2[J]. Applied Catalysis B-Environmental,2009,85(3-4):192-200.
    [158] Yang L X, Xiao Y, Liu S H, et al. Photocatalytic reduction of Cr(VI) onWO3doped long TiO2nanotube arrays in the presence of citric acid[J].Applied Catalysis B-Environmental,2010,94(1-2):142-149.
    [159] Zhang K, Liang J, Wang S, et al. BiOCI sub-microcrystals induced by citricacid and their high photocatalytic activities[J]. Crystal Growth&Design,2012,12(2):793-803.
    [160] Kominami H, Nakaseko T, Shimada Y, et al. Selective photocatalyticreduction of nitrate to nitrogen molecules in an aqueous suspension of metal-loaded titanium(IV) oxide particles[J]. Chemical Communications,2005(23):2933-2935.
    [161] Yilmaz S, Unal F, Yuzbasioglu D, et al. Clastogenic effects of food additivecitric acid in human peripheral lymphocytes[J]. Cytotechnology,2008,56(2):137-144.
    [162] Liu T, You H, Chen Q W. Heterogeneous photo-Fenton degradation ofpolyacrylamide in aqueous solution over Fe(III)-SiO2catalyst[J]. Journal ofHazardous Materials,2009,162(2-3):860-865.
    [163] Guo M L, Du J L. First-principles study of electronic structures and opticalproperties of Cu, Ag, and Au-doped anatase TiO2[J]. Physica B-CondensedMatter,2012,407(6):1003-1007.
    [164] Wu D H, You H, Du J X, et al. Effects of UV/Ag-TiO2/O3advancedoxidation on unicellular green alga Dunaliella salina: Implications forremoval of invasive species from ballast water[J]. Journal of EnvironmentalSciences-China,2011,23(3):513-519.
    [165] Li L Y, Xu Z Y, Liu F L, et al. Photocatalytic nitrate reduction over Pt-Cu/TiO2catalysts with benzene as hole scavenger[J]. Journal ofPhotochemistry and Photobiology a-Chemistry,2010,212(2-3):113-121.
    [166] Anpo M, Takeuchi M. The design and development of highly reactivetitanium oxide photocatalysts operating under visible light irradiation[J].Journal of Catalysis,2003,216(1-2):505-516.
    [167] Jing L Q, Sun X J, Shang J, et al. Review of surface photovoltage spectra ofnano-sized semiconductor and its applications in heterogeneousphotocatalysis[J]. Solar Energy Materials and Solar Cells,2003,79(2):133-151.
    [168] Sadeghi M, Liu W, Zhang T G, et al. Role of photoinduced charge carrierseparation distance in heterogeneous photocatalysis: Oxidative degradationof CH3OH vapor in contact with Pt/TiO2and cofumed TiO2-Fe2O3[J].Journal of Physical Chemistry,1996,100(50):19466-19474.
    [169] Chen L C, Tsai F R, Huang C M. Photocatalytic decolorization of methylorange in aqueous medium of TiO2and Ag-TiO2immobilized on gamma-Al2O3[J]. Journal of Photochemistry and Photobiology a-Chemistry,2005,170(1):7-14.
    [170] Konta R, Ishii T, Kato H, et al. Photocatalytic activities of noble metal iondoped SrTiO3under visible light irradiation[J]. Journal of PhysicalChemistry B,2004,108(26):8992-8995.
    [171] Moulder. J F, Stickle. W F, Sobol. P E, et al. Handbook of X RayPhotoelectron Spectroscopy: A Reference Book of Standard Spectra forIdentification and Interpretation of Xps Data[J].1992.
    [172] Chapman R N B, Orchard. A F, Thorntona. G. Efficient photocatalysis of theirreversible one-electron and2-electron reduction of halothane on platinizedcolloidal titanium-dioxide in aqueous suspension[J]. Journal of Physics andChemistry of Solids,1981,42(14):1051-1055.
    [173] Choi H J, Kang M. Hydrogen production from methanol/waterdecomposition in a liquid photosystem using the anatase structure of Culoaded TiO2[J]. International Journal of Hydrogen Energy,2007,32(16):3841-3848.
    [174] Yu J G, Ran J R. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2cluster modified TiO2[J]. Energy&Environmental Science,2011,4(4):1364-1371.
    [175] Wu N L, Lee M S, Pon Z J, et al. Effect of calcination atmosphere on TiO2photocatalysis in hydrogen production from methanol/water solution[J].Journal of Photochemistry and Photobiology a-Chemistry,2004,163(1-2):277-280.
    [176]陈崧哲,钟顺和. Cu/ZnO-NiO上光促表面催化二氧化碳和水反应规律的研究[J].高等学校化学学报,2003(01).
    [177] Lin J, Lin Y, Liu P, et al. Hot-fluid annealing for crystalline titanium dioxidenanoparticles in stable suspension[J]. Journal of the American ChemicalSociety,2002,124(38):11514-11518.
    [178] Yu H, Irie H, Hashimoto K. Conduction Band Energy Level Control ofTitanium Dioxide: Toward an Efficient Visible-Light-SensitivePhotocatalyst[J]. Journal of the American Chemical Society,2010,132(20):6898-6899.
    [179] Reddy K M, Manorama S V, Reddy A R. Bandgap studies on anatasetitanium dioxide nanoparticles[J]. Materials Chemistry and Physics,2003,78(1):239-245.
    [180] Irie H, Miura S, Kamiya K, et al. Efficient visible light-sensitivephotocatalysts: Grafting Cu(II) ions onto TiO2and WO3photocatalysts[J].Chemical Physics Letters,2008,457(1-3):202-205.
    [181] Mo J H, Zhang Y P, Xu Q J. Effect of water vapor on the by-products anddecomposition rate of ppb-level toluene by photocatalytic oxidation[J].Applied Catalysis B-Environmental,2013,132:212-218.
    [182] Meichtry J M, Quici N, Mailhot G, et al. Heterogeneous photocatalyticdegradation of citric acid over TiO2II. Mechanism of citric aciddegradation[J]. Applied Catalysis B-Environmental,2011,102(3-4):555-562.
    [183] Liu H J, Zhao X, Shen Y L, et al. Photocatalytic reduction of bromate at C60modified Bi2MoO6under visible light irradiation[J]. Applied Catalysis B-Environmental,2011,106(1-2):63-68.
    [184] Ward. M D, White. J R, Bard. A J. Electrochemical investigation of theenergetics of particulate titanium dioxide photocatalysts. The methylviologen-acetate system[J]. Journal of the American Chemical Society,1983,105(7):27-31.
    [185] Kormann C, Bahnemann D W, Hoffmann M R. Photolysis of Chloroformand Other Organic-Molecules in Aqueous TiO2Suspensions[J].Environmental Science&Technology,1991,25(3):494-500.
    [186]Herrmann. M, Boehm. H P. über die Chemie der Oberflche des Titandioxids.II. Saure Hydroxylgruppen auf der Oberflche[J]. Zeitschrift für anorganischeund allgemeine Chemie,2004,368(18):73-86.
    [187] Im J K, Son H S, Zoh K D. Perchlorate removal in Fe/H2O systems: Impactof oxygen availability and UV radiation[J]. Journal of Hazardous Materials,2011,192(2):457-464.
    [188] Jung Y J, Baek K W, Oh B S, et al. An investigation of the formation ofchlorate and perchlorate during electrolysis using Pt/Ti electrodes: Theeffects of pH and reactive oxygen species and the results of kinetic studies[J].Water Research,2010,44(18):5345-5355.
    [189] Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chemical Reviews,1993,93(1):341-357.
    [190] Shkrob I A, Sauer M C. Hole scavenging and photo-stimulatedrecombination of electron-Hole pairs in aqueous TiO2nanoparticles[J].Journal of Physical Chemistry B,2004,108(33):12497-12511.
    [191] Gu B H, Dong W J, Brown G M, et al. Complete degradation of perchloratein ferric chloride and hydrochloric acid under controlled temperature andpressure[J]. Environmental Science&Technology,2003,37(10):2291-2295.
    [192] Lang G G, Horanyi G. Some interesting aspects of the catalytic andelectrocatalytic reduction of perchlorate ions[J]. Journal of ElectroanalyticalChemistry,2003,552:197-211.
    [193] Shkrob I A, Sauer M C, Gosztola D. Efficient, rapid photooxidation ofchemisorbed polyhydroxyl alcohols and carbohydrates by TiO2nanoparticlesin an aqueous solution[J]. Journal of Physical Chemistry B,2004,108(33):12512-12517.
    [194] Schuttlefield J D, Sambur J B, Gelwicks M, et al. Photooxidation of chlorideby oxide minerals: implications for perchlorate on mars[J]. Journal of theAmerican Chemical Society,2011,133(44):17521-17523.
    [195] Munichandraiah N, Sathyanarayana S. Kinetics and Mechanism of Anodic-Oxidation of Chlorate Ion to Perchlorate Ion on Lead Dioxide Electrodes[J].Journal of Applied Electrochemistry,1987,17(1):33-48.