不同水热条件下三种农田土壤中氨化和硝化作用的变化初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是植物的重要营养元素之一,植物生长的主要限制因子,但多以植物难以利用的有机态存在土壤中。土壤微生物是氮素转化(如氨化过程、硝化过程)的主要驱动力。水热条件和土壤性质是影响土壤微生物数量和活性的重要因素。全球变暖已是一个不争的事实,预计未来几十年内全球平均气温将每10年升高0.2℃,我国平均气温将增加0.45℃,降水增加3%。全球变化通过影响温度、降雨和养分形态转化等影响着土壤生态过程,最终影响生态系统的生产力及其稳定性。本文选择我国东部地区三种主要农田土壤(黑土、潮土、红壤),通过在温带的黑龙江海伦,暖温带的河南封丘和中亚热带的江西鹰潭三个野外生态实验站设置野外土壤置换(每种土壤各取三份,原地留一份,运抵其余两站各一份)试验,模拟研究不同气候带水热条件下各土壤氮素氨化和硝化阶段土壤微生物数量和作用强度的变化。两年的试验结果表明:受水热条件的影响同种土壤在不同气候带上,氨化细菌的数量差值平均为15.19×10~6个/克干土,其中黑土、潮土、红壤的平均差值分别为15.60×10~6个/克干土、17.96×10~6个/克干土、12.00×10~6个/克干土;硝化细菌的数量差值平均为4.77×10~2个/克干土,其中黑土、潮土、红壤的平均差值分别为2.82×10~2个/克干土、9.22×10~2个/克干土、2.28×10~2个/克干土。不同生长期,氨化细菌在玉米生长旺盛期高于玉米种植前和玉米成熟期;而硝化细菌在玉米生长旺盛期低于种植前和成熟期。同一生长期的不同气候带,氨化、硝化细菌数量在海伦和封丘高于在鹰潭。相关性分析表明在不同气候带上,氨化细菌数量与温度和降水量基本呈负相关关系(r_(温度)=-0.295,r_(降水量)=-0.267,P<0.01)。硝化细菌在三个时期没有与月均温和降水量呈现出显著的相关性。不同土壤间,氨化细菌、硝化细菌数量黑土和潮土高于红壤。回归分析显示:硝态氮、土壤pH成为了氨化细菌数量的影响因子,综合解释能力达40.5%。
     土壤氨化强度在玉米不同生长季节的差异不显著。受水热条件的影响同种土壤在不同气候带上,氨化强度差值平均为4.65 NH_4~--Nmg/100ml,其中黑土、潮土、红壤的平均差值分别为4.30NH_4~--Nmg/100ml、4.71NH_4~--Nmg/100ml、4.95NH_4~--Nmg/100ml。不同土壤间,黑土和潮土中氨化强度(30~40 NH_4~--Nmg/100ml)高于红壤(20~30NH_4~--Nmg/100ml)。施肥处理与不施肥处理差异不显著。相关分析表明:氨化强度与土壤pH达到了极显著相关(r=0.700,P<0.01)。回归分析表明,在玉米种植前,土壤pH和有机质含量是决定土壤氨化强度的关键因素。玉米生长旺盛期,土壤pH、有机质含量和土壤硝态氮含量是决定土壤氨化强度的关键因素。在玉米成熟期鲜土含水量、有机质含量、氨态氮含量和速效钾是决定土壤氨化强度的关键因素。经通径分析:种植前和旺盛期的土壤pH(1.414,0.321)及成熟期的速效钾(-0.587)与氨化强度的直接通径系数最大。在玉米的整个生长季水热-土壤,水热-土壤-施肥,水热-施肥等对氨化强度有着明显的交互影响作用,达到了显著甚至极显著程度。而土壤-施肥之间对土壤硝化强度的交互作用不显著。
     硝化作用强度受水热条件的影响同种土壤在不同气候带上,硝化作用强度差值平均为36.20%,其中黑土、潮土、红壤的平均差值分别为44.91%、45.30%、8.53%。且差异性显著。在玉米种植前和成熟期不同气候带之间,硝化强度:海伦>封丘>鹰潭,且差异显著;不同土壤之间,潮土>黑土>红壤,潮土中微生物的硝化强度高达90%以上,而红壤却不到20%;施肥处理高于不施肥处理。
     相关分析显示:硝化强度与土壤pH达到了极显著相关(r=0.800,P<0.01)。回归分析知:不同气候带水热条件下,玉米种植前,温度、降水量、土壤pH和土壤全磷含量是决定土壤硝化强度的关键因素;旺盛期,温度、土壤pH、NO_3-N、NH_4-N以及速效钾是决定土壤硝化强度的关键因素;成熟期,降水量、鲜土含水量和全钾是决定土壤硝化强度的关键因素。而经交互性分析可知:土壤-施肥,土壤-水热,水热-施肥等对硝化强度有着明显的交互影响作用,达到了显著甚至极显著程度。而水热-土壤-施肥对土壤硝化强度的交互作用不显著。通径分析可知:土壤pH和全钾对硝化强度的直接影响力最强,直接通径系数为0.652和0.606。特别在玉米生长旺盛期,三种土壤均随着温度和降水量在不同气候带上的增加而下降。从海伦到鹰潭,2006年月平均温度由22.53℃上升到28.31℃,月降水量由119.2mm增加到265.0mm,2007年月平均温度由22.14℃上升到25.19℃,月降水量由82.38mm增加到134.2mm。由北向南,从海伦到鹰潭,三种土壤的硝化强度总体上呈下降趋势,海伦>封丘>鹰潭,而且差异显著,土壤硝化强度与温度和降水量均呈极显著负相关(r_(温度)=-0.354,r_(降水量)=-0.290,P<0.01)。
Nitrogen is the most important nutrient element for higher plants.It is the main limiting factor during the growth period of plant,for most of it in the form of organic matter and poor absorption by plant.Soil microorganism plays key roles in the processes of ammonification and nitrification.Climate conditions,soil properties and management practices influence the numbers and activity of soil microorganisms and affect the cycling and balance of nitrogen in agro-ecosystems.Some scholars studied that the average temperature of global increased 0.2℃each decades,and average temperature increased 0.45℃,while,rainfall increased 3%in China in future multi-decades.Global change may alter soil ecological process and eventually influence productivity stability of ecosystem through temperature,rainfall and transformation morphology of nutrient. The interaction of temperature,rainfall,soil type and fertilization on soil nitrification and ammonification process was studied by the soil transplantation experiment installed in 3 experiment stations of Chinese Ecological Research Network,i.e.Hailun,Fenqiu and Yintan Agricultural Ecological Station,which represents middle temperature,warm temperature and middle subtropical zone,respectively.Three types of cropland soils were selected,i.e.neutral black soil(Phaeozem),alkaline Chao soil(Cambisol) and acidic red soil(Acrisol).Then one-meter depth of soil profiles for each soil were transplanted in 3 stations to build the field experiment.
     The results of two-year,2006 and 2007,experiment showed:the number of ammonifying and nitrifying bacteria change range of 0.08×10~6~74×10~6(/g·dry soil) and 0.001×10~4~25.86×10~4(/g·dry soil).The number of ammonifying bacteria in period of blooming higher than before growing and harvesting of maize,Meanwhile,nitrifying bacteria in period of blooming lower than before growing and harvesting of maize.Both of them in Hailun Station higher than in Fengqiu and in Yingtan Station.Analyse of correlation showed:the correlation between ammonifying bacteria and temperature (r=-0.295,P<0.01) and rainfall(r=-0.267,P<0.01) is negative correlation,but nitrifying bacteria is not,among different climatic zones.Among different types soils,the number of ammonifying and nitrifying bacteria in Phaeozem and Cambisol higher than Acrisol. Regression analysis showed:the main effect factors to the number of bacteria are NO_(3-)N, Available P,Available K,pH,Water content and Temperature.
     There are no significant differences of soil ammonification intensity(SMI) during the different growth period of maize.But it is higher at Hailun Station than at Fengqiu and Yingtan among different climate zones,and is higher in Phaeozem and Cambisol (30~40 NH_4~--Nmg/100ml) than in Acrisol(20~30NH_4~--Nmg/100ml) among different types soil.Analyse of correlation showed:it reaches very obvious correlation between SMI and pH(r=0.700,P<0.01).Regression analysis showed:the main effect factors to SMI are pH and SOM before maize planted,but pH,NO_(3-)N and SOM in blooming,and water content,SOM,NH_4~--N,and Available K in harvested times of maize.Path analysis showed:the most large path coefficient of effect factors to SMI will be change in different periods of maize,for example,pH is the biggest one in the period of before planting and blooming,but Available K is the biggest one in the mature stage.In generally,climate condition(temperature and rainfall),soil type and fertilization exert an integrated impact on soil ammonification process,and there was a significant interaction of climate-soil type,climate-fertilization,and climate-soil type-fertilization. But soil type-fertilization with no significant interaction impact on soil ammonification.
     Soil nitrification intensity(SNI) changed with the temperature and rainfall during the maize stage.Because temperature changed in different climate zones in the period of before planting and mature stage,SNI in Hailun was higher than Fengqiu and Yingtan, and there is a significant impact.The intensity of soil nitrification was affected by soil types,which was in a sequence of Cambisol>Phaeozem>Acrisol.It reached 90%in Cambisol,but no more than 20%in Acrisol.
     Analyse of correlation showed:it reaches very obvious correlation between SNI and pH(r=0.800,P<0.01).Regression analysis showed:the main effect factors to SNI are temperature,rainfall,soil pH and total P before maize planted,but temperature,soil pH,NO_(3-)N,NH_(4-)N and Available K in blooming,and rainfall,water content and total K in harvested times of maize.Also,climate condition(temperature and rainfall),soil type and fertilization exert an integrated impact on soil nitrification process,and there was a significant interaction of climate-soil type,climate-fertilization,soil type-fertilization. But climate-soil type-fertilization with no significant interaction impact on soil ammonification.Path analysis showed:the most large path coefficient of effect factors to SNI is pH and Total K,direct path coefficient is 0.652 and 0.606,correlation coefficient is(r=0.739,P<0.01) and(r=0.585,P<0.01).
     Specially,From Hailun to Yingtan,with an increase of monthly average temperature from 22.3℃to 26.8℃and the monthly rainfall from 100.8 mm to 199.6mm, SNI decreased by 64.2%—67.2%for black soil,52.1%—52.5%for Chao soil,and 41.7%—75.2%for red soil,respectively.There was a significant negative correlation between SNI and temperature and rainfall,with a correlation coefficients of r=—0.354 (p<0.01) and r=—0.290(p<0.01),respectively.The total number of soil nitrobacteria and the intensity of soil nitrification was affected by soil types,which was in a sequence of Chao soil>black soil>red soil.
引文
1. Abbasi M K, Adams W A. Estimation of simultaneous nitrification and denitrification in grassland soil associated with urea-N using ~(15)N and nitrification inhibitor [J]. Biol Fertil Soils, 2000,31:38-44.
    2. Abbott L K, Murphy D V. Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture [J]. Netherlands: Kluwer Academic Publishers, 2003.
    3. Adams M A, Attiwill P M. Nutrient balance in forests of northern Tasmania. ~2Alteration of nutrient availability and soilwater chemistry as a result of logging, slash burning and fertiltzer application [J]. Forest Ecology and Management, 1991, 44: 115-131.
    4. Alexander M. Nitrification. In: Wily J, Sons. Eds. Introduction to soil microbiology [J]. 2~(nd) ed. New York, 1977,251-257.
    5. Aoyama M, Nozawa J. Microbial biomass nitrogen and mineralization immobilization processes of nitrogen in soils incubated with-organic materials [J]. Soil Sci. Plant Nutr, 1993, 39: 23-32.
    6. Arunachalam A, Matthani K. Leaf Ltter Decomposition and Nutrient Mineralization Patterns in Regrowing Stands of a Humid Subtropical Forest after Tree Cutting [J]. For. Ecol. Man-age, 1998. 109: 151-161.
    7. Axler R P, Reuter J E. Nitrate uptake by phytoplankton and periphyton: whole-lake enrichments and mesocosm-~(15)N experiments in an oligotrophic lake [J]. Limnol Oceanogr, 1996,41(4): 659-671.
    8. Belser L W. Population ecology of nitrifying bacteria.Annual Review of Microbicology [J]. 1979,33:309-309.
    9. Berendse F. Implications of increased litter production for plant biodiversity [J]. Trend in Ecology and Evolution, 1999, 14: 4-5.
    10. Biederbeck V O, Campbell C A, et al. Soil microbial and biochemical properties after ten years of fertilization with urea and anhydrous ammonia [J]. Can J Soil Sci, 1996, 76 (1): 7-14.
    11. Bock E, Koops H P, H.Cell biology of nitrifying bacteria [C]. In: Prosser J 1. Ed. Nitrification [A]. Oxford: IRL Press, 1977, 135-214.
    12. Bonilla D, Roda F. Nitrogen cycling responses to disturbance: trenching experiments in an evergreen of forest in Nutrient cycling in Terrestrial Ecosystemseds: Harrison A F, Ineson P and Healow. London: Elsevier applies Science, 1990, 179-189.
    13. Bormann F H, Likens G E. Pattern and process York: Springer-Veriag, 1 981, 41 -87.
    14. Brady N C, Weil R R. The Nature and properties of soils [M]. Upper Saddke Riverm, New Jersey, USA: Prentice-Hall Inc, 1999. 1-881.
    15. Brookes P C, Jenkinson D S. Chloroform fumigation and the release if soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil bio. Boichem, 1985,17:837-842.
    16. Butcher S S, Charlson R J, et al. Global Biogeochemical Cycle [M]. San Diego, Academic Press, 1992,263-284.
    17. Cabrera M L, Kissel D E. Evaluation of a method to predict nitrogen mineralized from soilorganic matter under field conditions [J]. Soil Sci. Am. J. 1988 (5): 1027-1031.
    18. Cassman K G and Mvnns D N. Nitrogen mineralization as by soil.moisture, temperature and depth. Soil Sci. Soc. Am. J. [J]. 1980,44: 1233-1237.
    19. Conrad R. Soil microorganismsas controllers of atmospheric trace gases (H_2, CO, CH_4, H_2O and NO) [J]. Mocrobiologocal RevieWs, 1996, 60 (4): 609-640.
    20. Cookson W R, Osman M, Marschner P, et al. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature [J]. Soil Biol Biochem, 2007, 39 (3): 744-756.
    21. Dalias P, Anderson J M, Bottner P, et al. Temperature responses of net N mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions [J]. Soil Biol Biochem, 2002, 34: 691-701.
    22. Dancer W S, Peteson L A, Chesters G. Ammonification and nitrification of N as influenced by soil pH and previous n treatments [J]. Soil Sci. Amer. Proc. 1973, 37: 67- 69.
    23. Do-Hee Kim, Malsuda O, Yamamoto T. Nitrification, denitrification and nitrate reduction rates in the sediment of Hiroshima Bay [J]. Japan, J.of Oceanogr. 1997, 53: 317-324.
    24. Doran J W, Coleman D C, et al. Defining Soil Quality for a Sustainable Environment [J]. Soil Science Society of America, Inc, American Society of Agronomy, Inc. Madison, Wisconsin, USA, 1995,66(2): 163-164.
    25. Duggin J A, Voigt G K, et al. Autotrophic and heterotrophic nitrification in response to clare-cutting northern hardwood forest [J]. Soil Biol. Blchem, 1991, 23: 779-789.
    26. Eno C. Nitrate production in the field by incubating the soil in polyethylent bags [J]. Proceedings of Soil Science Society of America, 1960, 24: 277-279.
    27. Falkowski P G, Evolution of the nitrogen cycle and its influence on the biological sequestration of CO_2 in the ocean [J]. Nature, 1997, 387: 272-275.
    28. Focht D D, Verstraete W. Biochemical ecology of nitrification and denitrification [C]. In: Alexander M. ed.Advances in Microbial ecology [A]. New Yok: Plenum Press, 1977, 135-214.
    29. Gary D. B, Mary K T. Fate of nitrogen from crop residues as affected by biochemical quality and the microbial biomas [J]. Soil Biol. Biochem, 1998, 30 (14): 2005-2065.
    30. Gasser J K, Kalembasa S J. The effetes of leys and organic matte manures on the available N in clay and soils. [J]. SoilSci.J, 1976, 27:237-249.
    31. Gregorich E G, Kachanski R G, et al. Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions [J]. Canadian Journal of Siol Science, 1988, 68: 395-403.
    32. Griffiths B S. Soil nutrient flow. In: Darbyshire J. F(E D). Soilprotozoa. CAB international, Oxford, 1994b, pp. 65-91.
    33. Hart B T, Grace M R. Nitrogen workshop 2000: sources, transformations effects and management of nitrogen in freshwater ecosystems [M]. Land & Water Australia, 2001, 96-99.
    34. ISSS-ISRIC-FAO. World Reference Base for Soil Resources [R]. World Soil. Resources Reports, No. 84. FAO, Rome, 1998. 1-88.
    35. Jenkinson D S, Ladd J N. Microbial biomass in soil: Measurement and turnover [A]. In: Paul V E A, Ladd J N, eds. Soil Biochemistry [C]. New York: Marcel Dekker, 1981. 415-471.
    36. Jonathan P Z, Edward J C, et al. Villareal New perspective on nitrogen-fixing microorganisms in tropical and subtropical oceans [J]. Trends in Microbiology, 2000, 8: 68-73.
    37. Joye S B, Hollibaugh J T. Influence of sulfide inhibition of nitrification on nitrogen regeneration sedimends [J]. Science, 1995, 270: 623-625.
    38. Keeney D R. Prediction of soil nitrogen availability in forest ecosystems: A literature review [J]. Forest Sci, 1980, 26: 159-171.
    39. Kevin L L, Daryl M M. Effect of C/N ratio on microbial activityand N Retention. Bench-scale study using pulp and paperBiosolids [J]. Compost science and utilization, 2000, 8 (2): 147-159.
    40. Kladivko E J, Keeney D R. Soil nitrogen mineralization as affected by water and temperature interactions [J]. Biology and Fertility of soils, 1987 (5): 248-252.
    41. Li G C, Han X C, et al. Dry-Season dynamics of soil in organic nitrogen pools inprimary lithocarpus xylocarpus forest and degraded vegetations in Ailao Mountain Yunnan province. Acta phytoecologica Sinica (in Chinese). 2001, 25 (2): 210-217.
    42. Likens C E, Bormann F H and Johnson N M. Nitrification: importance to nutrient losses from a cutover forested ecosystem [J]. Science, 1969, 163: 1205-1206.
    43. Lupwayi N Z, Rice W A, et al. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation [J]. Soil Biology & Biochemistry, 1998, 30: 1733-1741.
    44. Mader P, Andreas F, et al. Soil Fertility and Biodiversity in organic farming [J]. Science, 2002, 296: 1694-1697.
    45. Martikainen P J. Nitrification in two coniferous forest soil after different fertilization treatment [J]. Soil Biol Biochem, 1984, 16: 577-582.
    46. Matson P A, Vitousek P M. Nitrogen mineralization and nitrification potentials following clearcutting in the Hoosier National Forest, Indiana [J]. Forest Science, 1981, 27: 781-791.
    47. Middelburg J J, Soetaert K. Evaluation of the nitrogen isotope paring method for measuring benthic denitrification: a simulation analysis [J]. Limnol. Oceanogr, 1996,41: 1838-1844.
    48. Miller R D, Johnson D D. Effect of soil moisture tension on carbon dioxide evolution, nitrification, and nitrogen mineralization [J]. Soil Sci. Soc. Am. Proc, 1964, 28: 644- 647.
    49. Montagnini F, Buschbacher R. Nitrification rates in two undisturbed tropical rain forests and three slash and burn sites of the Venezuelan Amazon [J]. Biotropica, 1989, 21: 9-14.
    50. Mosier AR. Soil processes and global change [J]. Biology Fertility Soils, 1998, 27: 221-229.
    51. Mueller T, et al. Turnover of carban and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field [J]. Soil Biol. Biochem, 1998, 30(5): 561-571.
    52. Nielsen L P, Glud R N. Denitrification in coastal sediment measured in situ by the nitrogen isotope pairing technique applied to a benthic flux chamber. Mar. Ecol. Prog. Ser. 1996, 137: 181-186.
    53. Papen H, Von Berg R. A most probable number (MPN) method for the estimation of cell numbers of heterotrophic nitrify bacteria in soil [J]. Plat and Soil, 1998, 199: 123-130.
    54. Parton W, Silver W L, et al. Global-Scale Similarities in Nitrogen Release Patterns During Long-Term Decomposition. Science, 2007, 315, 58 (10): 361-364.
    55. Quemada M, Cabrera M L. Temperature and moisture effects on C and N mineralization from surface applied cloverresidue [J]. Plant and Soil, 1997, 189: 127-137.
    56. Rasmussen P E, Goulding K W T, Brow J R, et al. Long-term agroecosystem experiments: assessing agricultural sustainability and global Change [J]. Science, 1998, 82: 893-896.
    57. Rosswall T. Microbiological regulation of the biogeochemical nitrogen cycle [J]. Plant and Soil, 1982, 67: 15-34.
    58. Smith P, Powlson D S. Considering manure and carbon sequestration [J]. Science, 2000, 287: 428-429.
    59. Stanford G, Smith S. J. Nitrogen mineral'vation potentials of soils [J]. Soil Sci. Soc. Amer. pros. 1972, 36 (3): 465-472.
    60. Stanford G, Smith S J. Nitrogen mineralization-water relations in soils [J]. Soil Sci. Soc Amer. Proc. 1974,38: 103-107.
    61. Sierra J. Relationship between mineral N content and N mineralization rate in disturbed and undisturbed soil samples incubated under field and laboratary oonditions [J]. Aust. J. of soil Res. 1992,30:477-492.
    62. Shen S M, Jenkinson DS. Mineralization and immobilization of microbiamass nitrogen [J]. Soil bio. Boichem, 1984, 16: 437-444.
    63. Stark J M, Hart C S. High rates of nitrificayion and nitrate turnover in undisturbed coniferous forests [J]. Nature, 1997, 385: 61-64.
    64. Seitzinger S P. Nitrogen biogeochemistry in an unpolluted estuary: the importance of benthic denitrification [J]. Mar, Ecol. Prog. Ser. 1987,41: 177-186.
    65. Singh BK, Munro S, Reid E, et al. Investigating microbial community structure in soils by physiological, bilchemical and molecular fingerprinting methods [J]. European Journal of Soil Science. 2006, 57: 72-82.
    66. Stanford G, Epstein E. Nitrogen mineralization-water relations in soils [J]. Soil Sci. Soc. Am. Proc, 1974,38: 103-107.
    67. Stanford Q, Smith S J. Nitrogen mineralization potential of soils [J]. Soil Sci. Soc. Amer. Proc. 1972,36:465-472.
    68. Stanford G, Epstein. Nitrogen Mineralization-water relations in soils. Soil Sci. Soc. Am. Proc. 1974,38: 103-107.
    69. Schoch P, Binkley D. Prescribed boring increased nitrogen availability in a mature loblolly pine stand. Forest Ecology and Management. 1986,14:1 3 -22.
    70. Smith P, Powlson D S. Considering manure and carbon sequestration [J]. Science, 2000, 287: 428-429.
    71. Thiagalingam K, Kanehiro Y. Nitrification in some tropical soil [J]. Plant Soil, 1982, 65: 281-286.
    72. Vitousek P M, Andariese S W, et al. Effect of harvest intensity, site preparation, and herbicide use on soil nitrogen transformations in a young loblolly pine plantation [J]. Forest Ecology and Management. 1992, 49: 277-292.
    73.Verhoef H A,Brussaard L.Decomposition and N mineralization innatural and agroeoosystems:the contribution of soil animals[J].Biogeochemistry,1990,11:175-211.
    74.Wardle D A,Bardgett R D,Klironomos J Net al.Ecological linkages between aboveground and below ground biota[J].Science,2004,304:1629-1633.
    75.Witter E,Martensson A M,et al.Size of the soil microbial biomass in along-term field experiment as affected by different N-fertilizers and organic manure.Soil Biol Biochem.1992,25:659-669.
    76.Waring S A,Bremner L M.Ammonium production in soil under waterlogged conditions as an index of nitrogen availability[J].Nature[1].1964,201:951-953.
    77.Wang W J,Chalk P M,et al.Nitrogen mineralisation,immobilization and loss,and their role in determining differences in net nitrogen production during waterlogged and aerobic incubation of soils.Soil Biology & Biochemistry[J].2001,33:130p- 1315.
    78.Walker N,Soil Microbicology[M].A Critical Review,pp.133-146.Butter/Worths/London and Boston.1981.
    79.Zhou Qi,Chen H K.The activity of nitrifying and denitrifying bacteria in paddy soil[J].Soil Sci.1983,135:31-34.
    80.白志坚,赵更生.陕西省主要耕种土壤的氮矿化势[J].土壤通报,1981,12(4):26-29.
    81.蔡贵信.土壤氮素和氮肥的有效施用[A].见:鲁如坤主编.土壤-植物营养学原理和施肥[C].北京:化学工业出版社,1998,112-151.
    82.陈华葵,李阜棣,陈文新等.土壤微生物学[M].上海科技出版社,1981.
    83.陈家宙,丘华昌.五种旱地土壤的供氮特点及其与土壤性质的关系[J].华中农业大学学报,1996,15(3):237-242.
    84.陈欣等.不同C/N比有机物料中有机碳氮的分解进程研究.B有机氮的分解进程及C/N比的变化[J].应用生态学报,2000,11(增刊):25-27.
    85.陈秀蓉,南志标.细菌多样性及其在农业生态系统中的作用[J].草业科学,2002,19(9):52-55.
    86.储燕宁,孙权,于大华.灌淤土施氮后土壤硝态氮的动态变化观点[J].农村生态环境,2003,19(4):31 -34.
    87.杜建军,李生秀,李世清等.不同肥水条件对旱地土壤供氮能力的影响[J].西北农业大学学报,1998,36(6):1-5.
    88.丁洪,蔡贵信,王跃思等.玉米-潮土系统中氮肥硝化反硝化损失与N2O排放[J].中国农业科学,2001,34(4):416-421.
    89.范晓辉,孙永红,林德喜等.长期试验地红壤与潮土的矿化和硝化作用特征比较[J].土壤 通报,2005,36(5):672-674
    90.高亚军,黄东迈,朱培立等.稻安轮作条件下长期不同土壤管理对洪氮能力的影响[J].植物营养与肥料学报,2000,6(3):243-250.
    91.黄韶华,王正荣,米永绮.土壤微生物与土壤肥力的关系研究初报[J].新疆农垦科技,1995,12(3):12 -13.
    92.姜翠玲,夏自强,崔广柏.土壤含水量与氮化合物迁移转化的相关性分析[J].河海大学学报(自然科学版)2003,31(3):241-245.
    93.金芳.不同条件下土壤硝化作用产生NO_2~-的研究[D].北京农业大学硕士生毕业论文,1988.
    94.李大朋,曹文志,徐玉裕等.闽南农业流域土壤氮矿化作用初步研究[J].土壤通报,2008,39(1):47-51.
    95.李辉信,胡 锋,刘满强.红壤氮素的矿化和硝化作用特征[J].土壤,2000,32(4):194-195.
    96.李良谟.反硝化作用[A].见:朱兆良,文启孝.中国土壤氮素[C].南京:江苏科学技术出版社,1992,145 -170.
    97.李良谟,潘映华,周秀如等.太湖地区主要类型土壤的硝化作用及其影响因素[J].土壤,1987,19:289-293.
    98.李菊梅.土壤氮素矿化特性的研究[D].西北农林科技大学博士论文.2001.
    99.李菊梅,王朝辉,李生秀.有机质、全氮和可矿化氮在土壤供氮能力方面的意义[J].土壤学报,2003,40(2):232-237.
    100.李俊良等.C/N比对有机肥料氮素释放和植物吸氮的影响[J].中国农业大学学报,1996,1(5):57-61.
    101.李思亮,刘丛强,肖化云,地表环境氮循环过程中微生物作用及同位素分馏研究综述[J].地质地球化学,2002,30(4):40-45.
    102.李世清,高亚军,李生秀.土壤养分的空间变异性及确定样本容量的研究[J].土壤与环境,2000,9(1):56-59.
    103.李生秀,高亚军,胡田田等.旱地土壤的合理施肥工旱地土壤的起始矿质氮与玉米对氮肥的反应.干旱地区农业研究.1993,11(增刊):35-39.
    104.李忠,孙波,赵其国.我国东部土壤有机碳的密度和储量[J].农业环境保护,2001,20(6):385-389.
    105.李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报,2002,39(3):351-360.
    106.刘宏斌,李志宏,张云责等.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,37(5):692-698.
    107.吕殿青,刘杏兰,吴长征.在石灰性土壤上碳铵挥发损失条件及其防止途径的研究[J].陕 西农业科学,1980,6:7-10.
    108.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999,256-262.
    109.孟凯,张兴义,随跃宇,等.黑龙江海伦农田黑土水分特征[J].土壤通报,2003,34(1):11-14.
    110.彭少麟,李跃林,任海等.全球变化条件下的土壤呼吸效应[J].地球科学进展,2002,17(5):705-713.
    111.冉炜,沈其荣,郑金伟等.土壤硝化过程中亚硝酸盐的累积研究[J].土壤学报,2000(4):474-481.
    112.沈其荣,冉炜,曹志洪.土壤硝化作用过程中亚硝态氮的累积研究[J].土壤学报,2000,37(4):474-481.
    113.沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998,160-168.
    114.孙波,张桃林,赵其国.我国中亚热带缓丘区红粘土红壤肥力的演化[J].土壤学报,1999,36(2):203-217.
    115.陶运平.硫代硫酸铵对土壤硝化作用的影响[J].土壤学报.1997,34(4):467-474.
    116.王绍武,叶瑾琳.近百年全球气候变暖的分析[J].大气科学,1995,19(5):545-553.
    117.王一明,彭光浩.异养硝化微生物的分子生物学研究进展[J].土壤,2003,35(5):378-386.
    118.王勇清,洛德梅H,里尔特丁.我国黄土、褐土和潮土土壤中的氮素矿化潜力[J].土壤学报,1986,23(1):1-9.
    119.许光辉.土壤微生物分析方法手册[M].北京:农业出版社,1986,110-240.
    120.徐选旺,氮循环浅析[J].生物学通报,2001,36(5):1-9.
    121.严德翼,周建斌,邱桃玉等.黄土区不同土壤类型及土地利用方式对土壤氮素矿化作用的影响.期西北农林科技大学学报(自然科学版).2007,35(10):103-109.
    122.姚贤良.华中丘陵红壤的水分问题Ⅰ.低丘坡地红壤的水分状况[J].土壤学报,1996,33(3):249-257.
    123.叶优良,张福锁,李生秀.土壤供氮能力指标研究[J].土壤通报,200l,32(6):273-276.
    124.俞慎,李振高.熏蒸提取法测定土壤微生物研究进展[J].土壤学报,1994,22(6):42-50.
    125.曾宪坤.中国化肥工业的现状和展望[J].土壤学报,1995,32(2):117 -125.
    126.张崇邦.羊草草原土壤细菌数量动态与生态因子之间关系的研究[J].微生物学通报,2001,28(2):1-4.
    127.张新时,杨奠安.中国全球变化样带的设置与研究[J].第四纪研究,1995,10(1):43-52.
    128.张树兰,扬学云,吕殿青等.温度水分及不同氮源对土壤硝化作用的影响[J].生态学报,2001,22(12):2147-2153.
    129.张树兰,杨学云,吕殿青等.几种土壤剖面的硝化作用及其动力 学特征[J].土壤学报,2000,37(3):372-379.
    130.张仁陡,李增风,陶永红.河西灌漠士氮素矿化势的研究[J].甘肃农业大学学报,1993,28(3):261-264.
    131.张亚丽,张兴昌,邵明安等.降雨强度对黄土坡面矿质氮素流失的影响[J].农业工程学报,2004,20(3):55-58.
    132.郑士民,颜望民,钱新民著.自养微生物[M].科学出版社.1983,25-37.
    133.中国科学院南京土壤研究所土壤系统分类课题组,中国土壤系统分类课题研究协作组[A].中国土壤系统分类检索(第三版)[C].合肥:中国科学技术大学出版社.2001,1-275.
    134.周才平,欧阳华.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J].植物生态学报,2001,25(2):204-209
    135.周才平,欧阳华.长白山两种主要林型下土壤氮矿化速率与温度的关系[J].生态学报,2001,21(9):1469-1473.
    136.周才平,欧阳华.温度和湿度对长白山两种林型下土壤氮矿化的影响[J].应用生态学报,2001,12(4):505-508.
    137.周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表现盈亏Ⅱ夏玉米[J].生态学报,2002,22(1):48-53.
    138.周祖澄,王洪玉,蔡元定等.吉林省旱地土壤速效氮测定方法的研究[J].土壤通报,1981,(6):23-26.
    139.朱兆良土壤氮素的矿化和供应[A]见:中国土壤学会土壤氮素工作会议论文编辑组编我国土壤氮素研究工作的现状与展望[C].北京:科学出版社,1986,14-27.
    140.朱兆良.土壤氮素的矿化和土壤氮素有效性指标的评价[A].见:朱兆良,文启孝主编.中国土壤氮素[C]南京:江苏科技出版社,1992,37-59.
    141.左余宝,Hosen Y,褚海燕.不同水分含量对潮土和火山土硝化动态的影响[J].土壤肥料,2004,5(5):21-24.