小麦谷氨酰胺合成酶的分离纯化及亚基构成鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007—2009年采用大田盆栽的方法,较系统地研究了氮素形态对豫麦34不同生育期各组织器官GS同工酶表达及亚基组成的影响;回收鉴定了不同种类的GS同工酶,主要结果如下:
     苗期叶片GS同工酶的表达受生育期影响较大,均存在三种同工酶,一叶一心期较其它三个时期GS同工酶的活性低,同时发现一种新的同工酶GSX。开花灌浆期叶片共有有四种同工酶的表达,又发现一种新的同工酶GSX2,,且GSX2只在开花期和花后7天的生育时期出现,铵盐对其有诱导作用。同时期茎节中也有四种同工酶的表达,但以GS1为主。籽粒中只有GS1同工酶的表达。
     开花期旗叶粗酶液Native-PAGE蛋白杂交证实新发现的GSX和GSX2是GS同工酶,开花期旗叶粗酶液SDS-PAGE蛋白杂交显示,大田盆栽条件下GS同工酶亚基存在除以往报道的43.6KD和38.4KD亚基之外的87.8KD、68.6KD、37KD、19.05KD、17.85KD亚基。通过Native-PAGE对拔节期GS1、GS2、GSX及开花期GS1、GS2、GSX、GSX2的分别回收鉴定,发现GS1、GS2、GSX亚基构成在不同生育期也发生变化,相对拔节期开花期GS1亚基构成种类增加了43.6KD的亚基而缺失了57.4KD和37KD亚基;GS2亚基构成种类增加了38.4KD亚基而缺失了57.4KD亚基;GSX亚基构成种类缺失了87.8KD亚基而增加了37KD亚基。开花期GSX2则与同时期GS1亚基组成接近。
     对不同N素形态下豫麦34拔节期GS同工酶亚基组成变化的研究得到:拔节期硝态氮对于豫麦34 GS同工酶各类亚基的含量有促进作用。铵盐能够促进部分组织亚基种类丰富,及尿素处理相对较低。
     对硝态氮处理下不同生育期豫麦34 GS同工酶亚基构成及含量变化的研究得到:不同生育期间GS同工酶亚基构成种类及含量呈先升后降的趋势,受生育期影响较大,开花期GS同工酶种类及含量最高。生育期内不同组织器官GS同工酶种类及含量由高到低依次为叶、鞘、节、根。籽粒和颖壳内GS同工酶亚基构成种类较为独特。
     提取硝态氮处理下豫麦34旗叶片全蛋白进行双向电泳,结果显示:捕捉分离到GS2和GS2a两个同工酶,并捕获到未知蛋白4个。
From 2007 to 2009,with the methods of pot experiment, the effects of N forms on the expression and Subunit composition of GS isozymes in different organs during different phase of yumai34 were studied, and the GS isozymes In Wheat were Separated and sublimated, the subunits composition of GS protein were Characterized and evaluated.the main results were as follows:
     By the pot experiment in field, simulating field, the effects of N forms on the expression of GS in leaves of yumai34 were studied. The results indicated: the expression of GS isozymes in leaves of the seeding stage was little affected by N forms and genotypes, but affected greatly by different growth stages. There are three types of GS isozymes in all phases of seeding stage, but compared the other three phases, the GS activity was lower in the stage of one leave and one heart. Compared to the expression of GS isozymes in the seeding stage, a new isozyme GSX2 was found in the leaves of anthesis, the ammonium has certain function in inducing the appearance of GSX2. It appears in anthesis and 7DAF only. There are also four types of isozymes expressed in the stem in the same stage, the GS1 isozyme occupy the dominant position, and only GS1 isozyme expresses in the grain.
     By the method of Native-PAGE, it is confirmed that the newly discovered protein hybrid GSX and GSX2, from the crude extract of flowering of flag leaf, are GS isozymes.
     By the pot experiment in field , simulating field, the crude extract of flowering of flag leaf is studied by the method of SDS-PAGE. It is reported that the GS isozyme subunit exist 87.8KD, 68.6KD, 37KD, 19.05KD, 17.85KD subunit except the previously reported 43.6KD and 38.4KD subunits.
     By the method of Native-PAGE, the proteins of GS1,GS2,GSX from the jointing stage and the proteins of GS1,GS2,GSX,GSX2 from the period of flowing are recovered respectively, the results indicated that the GS1,GS2,GSX subunits have changed at different growth stages of the wheet .Compared to the expression of GS isozymes in the jointing stage, the GS1 subunits increased the types of 43.6KD subunits and is lack of the 57.4KD and 37KD subunit in the flowering;GS2 subunits increased the 38.4KD subunits and missing the 57.4KD subunits;GSX subunits missing the types of 87.8KD subunits and increased the 37KD subunits.The constitute of GSX2 subunits in the flowing are approaching to the GS1 subunits in the same period.
     The effects of different N forms on the changement of GS isozyme subunits during the jointing stage of yumai 34 were studied, the result showed that nitrate can promote the content of various types of subunits of GS isozyme from yumai 34. Ammonium salt can facilitate the types of GS isozyme subunits of parts of organizations.Compared to the nitrate and ammonium, the effect of urea on the GS isozymes was relatively lower.
     The effects of nitrate on the composition and the changements of contents of GS isozymes in the different growth stages of yumai 34 were studied, it was found that the tendency of GS isozymes’types of subunits composition and content during different growth was first increased and then decreased. The GS isozymes were affected greately by different growth stages. In the flowering , the types and contents of GS isozymes were highest .During the different phases of yumai 34, reproductive organs of GS isozymes and content of order were leaves, sheath, section, root. The types of GS isozymes of grain and glume were more unique.
     By the method of two-dimensional electrophoresis, the whole proteins of flag leaves with the treatment of nitrate of yumai 34 were extracted and studied, the result showed that two kinds of GS isozymes, GS2 and GS2a, were captured and isolated. And 4 kinds of unknown proteins were captured, too.
引文
[1]Sivasankar S, Oaks A. Nitrogen assimilation in higher plants: the effect of metabolites and light [J]. Plant Physiol Biochem, 1996; 34:609-620.
    [2]Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook Commun[J]. In Soil Sci, Plant Anal, 1989, 2 (19&20): 1933-955.
    [3]黄益宗,冯宗炜,王效科.硝化抑制剂在农业上应用的研究进展.土壤通报[J].2002,33(4): 310-315.
    [4]L.R.Lopez-Lefebre, J.M.Ruiz.etal. Supplemental boron stimulates ammonium assimilation in leaves of tobacco plants ( Nicotiana tabacum L.) [J].Plant Growth Regulation, 2002; 36:231-236.
    [5]朱德群,朱遐龄.与小麦籽粒蛋白质有关的几项生理参数[J].作物学报,1991,17(2)135-143.
    [6]王洪刚,姜丽君.小麦叶片中硝酸还原酶活性、游离氨基酸和粗蛋白含量与籽粒蛋白质含量关系的研究[J].西北植物学报,1995,15(4):282-287.
    [7]孙宝启,李玉京.小麦灌浆过程中硝酸还原酶活性与籽粒蛋白质的积累[J].中国农业大学学报,1997;2(5):20-30.
    [8]Dalling M J, Boland G, etal. Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat [J]. Plant Physiol, 1976; 3:721-730.
    [9]马新明,王志强,王小纯.不同形态氮肥对不同专用小麦叶片氮代谢及籽粒蛋白质的影响[J].中国农业科学,2004,37(7):1076-1080.
    [10]王月福,于振文,李尚霞.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28:743-748.
    [11]Cren, M.&B. Hirel. Glulamine synthetase in higher plant: regulation of gene and protein expression from the organ to the cell [J]. Plant Cell Physiology, 1999, 40:1187-1193.
    [12]李常健,林清华,张楚富.NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响[J].武汉大学学报(自然科学报),1999,8:497-500.
    [13]Ochs G., G. Schoth& M. Trischler. Complexity and expression of the glutamine synthetase multigene family in the ampnidiploid crop brassica napus [J]. Plant Molecular Biology, 1999, 39: 395-405.
    [14]Miflin BJ, Habash DZ. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. J Exp Bot, 2002, 53:979-987.
    [15]Oaks A. Primary nitrogen assimilation in higher plants and its regulation [J]. Canadian Journal of Botany, 1994, 72:739-750.
    [16]Lea PJ, Miflin. Alternative route for nitrogen in higher plants [J]. Nature, 1974, 251: 614-616.
    [17]Sivasankar S, Oaks A. Nitrate assimilation in higher plants: the effect of metabolites and light [J]. Plant Physiol Biochem, 1996, 34:609-620.
    [18]Miflin BJ, Habash DZ. The roleof glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the ni trogen utilization of crops [J]. J Exp Bot, 2002, 53:979-987.
    [19]Ce′line MD, Miche`le RC, Karine P. glutamine synthetase glutamate Synthase pathway and glutamate dehydrogenase play distinct roles in the sink-Source nitrogen cycle in tobacco [J]. Plant Physiol, 2006, 140(2): 444-56.
    [20]莫良玉,吴良欢,陶勤南.高等植物GS/ GOGAT循环研究进展.植物营养与肥料学报2001,7 (2) :223~231.
    [21]李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展[J].生物学杂志,2001,18(4):1-3.
    [22]Fuentes.Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. Journal of experimental botany, vol.52, No.358, pp.1071-1081, May 2001.
    [23]Habash DZ, Massiah AJ, Rong HL et al. The role of cytosolic glutamine synthetase in Wheat [J]. Annals of Applied Biology, 2001, 138:83-89.
    [24]Sakakibara H. ,Kawabata S ,Hase T et al. Differential effects of nitrate and light on the expression of glutamine synthetase and ferredoxin dependent glutamate synthase in maize. Plant Cell Physi - Ology, 1992, 33:1193 - 1198.
    [25]Ishiyama K, Inoue E, Watanabe-Takahashi A.Takahashi H Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem, 2004b, 279:16598–16605.
    [26]Forde BG, Cullimore JV. The molecular biology of glutamine synthetase in higher plants. Oxf Surv Plant Mol Cell Biol, 1989, 6:247–296.
    [27]Kamachi K, Yamaya T, Mae T. A role for glutamine synthetase in the remobilization of leaf nitrogen during natural senescence in rice leaves. Plant Physiol, 1991, 96:411-417.
    [28]Kamachi K, Yamaya T, Hayakawa T. Changes in cytosolic glutamine synthetase polypeptide and its messenger RNA in a leaf blade of rice plants during naturalsenescence. Plant Physiol, 1992, 98:1323-1329.
    [29]Li MG, Villemur R, Hussey PJ. Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol, 1993, 23:401-407.
    [30]Ortega JL, Roche D, Sengupta-Gopalan C. Oxidative turnover of soybean root glutamine synthetase. Invitro and invivo studies. Plant Physiol, 1999, 119:1483-1495.
    [31]Finnemann J, Schjoerring JK. Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3-protein interaction. Plant J, 2000, 24:171–181.
    [32]Tobin AK, Yamaya T. Cellular compartmentation of ammonium assimilation in rice and barley. J Exp Bot, 2001, 52:591–604.
    [33]Hirel B, Lea PJ Ammonia assimilation. In: Lea PJ, Morot-Gaudry J-F (eds) Plant nitrogen. Springer-Verlag, Berlin, 2001,pp 79-99.
    [34]Hirel B, Bertin P, Quillere I. Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol, 125:1258-1270.
    [35]Hirel B, Martin A, Terce-Laforgue T. Estavillo J-M (2005) Physiology of maize I: a comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol Plant 124:167-177.
    [36]Hirel B, Le Gouis J, Ney B. Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role of genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369-2387.
    [37]Limami A. De Vienne D (2001) Natural genetic variability in nitrogen metabolism. In: Lea PJ, Morot-Gaudry J-F (Eds) Plant nitrogen. Springer-Verlag, Berlin, pp 369-378.
    [38]Bertrand Hirel. Dimah Z. Habash (2008) Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.)Plant Mol Biol67: 89-105.
    [39]McNally et al. Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production .The Plant Cell.Vol. 18, 3252–3274, November 2006.
    [40]McNally et al. Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production .The Plant Cell.Vol. 18, 3252–3274, November 2006.
    [41]Clemente MT, Marquez AJ. Functional importance of Asp56 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase-an essential residue for transferase but not for biosynthetic enzyme activity. Eur J Biochem, 1999a 264:453-460.
    [42]Clemente MT. Marquez AJ Site-directed mutagenesis of Glu-297 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to L- methionine sulfoximine. Plant Mol Biol, 1999b, 40: 835-845.
    [43]Clemente MT. Marquez AJ Site-directed mutagenesis of Cys-92 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase reveals that this highly conserved residue is not essential for enzyme activity but it is involved in thermal stability. Plant Sci 2000,154:189–197.
    [44]Choi YA, Kim SG, Kwon YM. The plastidic glutamine synthetase activity is directly modulated by means of redox change at two unique cysteine residues. Plant Sci, 1999,149:175-182.
    [45]Ishiyama K, Inoue E, Yamaya T.Takahashi H Gln49 and Ser174 residues play critical roles in determining the catalytic efficiencies of plant glutamine synthetase. Plant Cell Physio, 2006,l47: 299-303.
    [46]Unno H, Uchida T, Sugawara H. Kurisu G.Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. J Biol Chem, 2006, 281:29287-29296.
    [47]Doyle JJ. Evolution of higher plant glutamine synthetase genes tissue specificity as a criterion for predicting orthology. Mol Biol Evol, 1991,8:366-377.
    [48]Biesiadka J. Legocki AB Evolution of the glutamine synthetase gene in plants. Plant Sci , 1997,128:51-58.
    [49]Bertrand Hirel,Dimah Z. Habash.Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L). Plant Mol Biol, 2008,67:89-105.
    [50]Stitt M, Mu¨ller C, Matt Pl. Steps towards an integratedview of nitrogen metabolism [J]. Journal of Experimental Botany, 2002, 53:959-970.
    [51]Obara M, Sato T, Yamaya T. High content cytosolic glutamine synthetase doses not accompany a high activity of the enzyme in rice (Oryza sativa) leaves of indica cultivars [J]. Physiol. Plant, 2000, 108: 11-18.
    [52]欧吉权,魏国威,张楚富.甜瓜子叶发育过程中蛋白质水平和氨同化酶活性变化[J].武汉大学学报(理学版),2003,49(4):538-542.
    [53]Wei Guo-wei, Lin-Qing-hua, Zhang Chu-fu.Changes of Glutamine Synthetase and Other Amm- onia Assimilating Enzymes during the Germination of the Seed and the Development of the Cotyledon in Cushaw [J].J Wuhan Bot Res, 2002, 20:236-240.
    [54]Leon E, de la Haba P. Maldonado J M.Changes in the Levels of Enzymes Involved in ammonia assimilation during the Development of Phaseolus Vulgaris Seedlings [J].Effects of Exogenous Ammonia Physiol Plant, 1990, 80:20-26.
    [55]李泽松,林清华,张楚富.不同氮源对水稻幼苗根氨同化酶的影响[J].武汉大学学报(自然科学版)2000, 46(6):729~732.
    [56]刘永华,朱祝军,魏国强.不同光强下氮素形态对番茄谷氨酰胺合成酶和光呼吸的影响[J].植物生理学通讯[J].2004,40(6):680~682.
    [57]周忠新,王云华,张楚富.菠菜叶中存在两种谷氨酰胺合成酶同工酶[J].武汉植物学研究,2004,22(6):572~57.
    [58]王云华,王志强,张楚富.硝态氮对黄瓜子叶谷氨酰胺合成酶和谷氨酸脱氢酶活性的影响[J].武汉植物学研究2004,22(6):534~53.
    [59]戴廷波,曹卫星,孙传范.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响[J].应用生态学报,2003,14(9):1529-1532.
    [60]柴小清,印莉萍,刘祥林.不同浓度的NO3-和NH4+对小麦根谷氨酰胺合成酶及其相关酶的影响[J].植物学报,1996,38(10):803-808.
    [61]Zhang C. F. , Peng S. B. Bennett J . et al. Glutamine syntetase ferredoxin dependent glutanate Synthase in maize [J]. Plant Cell Physiology, 1992, 33:1193 - 1198.
    [62]印莉萍,刘祥林,柴小清..不同浓度不同氮源对小麦离体叶谷氨酰胺合成酶及其相关酶的影响[J].首都师范大学学报:自然科学版,1997,18 (2)95-99.
    [63]Magalhaes JR.Huber DM .1991.Response of ammonium assimilation enzymes to nitrogen form treatments in different plant speciesJ [J].Plant Natr , 14(2):175-185.
    [64]张吉,王云华,袁永泽.丝瓜种子萌芽及子叶生长过程中谷氨酰胺合成酶同工酶的变化[J].武汉大学学报(理学版),2004,50(4):511-514.
    [65]孙国荣,朱鹏.谷氨酰胺合成酶活动与水稻杂种优势预测[J].武汉植物学研究, 1994,12 (2):149-153.
    [66]李常健,林清华,张楚富.NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响[J].武汉大学学报(自然科学报),1999,8:497-500.
    [67]王月福,于振文,李尚霞.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28:743-748.
    [68]Chaffei C, PAGEau K, Suzuki A. The two nitrogenmobilisation- and senescence- associated GS1 and GDH genes are controlledby C and N metabolites[J]. Planta, 2005, 221: 580-588.
    [69]黄勤妮,印莉萍,柴晓清.不同氮源对小麦幼苗谷氨酰胺合成酶的影响[J].植物学报,1995,37(11):856-862.
    [70]Yamaya T , Tanno H , Hirose N . Hayakawa T1 A supply of nitrogen cause increase in the level of NADH-dependent glutamate synthase protein and in the activity of the enzyme in roots of rice seedlings [J ]. Plant Cell Physiol1, 1995, 36: 1197-1204.
    [71]徐茂林.氮素供应对强筋小麦产量和品质的影响[J].土壤通报,2005,36(6):983-985.
    [72]王月福,于振文,李尚霞.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J].中国农业科学, 2002,35(9):1071-1078.
    [73]王曙光,戴其根,陈后庆.氮素供应对优质专用小麦品质的影响研究进展[J].耕作与栽培,2004,1:16-17,42.
    [74]赵广财,李春喜,赵保明..不同施氮比例和时期对冬小麦氮素利用的影响[j].华北农学报,2000,15(3):99-1O2.
    [75]张强,戴其根,许轲.氮肥对小麦籽粒品质影响的研究进展[J].安徽农业科学2004,32(1):139-140,158.
    [76]朱新开,郭文善,周君良.氮素对不同类型专用小麦营养和加工品质调控效应[J].中国农业科学,2003,36(6):640-650.
    [77]许珂,戴其根,葛鑫.氮肥运筹对面条小麦品种陕农229淀粉品质的影响[J].上海农业报,2004,0(1):49-53.
    [78]蒋家慧,隋春青,衣先众.氮肥运筹对小麦氮素同化、运转和品质的影响[J].莱阳农学院学报,2004,21(3):217-221.
    [79]曹翠玲,李生秀,张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响[J].土壤通报,2003,34(4):295-298.
    [80]尹静,胡尚连,肖佳雷..不同形态氮肥对春小麦品种籽粒淀粉及其组分的调节效应[J].作物报,2006,32(9):1294-1300.
    [81]马新明,王志强,王小纯.氮素形态对不同专用型小麦根系及氮素利用率影响的研究[J].应用生态学报, 2004,15(4):655-658.
    [82]王小纯,熊淑萍,马新明等.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J].生态学报,2005,25(4):802-807.
    [83]马新明,王志强,王小纯.不同形态氮肥对不同专用小麦叶片氮代谢及籽粒蛋白质的影响[J].中国农业科学,2004,37(7);1076-1080.
    [84]曹翠玲.氮素形态对小麦中后期的生理效应[J].作物学报,2003,29(2):258-262.
    [85]马新明,王小纯,王志强.氮素形态对不同专用型小麦生育后期光合特性及穗部性状的影响[J].生态学报,2003,23(12):2587-2593.
    [86]沈其荣,徐国华.小麦和玉米叶面标记尿素态15N的吸收和运输[J].土壤学报,2001,38(1):67-74.
    [87]Oaks A. Primary nitrogen assimilation in higher plants and its regulation. [J]. Canadian Journal of Botany, 1994, 72:739-750.
    [88]Lea PJ, Miflin. Alternative route for nitrogen in higher plants [J]. Nature, 1974, 251: 614– 616.
    [89]李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展[J].生物学杂志,2001,18(4);1-3.
    [90]Rhodes D, Rendo GA. Stewart GR.The control of glutamine synthetase level in Lemna minor L. Planta, 1975, 125:201-211.
    [91]Wang W, Scali M, Vignnani R, Spadafora A, Sensi E, Mazzuca S, Cresti M. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds [J]. Electrophoresis, 2003, 24: 2369-2375
    [92]Wang W, Vignani R, Scali M, Crest M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis [J]. Electrophoresis, 2006, 27: 2782-2786