RRS对根际土壤AOB与AOA群落多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗草甘膦转基因大豆(Roundup Ready Soybean简称RRS)是美国孟山都公司通过转基因技术培育而成的转基因作物新品种,其释放到农田后的风险与安全性备受国内外关注。
     本论文以RRS、亲本(RRS-S)、栽培大豆(D-46)和野生大豆(W-S)四种不同基因型大豆为实验材料,进行对比分析。试验采用PCR-DGGE结合amoA基因测序的方法,研究转基因大豆对根际土壤中与氮素转化有关的功能性菌类——氨氧化细菌(AOB)和氨氧化古菌(AOA)群落多样性的影响。
     对氨氧化细菌(AOB)群落研究结论如下:RRS根际土壤氨氧化细菌(AOB)的多样性指数(Dsh)及均匀度指数(Jsh)均要低于其亲本RRS-S、W-S与D-46;主成分分析显示,RRS与其他基因型大豆根际土壤氨氧化细菌群落结构差异较大,尤其与亲本RRS-S有很大差异;amoA基因测序与系统发育树的构建进一步证实了不同基因型大豆根际土壤的氨氧化细菌群落中,大多数属于cluster 3a,cluster 9和cluster 1类群,其中Nitrosospira类氨氧化细菌(Nitrosospira-like AOB)是不同基因型大豆根际土壤中AOB优势类群。另外,有一部分已检测的AOB在文献中并无记录和归类,这其中包括RRS的特有条带10。RRS的种植抑制了根际土壤中氨氧化细菌某些类群的生长(如条带1、8、12、20所代表的AOB类群),同时也促进了某些类群的生长(如条带10和19所代表的AOB类群)。研究结果表明在一定程度上RRS的种植减少了根际土壤中氨氧化细菌群落的多样性,改变了氨氧化细菌群落的结构,并且影响了某些氨氧化细菌类群的生长与分布。
     对氨氧化古菌(AOA)群落研究结论如下:RRS根际土壤氨氧化古菌(AOA)的多样性指数(Dsh)和均匀度指数(Jsh)与其亲本(RRS-S)及其他基因型大豆相比差异均不显著;主成分分析结果显示RRS与其他品种大豆(W-S和D-46)根际土壤氨氧化古菌群落结构差异较大,但与亲本(RRS-S)差异不明显;amoA基因测序与系统发育树的构建证实了不同基因型大豆根际土壤中的AOA一部分属于已有文献中记录的土壤AOA类群(soil/sediment),一部分在现有文献中没有记录(soil),但这其中没有AOA属于水生环境(water)或海洋底泥(sediment)中的AOA类群,此外,不同基因型大豆根际土壤样品中的AOA主要属于amoA基因的cluster 6、cluster 7和cluster 8,其中cluster 6类群的AOA是不同基因型大豆根际土壤中AOA优势类群。另外,有众多已检测的AOA在文献中并无记录和归类,这其中包括RRS的缺失条带1、20及25和特有条带3。试验证明了RRS的种植可能抑制了根际土壤中氨氧化古菌某些类群的生长(如条带1、20和25所代表的AOA类群),同时也促进了某些类群的生长(如条带3所代表的AOA类群)。这些研究结果表明RRS的种植对根际土壤中氨氧化古菌群落的多样性没有影响或只有微小影响,同时对氨氧化古菌群落的结构也只产生较弱的影响,但影响了某些氨氧化古菌类群的生长与分布。
Roundup Ready Soybean (RRS) [Glycine max (L.) Merr.] was one of genetically modified crops and produced by the Monsanto company in the United States. The release of GM plants to agricultural ecosystems has raised a number of questions, including the ecological impact of these plants on soil ecosystems. Recently, the impact of GM crops on communities of microorganisms, microbe-mediated processes and functions in soil ecosystem was becoming more and more concerned in the world.
     As materials of the experiment, four genotypes’soybean including RRS, the parent of RRS (RRS-S), the cultivated soybean variety Dongnong 46 (D-46) and the wild soybean (W-S) were compared in the study. The experiment were conducted in this study in order to investigate effects of Roundup Ready Soybean (RRS) on the diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in rhizospheric soils using molecular techniques polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and DNA sequencing targeting ammonia monooxygenase (amoA) gene.
     The conclusion about effects of RRS on AOB communities in the study: the diversity analysis indicated that Shannon-Wiener diversity indexes (Dsh) and evenness indexes (Jsh) related to ammonia-oxidizing bacteria (AOB) in RRS rhizospheric soils were all lower than those of near-isogenic counterparts (RRS-S), W-S and D-46; the principal component analysis demonstrated that the compositions of ammonia oxidizing bacterial communities in RRS rhizospheric soils were different from those of its parent RRS-S and other soybeans (D-46 and W-S); sequencing of DGGE bands and phylogenetic analysis revealed that Nitrosospira-like AOB were the most dominant AOB inhabiting in the rhizospheric soils of different genotypes’soybeans, the amoA sequences associated with the soil samples mostly grouped within the amoA cluster 3a, cluster 9 and cluster 1, RRS promoted some groups of ammonia oxidizing bacterial communities, such as groups represented by bands 10 and 19, however, inhibited the other groups, such as groups represented by band 1, 8, 12 and 20. Our results indicated that RRS reduced the diversity of AOB, changed ammonia-oxidizing bacterial community structure and affected the growth and distribution of some groups of AOB in rhizospheric soil to some extent.
     The conclusion about effects of RRS on AOA communities in the study: the diversity analysis indicated that Shannon-Wiener diversity indexes (Dsh) and evenness indexes (Jsh) related to ammonia-oxidizing archaea (AOA) in RRS rhizospheric soils were similar to those of near-isogenic counterparts (RRS-S), W-S and D-46, and the difference was not significant among them; the principal component analysis demonstrated that the compositions of ammonia oxidizing archaeal communities in RRS rhizospheric soils were different from those of the other soybeans (D-46 and W-S), but not significantly different from its parent RRS-S; AOA amoA gene sequencing of DGGE bands and phylogenetic analysis revealed that parts of AOA in the rhizospheric soils of different genotypes’soybeans belonged to clusters which had presented in the present references in the soils, others belonged to unknown clusters or groups in the present references,but none of AOA identified belonged to water-like AOA or sediment-like AOA. In addition, the AOA amoA sequences associated with the soil samples mostly grouped within the amoA cluster 6, cluster 7 and cluster 8, and cluster 6 AOA were the most dominant AOA inhabiting in the rhizospheric soils of different genotypes’soybeans. RRS promoted some groups of ammonia oxidizing archaeal communities, such as groups represented by bands 3, however, inhibited the other groups, such as groups represented by band 1, 20 and 25. Our results indicated that RRS didn’t affect the diversity of AOA or there were only a smaller impact on the diversity and the community structure of AOA ,but RRS affected the growth and distribution of some groups of AOA in rhizospheric soils to some extent.
引文
常学秀,文传浩,沈其荣. 2001.锌厂Pb污染农田小麦根际与非根际土壤酶活性特征研究[J].生态学杂志, 20 (4) : 5 - 8.
    陈灵芝,马克平. 2001.生物多样性科学:原理与实践[M].上海科学技术出版社.
    陈新,朱成松,顾和平等. 2002.抗草甘膦大豆的遗传研究[J].江苏农业科学, 6: 21-23.
    陈瑛,任南琪,李永峰,程瑶. 2008.微生物荧光原位杂交( FISH)实验技术[J].哈尔滨工业大学学报, 40(4): 546-549.
    崔金杰,夏金源. 1999.转Bt基因棉对天敌种群动态的影响[J].棉花学报, 11(2):84-91
    董莲华,杨金水,袁红莉. 2008.氨氧化细菌的分子生态学研究进展[J].应用生态学报, 19 (6) : 1381- 1388.
    方,吴承祯,洪伟,范海兰,宋萍. 2007.植物根际、非根际土壤酶与微生物相关性研究进展[J].亚热带农业研究, 3(3): 209-215.
    韩晓日,郭鹏程,陈恩风. 1998.土壤微生物对施入肥料氮的固持及其动态研究[J].土壤学报, 35 (3) : 412 - 418.
    郝永俊,吴松维,吴伟祥,陈英旭. 2007.好氧氨氧化菌的种群生态学研究进展[J].生态学报, 27 (4) : 1573-1582.
    黄昌勇. 2000.土壤学[M].中国农业出版社, 50-55.
    黄进勇,李春霞. 2004.土壤微生物多样性的主要影响因子及其效应[J].河南科技大学学报(农学版), 24(4): 10-13.
    黄先群,李丽,毛堂芬. 2005.转基因作物的发展和安全性问题[J].贵州农业科学, 33(6): 89-93
    黄艳霞. 2009.土壤微生物多样性分析技术研究进展[J].安徽农业科学, 37(32):15924-15925 .
    焦晓丹,吴凤芝. 2004.土壤微生物多样性研究方法的进展[J].土壤通报, 35 (6) : 789-792.
    焦晓丹. 2006.利用RAPD技术研究种植年限不同对土壤微生物多样性的影响.东北农业大学硕士论文.
    李宁. 2007. RRS对土壤微生物多样性及根际土壤氮转化影响.东北农业大学硕士论文.
    李顺鹏. 2002.环境生物学[M].中国农业出版社, 78-86.
    李孝刚,刘标,韩正敏,郑央萍. 2008.转基因植物对土壤生态系统的影响[J].安徽农业科学, 5:1957-1960.
    林敏,平淑珍,尤崇杓. 1992.粪产碱菌对水稻根质子分泌作用及根际微生态的影响[J]. 植物生理学报, 18 (3) : 233 - 238.
    林先贵,胡君利. 2008.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报, 45(5):892-900.
    刘军,温学森,郎爱东. 2007.植物根系分泌物成分及其作用的研究进展[J].食品与药品,9(03): 63-65.
    刘玮琦. 2008.保护地土壤细菌和古菌群落多样性分析.中国农业科学院硕士论文.
    刘子雄,朱天辉,张建. 2005.林木根系分泌物与根际微生物研究进展[J].世界林业研究, 18 (6) : 25 - 31.
    卢宝荣. 2008.我国转基因水稻的环境生物安全评价及其关键问题分析[J].农业生物技术学报, 16(4): 547-554.
    吕家珑,张一平,马爱生. 1999.石灰性土壤小麦根际pH及磷动态变化的研究[J].植物营养与肥料学报, 5 (1) : 32 - 39.
    孟颂东,关桂兰,王卫平. 1998.根际微生物产生的植物激素对小麦生长的作用[J].植物生理学通讯, 34 (6) : 427 - 429.
    浦惠明. 2003.转基因抗除草剂油菜及其生态安全性[J].中国油料作物学报, 2: 89-93.
    任南琪. 2006.污染控制微生物学[M].哈尔滨工业大学出版社, 185-193.
    苏少泉. 2002.转基因抗除草剂作物与除草剂开发及使用[J].农药, 10(3):12-16.
    孙彩霞,陈利军,武志杰. 2004. Bt杀虫晶体蛋白的土壤残留及其对土壤磷酸酶活性的影响[J].土壤学报. 41 ( 5) : 761-766.
    孙彩霞,张玉兰,缪璐. 2006.转Bt基因作物种植对土壤养分含量的影响[J].应用生态学报, 17 (5) : 943-946.
    唐影. 2007.转基因抗虫棉对根区土壤细菌多样性影响的初步研究.中国农业科学院硕士论文.
    王光华,刘俊杰,齐晓宁,金剑,王洋,刘晓冰. 2008. Biolog和PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响[J].生态学报, 28(1): 220-226.
    王建武,冯远娇,骆世明. 2005. Bt玉米秸秆分解对土壤酶活性和土壤肥力的影响[J].应用生态学报, 16 (3) : 524-528.
    王忠华,叶庆富,舒庆尧,崔海瑞,夏英武,周美园. 2002.转基因植物根系分泌物对土壤微生态的影响[J].应用生态学报, 13 (3):373-375.
    吴迪,王秋玉. 2007.转基因植物对根际土壤生态系统的影响[J].中国生物工程杂志, 27 (2) : 113-118.
    邢德峰,任南琪,李建政. 2003.荧光原位杂交在环境微生物学中的应用及进展[J].环境科学研究, 16(3): 55-58.
    徐广惠,王宏燕,刘佳. 2009.抗草甘膦转基因大豆(RRS)对根际土壤细菌数量与多样性的影响[J].生态学报, 29(8): 4535-4541.
    薛达元. 2006.转基因生物风险与管理[M].中国环境出版社.
    阎章才,东秀珠. 2001.微生物的生物多样性及应用前景[J].微生物学通报, 28 (1) : 96-102.
    袁红旭,郭建夫,杨毓峰. 2005.转几丁质酶基因水稻对土壤化学性状及酶活性的影响研究[J].中国生态农业学报, 13(1) : 98-100.
    袁红旭,张建中,郭建夫. 2005.种植转双价抗真菌基因水稻对根际微生物群落及酶活性的影响[J].土壤学报, 42 ( 1) :122-126.
    张高峡,卢振祖. 1998.从作物根际分离的多粘芽孢杆菌固氮作用的研究[J].武汉大学学报:自然科学版, 4 (6) : 745 - 748.
    张瑞福,崔中利,李顺鹏. 2004.土壤微生物群落结构研究方法进展[J].土壤, 36(5): 476-480.
    赵光,王宏燕. 2006.土壤微生物多样性的分子生态学研究方法[J].中国林副特产, 1: 54-56.
    赵光. 2006.转基因大豆对土壤氮转化及相关细菌多样性影响的研究.东北农业大学硕士论文.
    郑华,欧阳志云,方治国. 2004. Biolog在土壤微生物群落功能多样性研究中的应用[J]. 土壤学报, 41 ( 3) : 456-461.
    周波,陶波,栾凤侠. 2006.抗草甘膦转基因大豆生物安全性综述.作物杂志[J]. 2: 7-9.
    周德庆. 1993.微生物学教程.高等教育出版社[M], 281-282.
    左剑恶,杨洋,沈平,顾夏声. 2004.荧光原位杂交(FISH)技术在厌氧颗粒污泥研究中的应用[J].中国沼气, 22 (1): 3-6.
    Aakra A., Utaker J. B., et al. 1999. RFLP of rRNA genes and sequencing of the 16S - 23S rDNA intergenic spacer region of ammonia oxidizing bacteria: a phylogenetic approach[J]. Int. J. Syst. Bacteriol. , 49: 123 - 130.
    Aakra A., Utaker J. B., Nes I. F.. 2001. Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia oxidizing bacteria[J]. FEMS Microbiol. Lett. , 205: 237 - 242.
    Alexei Melnitchouck, Peter Leinweber, Inge Broer, Kai-Uwe Eckhardt. 2006. Pyrolysis-field ionization mass spectrometry of genetically modified plants on soil-organisms[J]. Environmental Biosafety Research, 5: 37-46.
    Alfrider A., Pernthaler J., Amann R., et al. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization[J]. Appl Environ Microbiol , 62 :2138- 2144.
    Amann R. I., Ludwig W., Schleifer K. H.. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J] . Microbiol Rev, 59 :143 - 169.
    Andrew K. Lilley, Mark J. Bailey, Colin Cartwright, et al. 2006. Life in earth: the impact of GM p lants on soil ecology[J]. TRENDS in Biotechnology, 24 (1) : 9-14.
    Avrahami, S., Conrad, R.. 2003. Patterns of community change among ammonia oxidizers in meadow soils upon long term incubation at different temperatures[J]. Applied and Environmental Microbiology , 69, 6152–6164.
    Avrahami,S., Liesack,W., Conrad,R.. 2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers[J]. Environ. Microbiol., 5 (8): 691-705.
    Cavagnaro,T.R., Jackson,L.E., Scow,K.M., Hristova,K.R..2007. Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil[J]. Microb. Ecol., 54 (4): 618-626.
    Chen X P, Zhu Y G, Xia Y, et al. 2008. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? [J]. Environmental Microbiology, 10: 1978 - 1987.
    Clive James. 2010. Global status of commercialized biotech/GM crops: 2009(1996-2009)[J]. China Biotechnology, 30(2): 1-22.
    Cowgill S.E., Bardgett R.D., Kiezebrink D.T., Atkinson H.J.. 2002. The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere[J]. Journal of Applied Ecology, 39: 915-923.
    Crecchio C., Ruggiero P., Curci M., Colombo C., Palombo G., Stotzky G.. 2005. Binding of DNA from Bacillus subtilis on montmorillonite–humic acids–aluminum or iron hydroxypolymers: effects on transformation and protection against Dnase[J]. Soil Science Society of America Journal, 69:834-841.
    Dahll F.I., Baillie H., Kjelleberg S.. 2000. RpoB2 based mcrobial community analysis avoids limitations niherent in 16SrRNA gene intraspecies heterogeneity[J]. Applied and Environmental Microbiology, 66(8): 3376-3380.
    Dang,H., Li,J., Zhang,X., Li,T., Tian,F. and Jin,W. 2009. Diversity and spatial distribution of amoA-encoding archaea in the deep-sea sediments of the tropical West Pacific Continental Margin[J]. J. Appl. Microbiol., 106(5):1482-1493.
    Deboer, W., Gunnewiek, P.J.A.K., Veenhuis, M., Bock, E., Laanbroek, H.J.. 1991. Nitrification at low pH by aggregated chemolithotrophic bacteria[J]. Applied and Environmental Microbiology , 57: 3600-3604.
    Delong E. F., WickhamI G. S.,Pace N. R.. 1989. Phylongenetic stains:ribosomal RNA based probes for the identification of single microbial cells[J]. Science, 65: 5554-5563.
    Denist, Fredericl, Francism. 2002. The ectomycorrhizal symbiosis: genetics and development[J]. Plant and Soil, 244 (35) : 1 - 2.
    Donegan, K.K., Palm, C.J., Fieland, V.J., Porteous, L.A., Ganio, L.M., Schaller, D.L., Bucao, L.Q., Seidler, R.J.. 1995. Changes in levels, species, and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var.kurstaki endotoxin[J]. Applied Soil Ecology , 2:111-124.
    Donegan, K.K., Seidler, R.J., Fieland, V.J., Schalller, D.L., Palm, C.J., Ganio, L.M., Cardwell, D.M., Steinberger, Y.. 1997. Decomposition of genetically engineered tobacco under field conditions : persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa , nematode and microarthropod populations[J]. Journal of Applied ecology, 34: 767-777.
    Douville, M., Gagne, F., Blaise, C., Andre, C.. 2007. Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment[J]. Ecotoxicology and Environmental Safety, 66: 195-203.
    Dunfield, K.E., Germida, J.J.. 2001. Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus[J]. FEMS Microbial Ecology , 38:1-9.
    Dunfield, K.E., Germida, J.J.. 2004. Impact of genetically modified crops on soil- and plant-associated microbial communities[J]. Journal of Environmental Quality , 33: 806-815.
    Fang Min , Robert J. Kremer, Peter P. Motavalli, Georgia Davis. 2005. Bacterial Diversity in Rhizospheres of Nontransgenic and Transgenic Corn[J]. Applied and Environmental Microbiology, 71 (7): 4132-4136.
    Felske A., Akkermans A. D. L. , De Vos WM.. 1998. In situ detection of an uncultured predominant Bacillus in dutch grassland soil [J] . Appl Environ Microbiol , 64 :4588 - 4590.
    Francis C A, Roberts K J, Beman J M, et al. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 102: 14683 - 14688.
    Gebhard, F., Smalla, K.. 1998. Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA[J]. Applied and Environmental Microbiology, 64: 1550-1554.
    Gebhard,K., Smalla.. 1999. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer[J]. FEMS Microbiology Ecology, 28:261-271.
    He J Z, Shen J P, Zhang L M, et al. 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese up land red soil under long-term fertilization practices[J]. Environmental Microbiology, 9: 2364 - 2374.
    Hermansson A, Lindgren P E. 2001. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR[J]. Applied and Environmental Microbiology, 67: 972 - 976.
    Horz H P, Barbrook A, Field C B, et al. 2004. Ammonia-oxidizing bacteria respond to multifactorial global change[J]. Proceedings of the National Academy of Sciences of the United States of America, 101: 15136 - 15141.
    Icoz, I., Saxena, D., Andow, D.A., Zwahlen, C., Stotzky, G.. 2008. Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis[J]. Ecological Risk Assessment , 37: 647-662.
    Isik I., Guenther S.. 2008. Fate and effects of insect-resistant Bt crops in soil ecosystems[J]. Soil Biology and Biochemistry , 40: 559-586.
    Jia,Z., Conrad,R.. 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environ. Microbiol.,2:197-205.
    Jordan F L, Cantera J J L, FennM E, et al. 2005. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem[J]. Applied and Environmental Microbiology, 71: 197 - 206.
    Kay, E., Vogel, T.M., Bertolla, F., Nalin, R., Simonet, P.. 2002. In situ transfer of antibiotic resistance genes from transgenic (Transplastomic) tobacco plants to bacteria[J]. Applied and Environmental Microbiology , 8: 3345-3351.
    Kenzaka T, Yamaguchi N , Tani K, et al. 1998. RNA-targeted fluorescent in situ hybridizationanalysis of bacterial community structure in river water[J]. Microbiology , 144 :2085 - 2093.
    Konneke M, Bernhard A E, de la Torre J R, et al. 2005. Isolation of an autotrophic ammonia-oxidizingmarine archaeon[J]. Nature, 437: 543 - 546.
    Koops, H.K., Pommerening-Roser, A.. 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species[J]. FEMS Microbiology Ecology, 37: 1-9.
    Kowalchuk G A, Bruinsma M, Van veen J A. 2003. Assessing responses of soil microorganisms to GM plant[J]. Trends in Ecology and Evolution, 18: 403-410.
    Kowalchuk, G.A., Hol, W.H.G., Van Veen, J.A.. 2006. Rhizosphere fungal communities are influenced by Senecio jacobaea pyrrolizidine alkaloid content and composition[J]. Soil Biology & Biochemistry, 38:2852–2859.
    Kowalchuk, G.A., Stephen, J.R.. 2001. Ammonia-oxidizing bacteria: A model for molecular microbial ecology[J]. Annual Review of Microbiology ,55: 485-529.
    Kozdroj, J., Van Elsas, J.D.. 2000. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches[J]. Soil Biology & Biochemistry, 32:1405–1417.
    Kremer, R.J., Means, N.E.. 2005. Glyphosate affects soybean root exudation and rhizosphere micro-organisms[J]. International Journal of Environmental Analytical Chemistry, 85 (15): 1165-1174
    Kumar, K., Rosen, C.J., Ruselle, M.P.. 2006. Enhanced protease inhibitor expression in plant residues slows nitrogen mineralization[J]. Agronomy Journal , 98: 514-521.
    Laheurte F, Berthelin J. 1988. Effect of aphosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus[J]. Plant and Soil, 105: 11 - 17.
    Leininger S, Urich T, Schloter M, et al. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 442: 806 - 809.
    Li,N., Wang, H.Y.. 2007. Effect of RRS on nitrogen transition and related bacteria in rhizosphere soil[J]. Journal of Northeast Agricultural University, 14: 333-336.
    Liang Zhanbei, Rhae A., Drijber. 2008. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil[J], Soil Biology & Biochemistry, 40 :956–966.
    Liu, B., Zeng, Q., Yan, F., Xu, H., Xu, C.. 2005. Effects of transgenic plants on soil microorganisms[J]. Plant and Soil, 271: 1-13.
    Llobet-Brossa E, Rossello-Mora R, Amann R I. 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization[J]. Appl Environ Microbiol , 64 :2692 - 2696.
    Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., Wardle, D.A.. 2001. Biodiversity and ecosystem functioning:current knowledge and future challenges[J]. Science, 294: 804-808.
    Losey JE, Rayor LS, Carter ME. 1999. Transgenic pollen harms monarch larvae[J]. Nature, 399: 214.
    Ludwing W, Bauer S H, Bauer M, et al. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum[J]. FEMS Microbiol Lett , 153 :181 - 190.
    Lupwayi, N.Z., Hanson, K.G., Harker, K.N., Clayton, G.W., Blackshaw, R.E., O’Donovan, J.T., Johnson, E.N., Gan,Y., Irvine, R.B., Monreal, M.A.. 2007. Soil microbial biomass, functional diversity and enzyme activity in glyphosate-resistant wheat–canola rotations under low-disturbance direct seedin gand conventional tillage[J]. Soil Biology Biochemistry , 39: 1418-1427.
    Macgregor, A.N., Turner, M.A.. 2000. Soil effects of transgenic agriculture:biological processes and ecological consequences[J]. N Z Soil News, 48: 166-169.
    Macnaughton S J, Booth T, Embley T M, et al . 1996. Physical stabilization and confocal microscopy of bacteria on roots using 16S rRNA targeted fluores-centlabeled oligonucleotide probes[J]. Microbiol Methods, 26 :279- 285.
    Mintie,A.T., Heichen,R.S., Cromack,K.Jr., Myrold,D.D., Bottomley,P.J. 2003 Ammonia-Oxidizing Bacteria along Meadow-to-Forest Transects in the Oregon Cascade Mountains[J]. Appl. Environ. Microbiol, 69 (6): 3129-3136.
    Motavalli PP, Kremer R J, Fang M, et al. 2004. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations[J]. Journal Environmental Quality, 33 (3) : 816~824.
    Muyzer G., Smalla K.. 1998. Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology[J]. Antoni van Leeuwenhoek, 73:127-141.
    Muyzer, G., Brinkhoff, T., Nubel, U., Santegoeds, C., Schafer, H.,Wawer, C.. 2004. Denaturing gel electrophoresis (DGGE) in microbial ecology[M]. In: Kowalchuck, G.A., de Bruijn, F.J., Head, I.M., Akkermans, A.D.L., Dirk van Elasas, J. (Ed.). Molecular Microbial Ecology Manual, 2nd edn. Kluwer Academic Publishers, Dordrecht, 743–770.
    Muyzer, G., De Waal, E.C., Uitterlinden, A.G.. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology , 59: 695-700.
    Myers R.M., Fischer S.G., et al. 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis[J]. Nucleic Acids Research, 13: 3131-3145.
    Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G.. 2003.
    Microbial diversity and soil functions[J]. European Journal of Soil Science , 54: 655-670.
    Norman R Pace. 1997. Molecular view of microbial diversity and the biosphere [J] . Science , 276 : 734 - 740.
    Norton,J.M., Alzerreca,J.J., Suwa,Y., Klotz,M.G. 2002. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria[J]. Arch. Microbiol, 177 (2): 139-149.
    Oger P, Petit A, Dessaux Y. 1997. Genetically engineered plants producingopines alter their biological environment[J]. Nature Biotechnol, 15: 369-372.
    Okano Y, Hristova K R, Leutenegger C M, et al. 2004. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil[J]. Applied and Environmental Microbiology, 70: 1008 - 1016.
    Phillips D A, Fox T C, King M D, et al. 2004. Microbial products trigger amino acid exudation from plant roots[J]. Plant Physiol, 136: 2887 - 2894.
    Prosser J. 2002. Molecular and functional diversity in soil microorganisms[J]. Plant Soil, 244: 9 - 17.
    Prosser, J.I.. 1989. Autotrophic nitrification in bacteria[J]. Advances in Microbial Physiology, 30: 125-181.
    Purkhold Ulrike, et al. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16SrRNA and amoA sequence analysis:implications for molecular diversity surveys[J]. Appl. Environ. Microbiol., 66: 5368 - 5382.
    Rasche F, Velvis H, Zachow C, et al. 2006. Imapct of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype,soil type and pathogen infection[J]. Journal of Applied Ecology, (43):555-566.
    Saman, B., Rie, I., Susumu, A., Makoto, K.. 2006. Characterization of ammonia oxidizing bacteria associated with weeds in a Japanese paddy field using amoA gene fragments[J]. Soil Science and Plant Nutrition, 52: 593-600.
    Schulz H N, Brinkhoff T, Ferdelman T G, et al. 1999. Dense populations of a giant sulfur bacterium in Namibian Shelf sediments[J] . Science , 284 : 493 - 499.
    Shen J P, Zhang L M, Zhu Y G, et al. 2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environmental Microbiology, 10: 1601 - 1611.
    Siciliano, S.D., Germida, J.J.. 1999. Taxonomic diversity of bacteria associated with the roots of field grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland[J]. FEMS Microbiology Ecology, 29: 263–272.
    Siciliano, S.D., Theoret, C.M., de Freitas, J.R., Hucl, P.J., Germida, J.J.. 1998. Differences in the microbial communities associated with roots of different cultivars of canola and wheat[J]. Canadian Journal of Microbiology, 44: 844–851.
    Stephen J R, Chang Y J, et al. 1999. Effect of toxic metals on indigenous soil beta-subgroup p roteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria[J]. Appl. Environ. Microbiol., 65: 95 - 101.
    Stephen, J.R., McCaig, A.E., Smith, Z., Prosser, J.I., Embley, T.M.. 1996.Molecular diversityof soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 62: 4147-4154.
    Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T., Lehman, C.. 2001. Diversity and productivity in a long-term grassland experiment[J]. Science, 294: 843-845.
    Treusch A H, Leininger S, Kletzin A, et al. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environ Microbiol., 7(12):1985-95.
    Vallaeys T., Topp E., Muyzer G., et al.. 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16SrDNA sequence variation in rhizobia and methanotrophs[J]. FEMS Microbiology Ecology, 24(3):279-285.
    Venter J C, Remington K, Heidelberg J F, et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 304: 66 - 74.
    Wang,Y., Ke,X., Wu,L., Lu,Y. 2009. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization[J]. Syst. Appl. Microbiol., 32 (1):27-36
    Watve, M.G., Tickoo, R., Jog, M.M., Bhole, B.D.. 2001. How many antibiotics are produced by the genus Streptomyces[J]. Archives of Microbiology, 176: 386-390.
    Wei-Dong YAN, Wei-Ming SHI, Bao-Hai LI, Min ZHANG. 2007. Overexpression of a Foreign Bt Gene in Cotton Affects the Low-Molecular-Weight Components in Root Exudates[J]. Pedosphere, 17 (3): 324-330.
    Wolfenbarger L L, Phifer P R. 2000. The ecological risks and benefits of genetically engineered plants[J]. Science, 290: 2088-2093.
    Wuchter C, Abbas B, Coolen M J L, et al. 2006. Archaeal nitrification in the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 103: 12317 - 12322.
    Yang C.H., Crowley D.E.. 2000. Rhizosphere mcrobial community structure in relation to root location and plant iron nutritional ststus[J]. Applied and Environmental Microbiology, 66(1):345-351.
    Yuan F, Ran W, Hu J, et al. 2005. Ammonia-oxdizing bacteria communities and their influence on the nitrification potential of Chinese soils measured by denaturing gradient gel electrophoresis (DGGE) [J]. Acta Ecologica Sinica, 25 (6) : 1318 - 1324.
    Zelles L. 1999. Fatty acid patterns of phospholipids and lipopoly saccharides in the characterization of microbial communities in soil [J]. Biol Ferti.l Soils, 29: 111-129.
    Zhanbei Liang, Rhae A., Drijber. 2008. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil[J]. Soil Biology & Biochemistry, 40 :956–966.
    Zhou J, Mary B, James M T. 1996. DNA recovery from soils of diverse composition[J], Applied and Environmental Microbiology, 62: 316-322.
    Zhu You-yong, Wang Yun-yue, D S Multani. 1999. The relationships between DNA polymorphism and geographical origin of Australian isolates of Verticillium Dahliae from cotton plants[J], Mycosystema, 18 (3): 366-373.