间歇式短程反硝化除磷基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚硝酸盐型反硝化除磷工艺具有运行周期短,吸磷速率快的特点。联合亚硝酸盐型硝化技术,就可以实现两段活性污泥系统—短程反硝化除磷工艺。而目前将亚硝酸盐作为反硝化除磷过程的电子受体尚存在诸多问题,如亚硝态氮对缺氧吸磷的抑制程度,亚硝酸态氮对缺氧吸磷的抑制机理,亚硝酸型反硝化除磷的反应动力学等都是亟待研究的课题。本研究采用SBR反应器,对比采用不同方式培养驯化短程反硝化除磷污泥的效果,并启动间歇式短程反硝化除磷工艺;考察了污泥龄(SRT)、亚硝酸盐浓度、碳源有机物和pH值等对短程反硝化除磷工艺的影响,同时测定了间歇式短程反硝化除磷动力学参数。主要研究成果如下:
     1)采用PAOs启动短程反硝化除磷工艺的方法未能获得理想的脱氮除磷效果。采用厌氧/沉淀排水/缺氧/沉淀排水的方式以亚硝酸盐为电子受体直接驯化与富集短程反硝化除磷污泥,经58d成功富集短程反硝化除磷污泥,COD去除率达75.4%,PO_4~(3-)-p去除率达81.8%,NO_2~--N去除率达97.4%,此时污泥呈黑褐色絮状污泥,污泥状态良好,对反应器内较高的亚硝酸盐环境适应性好。
     2)通过测定缺氧段电子受体的产能氧化效率k_(NO)、呼吸效率η_(NO)与除磷量/亚硝酸盐消耗量可评估系统的反硝化除磷能力,判别反硝化除磷工艺运行的可行性。采用PAOs所诱导驯化获得的短程反硝化除磷菌缺氧段电子受体的平均产能氧化效率(?)为27.1%,平均呼吸效率(?)为9.4%。采用亚硝酸盐直接驯化富集的短程反硝化除磷菌平均产能氧化效率(?)为39.3%,平均呼吸效率(?)为9.2%。在适当的工艺运行条件下,后者可保证系统长期稳定的脱氮除磷效果。
     3)以亚硝酸盐为电子受体进行同步反硝化除磷是可以实现的。利用富集的短程反硝化除磷污泥在SBR反应器内31d完成了短程反硝化除磷工艺的启动,COD去除率达69.6%、PO_4~(3-)-p去除率达79.2%、NO_2~--N去除率达98.9%,其除磷量与亚硝酸盐的消耗量的比值为1.39mgP/mgN。
     4)污泥龄(SRT)、亚硝酸盐浓度、碳源有机物与pH值等因素均会影响短程反硝化除磷工艺的稳定运行,本试验中污泥龄(SRT)宜控制在16~20d,当进水NO_2~--N浓度达到于45mg/l时,没有对聚磷菌产生抑制作用;当进水COD、NO_2~- -N和PO_4~(3-)-p的质量比约为350:35:8.50时,反硝化聚磷效果最佳;为充分保证厌氧段的高效释磷作用,应将进水NO_2~--N浓度控制在2mg/L以下;本试验中短程反硝化除磷系统的进水COD浓度应控制在300~400mg/L。不同碳源为条件下进行基质转化规律存在较大差异,乙酸钠与丁酸的降解途径相似,而与葡萄糖的降解途径不同;本试验结果表明厌氧段最佳pH值为8.0,缺氧段最佳pH值为7.0。
     5)通过改进型SBR动力学模型分析得出厌氧段有机物与磷酸盐之间的化学计量系数γ为0.206,有机物吸收常数k为0.0613 h~(-1),有机物去除饱和浓度k_s为97.087mg/L,缺氧段磷酸盐最大比消耗速率(?)_p为0.435 d~(-1),磷酸盐去除饱和浓度K_(s,PO_4~(3-))为49.648 mg/L,短程反硝化除磷菌最大产率系数Y_(max,p)为0.906,短程反硝化除磷菌的衰减系数b_p为0.0015 d~(-1),缺氧段反硝化速率常数k_(NO_2~-)为3.108 mg/(gMLSS·h)。通过对短程反硝化除磷菌与常规反硝化除磷菌动力学参数的比较,发现前者厌氧段对有机物的吸收能力、释磷能力及吸磷能力较后者强,但缺氧段反硝化能力远小于后者。
The process of denitrifying phosphorus removal using nitrite as electron acceptor has the characteristics of short cycling period and rapid phophorus uptake rate, combined with the short-cut nitrification can realize two stages activated sludge systems together—short-cut nitrification-denitrifying phosphorus removal using nitrite,but at present there are many problems in the denitrifying phosphorus removal technique using nitrite,such as the inhibitory degree of nitrite nitrogen on the anoxic phosphorus uptake,the inhibitory mechanism of nitrite nitrogen on the anoxic phosphorus uptake and the kinetics of denitrifying phosphorus removal using nitrite, and so on,all the problems are critical issues which should be studied.The effect of different start-up modes starting up a batch denitrifying phosphorus removal process using nitrite was contrasted,and adopting sequencing batch reactor(SBR);the effect of sludge retention time(SRT)、nitrite concentration、carbon resource organism and pH Value on denitrifying phosphorus removal technique using nitrite was explored, respectively;meanwhile the kinetic parameters of a batch denitrifying phosphorus removal process using nitrite were determined.The main results were as follows:
     1) The start-up of denitrifying phosphorus removal technique using nitrite by adopting PAOs can't achieve the perfect result.After anaerobic/sedimentation and displacement/anoxic/sedimentation and displacemen stages,the denitrifying phosphorus removal sludge using nitrite was successfully enriched in 58d by directly putting nitrite into the system,the removal rates of COD,PO_4~(3-)-P and NO_2~--N reached 75.4%,81.8%and 97.4%,respectively,the activated sludge had the color of black and brown and a good adaptability for higher nitrite concentration in the reactor, it was in good condition.
     2) By measuring anoxic productivity oxidation efficiency of nitrite k_(NO)、η_(NO) and the ratio of quantity of phosphorus uptaken/consumption of nitrite,the denitrifying phosphorus removal ability can be evaluated,and the feasibility of denitrifying phosphorus removal technique can be determined.The average values of anoxic productivity oxidation efficiency of nitrite and anoxic respiration efficiency were 27.1%,9.4%for denitrifying phosphorus removing bacteria using nitrite induced by PAOs,and were 39.3%,9.2%for denitrifying phosphorus removing bacteria using nitrite enriched by directly putting nitrite into the system.In the suitable operating conditions,the latter could ensure the long-term stable effect of denitrogenation and dephosphorization.
     3) Denitrifying dephosphatation process using nitrite as electron acceptor could be realized fully,the short-cut denitrifying phosphorus removal system was successfully started up in 31d based on the enriched denitrifying dephosphatation sludge using nitrite,and adopting sequencing batch reactor(SBR).The removal rates of COD,PO_4~(3-)-P and NO_2~--N reached 69.6%,79.2%and 98.9%,respectively,the ratio of phosphorus uptake to nitrite consumption was 1.39mgP/mgN under anoxic condition.
     4) The steady operation of denitrifying phosphorus removal technique using nitrite as electron acceptor was affected by the factors of sludge retention time(SRT)、nitrite concentration、carbon resource organism and pH Value,the sludge retention time should be restricted within 16~20d,the system was not disturbed when the NO_2~--N concentration reached as high as 45 mg/L,the effect of denitrifying phosphorus removal was the best if influent COD,NO_2~--N and PO_4~(3-)-P were about 350、35 and 8.50.In order to ensure high efficient phosphorus release,the NO_2~--N concentration was kept below 2mg/L.Too high or too low inlet COD concentration has great impact on denitrifying phosphorus removal technique using nitrite,the inlet COD concentration should be restricted within 300~400mg/L in this experiment. There was great difference of the transformaing rule of medium in different carbon sources,the degradation pathway of acetic sodium was similar to that of butyric acid, and was different from that of glucose,nitrogen and phosphorus removal effect was better acetic sodium or butyric acid as carbon source than that of glucose,pH Value has great influence on phosphorus release and uptake,the results showed that the optimum pH value of 8.0 in anaerobic stage,the optimum pH value of 7.0 in anoxic stage.
     5) Through analysising on the mathematics model of SBR,we could obtain the stoichiometric coefficient between organic matter and phosphate(γ) 0.206,the absorption constant of organic matter(k) 0.0613h~(-1),the organic removal saturated concentration(k_s) 97.087mg/L in anaerobic stage,the maximum phosphate specific consumption rate((?)) 0.435d~(-1),the phosphate removal saturated concentration(K_(s,PO_4~(3-)))49.648 mg/L,the maximum yield coefficient of denitrifying phosphate accumulating organisms using nitrite(Y_(max,p))0.906,the sludge decay coefficient of denitrifying phosphate accumulating organisms using nitrite(b_p) 0.0015d~(-1),the denitrification rate coefficient(k_(NO_2~-))3.108 mg/(gMLSS·h) in anoxic stage.By comparing the kinetic parameters of denitrifying phosphate accumulating organisms using nitrite and denitrifying phosphate accumulating organisms using nitrate,the absorption capacity of the organic matter,the anaerobic phosphorus release ability and the phosphorous absorbing ability of the former were stronger than them of the latter,but denitrifying capacity was opposite.
引文
[1]王淑芳.湖泊富营养化防治与展望[J].江苏环境科技,2005,18(4):54-56.
    [2]苏玲.水体富营养化[J].世界环境,1994,15(2):23-26.
    [3]丰茂武,吴云海.国内外湖泊富营养化的防治对策与展望[J].广州环境科学,2006,21(4):8-9.
    [4]中华人民共和国水利部.中国水资源公报[M].北京:水利水电出版社,2006.
    [5]李军,杨秀山,彭永臻等.微生物与水处理工程[M].北京:化学工业出版社,2002:343-344.
    [6]李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998:116-119
    [7]娄金生,谢水波,何少华等.生物脱氮除磷原理与应用[M].湖南:国防科技大学出版社,2002:19-20.
    [8]钟成华.三峡库区水体富营养化研究[D].四川:四川大学,2001.
    [9]戴堂刚.渔洞水库氮磷变化趋势分析[J].水资源研究,2008,29(3):29-30.
    [10]沈耀良.废水生物处理新技术一理论与应用[M].北京:中国环境出版社,2001:157-158.
    [11]郝晓地.可持续污水-废物处理技术[M].北京:中国建筑工业出版社,2006:29-30.
    [12]徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展[J].工业水处理,2003,23(5):18-20.
    [13]Clack T,Stephenson T,Pearce P A.Phosphrus removal by chemical recipitation in a biological areated filter[J].Wat Res,1997,31(10):2257-2583.
    [14]李京雄,孙水裕,苑星海.城市生活污水化学除磷试剂的应用比较[J].广东微量元素科学,2006,13(1):19-22.
    [15]康晓丹,杨开.化学除磷药剂的比较试验[J].山西建筑,2008,34(29):194-195.
    [16]郝晓地.可持续污水-废物处理技术[M].=I匕京:中国建筑工业出版社,2006:326-327.
    [17]李军,杨秀山,彭永臻等.微生物与水处理工程[M].北京:化学工业出版社,2002:345-348.
    [18]张胜华.水处理微生物学[M].北京:化学工业出版社,2005:25-29.
    [19]Scalf M R,Lively L D,Witherow J L et al.Phosphate Removal at Baltimore,Maryland[J].Journal of the Sanitary Engineering Division,1969,95(5):817-828.
    [20]Janssen M J,Meinema K,Vatl der Roest H F.生物除磷设计与运行手册[M].北京:中国建筑工业版社,2005:236-237.
    [21]毕学军,赵桂芹,毕海峰.污水生物除磷原理及其生化反应机制研究进展[J].青岛理工大学学报,2006,27(2):10-15.
    [22]Comeau H,Hall K J,Hancock R E W.Biological model for enhance biological phosphorus removal[J].Wat Res,1986,20(5):1511-1521.
    [23]Serafim L S,Lemos P C,Levantesi C et al.Methods for detection and visualization of intracellular polymers stored by polyphosphate- accumulating microorganisms[J].Journal of Microbiological Methods,2002,51(2):1-18.
    [24]Hesselmann R P X,Von Rummel R,Resnick S Met al.anaerobic metabolim of bacteria performing enhanced biological phosphate removal[J].Wat Res,2005,34(8):3487-3494.
    [25]Van Groenestijn J W,Jun-xin L.Optimum operation conditions of nitrogen and phosphorus removal by a biofilm activated sludge system[J].Journal of Environmental Science,2003,15(1):25-30.
    [26]刘洪波,李卓,肖苏林等.传统生物除磷脱氮工艺和反硝化除磷工艺对比[J].工业用水与废水,2006,37(6):4-7.
    [27]王青,陈建中.污水生物脱氮除磷技术的研究进展[J]_环境科学与管理,2006,31(8):126-129.
    [28]王建芳,涂宝华,陈荣平等.生物脱氮除磷新工艺的研究进展[J].环境污染治理技术与设备,2003,4(9):71-73.
    [29]葛丽英季俊杰.城市污水生物脱氮除磷工艺研究进展[J].北方环境,2002,29(3):25-28.
    [30]Merzouki M,Bernet N,Delgenes J P et al.Kinetic behaviour of some polyphosphate-accumulating bacteria isolate in the persence[J].Curr Microbiol,2004,38(5):300-308.
    [31]Ahn J,Daidou T,Tsuneda Set al.Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptorconditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay[J].Wat Res,2002,36(2):403-412.
    [32]罗宁,罗固源,吉芳英等.SBR的反硝化吸磷现象的研究[J].重庆环境科学,2003,25(9):15-16.
    [33]杨志斌,黄勇,潘杨.采用双泥系统的废水脱氮除磷工艺的研究现状与进展[J].环境科学与管理,2006,31(6):67-70.
    [34]Tsuneda S,Ohno T,Oeiima K Set al.Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J].Biochem.Eng,2006,27(2):191-196.
    [35]Seung-Yeon W,Chan-Won L,Koopmand BoNitrite inhibition of aerobic growth of Acinetobactersp[J].WatRes,2002,36:4471-4476.
    [36]Shun-hsing C,Chiao-fuei O.The biomass fractions of heterotrophs and phosphate- organisms in a nitrogen and phosphorus removal system[J].Wat Res,2000,34(8):2283-2290.
    [37]王爱杰,吴丽红,任南琪等.亚硝酸盐电子受体反硝化除磷工艺的可行性[J].中国环境科学,2005,3(25):515-518.
    [38]李捷,熊必永,张树德等.亚硝酸盐对聚磷菌吸磷效果的影响[J].环境科学,2006,27(4):702-703
    [39]黄荣新,李冬,张杰等.电子受体亚硝酸氮在反硝化除磷过程中的作用[J].环境科学学报,2007,27(7):1142-1144.
    [40]Smolders G J F,Van der Meiji J,Van Loosdrecht M C M et al.Model of the Anaerobic Metabolism of the Biological Phosphorus Removal Process:Stoichiometry and pH Influence[J].Biotech and Bioeng,1994,43(6):461-470.
    [41]Kuba T,Murnleitner E,Van Loostrecht M C M et al.A metabolic model for the biological phosphorus removal by denitrifying phosphorus removal organisms[J].Biotech and Bioeng,1996,52(2):685-695.
    [42]王亚宜,王淑莹,彭永臻.反硝化除磷的生物化学代谢模型[J].中国给水排水,2006,22(6):4-6.
    [43]Henze M,Gujer W,Mino T et al.Activated Sludge Model No.2D[J].Wat Sci Technol,1995,39(1):165-182.
    [44]Wentzel M C,Ekama G A,Lowenthal R E et al.Enhanced polyphosphate organism culture in activated sludge-part3:kinetic model[J].Wat S A,2003,15(5):89-102.
    [45]Nielsen J,Nielsen P H.Quantification of functional groups in activated sludge by microautoradiography[J].WatSciTechnol,2002,46(3):389-395.
    [46]李相昆.反硝化除磷工艺与微生物学研究[D].哈尔滨:哈尔滨工业大学,2006.
    [47]Mino T,Liu W T,Kurisu F et al.Modeling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes[J].Wat Sci Technol,2003,31(4):25-34.
    [48]Pijuan M,Guisasola A.Aerobic phophorus release linked to acetate uptake influence of PAO intracelluar storage compounds[J].biochemical engineering journal,2005,26(1):184-190.
    [49]豆峰俊,罗固源,刘翔.生物除磷过程厌氧释磷的代谢机理及其动力学分析[J].环境工程学报,2005,25(9):1165-1169.
    [50]Filipe C D M,Daegger G T.Stioichiometry and kinetics of acetate uptake under anaerobic conditions by enriched culture of phosphorus accumulating organisms at different pHs[J].BioengBiotech,2001,76(1):32-43.
    [51]郝晓地.可持续除磷脱氮BCFS工艺[J].给水排水,2002,28(9):7-9.
    [52]Gorge A,Ekama G A.Difficulties and development in biological nutrient removal technology and modelling[J].Wat Sci Tech,1999,39(6):1-11.
    [53]Hao X D.Contribution of P-bacteria in BWR processes to overall effects on the environment[J].WatSciTech,2001,44(1):67-76.
    [54]王亚宜,彭永臻.A_2N工艺反硝化除磷脱氮工艺及其影响因素[J].中国给水排水,2003,19(9):8-11.
    [55]Hu J Y,Ong S L,Ng W Jet al.A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J].Wat Res,2003,37(3):3463-3471.
    [56]国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [57]Zhi-rong Hu,Wentzel M C,Ekama G A.Anoxic growth of phosphate-accumulatingorganisms(PAOs) in biological nutrient removal activated sludge system[J].WatRes,2002,36(2):4927-4937.
    [58]李军,杨秀山,彭永臻等.微生物与水处理工程[M].北京:化学工业出版社,2002:351-357.[59]王国惠,单爱琴.环境工程微生物学[M].北京:化学工业出版社,2005:104-105.
    [60]张希衡主编.水污染控制工程(第2版)[M].北京:冶金工业出版社,1992,213-218
    [61]Wen-Tso L,Mino T,Nakamum K et al.Glycogen accumlating population and its anaerobic substrate uptake,in anaerobic activated sludge without biological phosphorus removal[J].Wat Res,1996,30(1):75-82.
    [62]张立卿.碳源对SBR内除磷效果的影响试验[D].西安:西安建筑科技大学,2005.
    [63]鄢敏林.以亚硝酸盐为电子受体的反硝化除磷技术研究[D].无锡:江南大学,2005.
    [64]刘建广,付昆明,杨义飞等.不同电子受体对反硝化除磷菌缺氧吸磷的影响[J].环境工程,2007,28(7):1472-1476.
    [65]王春丽,马放,米海蓉等.反硝化除磷系统的启动及其稳定性研究[J].给水排水,2006,32(2):126-129.
    [66]Meinhold J,Arnold E,Isaacs S.Effect of nitrite on anoxic phosphate uptake in biological phosphorus removalactivatedsludge[J].WatRes,199.9,33(8):1871-1883.
    [67]王亚宜,王淑莹,彭永臻等.污水有机碳源特征及温度对反硝化聚磷的影响[J].环境科学,2006,26(2):187-191.
    [68]张立卿.碳源对SBR内除磷效果的影响试验[D].西安:西安建筑科技大学,2005.
    [69]Gerber A,Mostert E S.The effect of acetate and other short-chain carbon compounds on the kinetics of biological nutrient removal[J].Wat S A,1986,12(2):7-12.
    [70]王亚宜,王淑莹,彭永臻.MLSS,pH及NO_2~- -N对反硝化除磷的影响[J].中国给水排水,2005,21(7):47-51
    [71]李姜华,郑泽根,邹小兵等.SBR动力学模型比较与改进[J].重庆建筑大学学报,2007,29(5):136-138
    [72]娄金生,谢水波,何少华等.生物脱氮除磷原理与应用[M].湖南:国防科技大学出版社,2002:96
    [73]李相昆.反硝化除磷工艺与微生物学研究[D].哈尔滨:哈尔滨工业大学,2006.
    [74]丁彩娟.反硝化除磷系统基质转化和生物特性初探[D].重庆:重庆大学,2005.