树突状细胞及其Toll样受体3在重型乙型肝炎中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DC是专职的抗原提呈细胞,是连接天然免疫与获得性免疫的桥梁,是平衡免疫应答与免疫耐受的关键。作为免疫系统的前沿哨兵,受到病原体或炎症信号的刺激后,DCs进行复杂的成熟过程,从而影响免疫应答的质与量。本研究旨在观察重型乙型肝炎(ACLF)患者外周血树突状细胞两个亚群(mDC和pDC)的频率,单核细胞衍生的树突状细胞(MoDC)表型及刺激同种异体T淋巴细胞增殖能力的变化。
     筛选重型乙型肝炎(ACLF)患者60例,慢性乙型病毒性肝炎(CHB)患者40例,并以20例健康者作对照,取入选研究对象的抗凝全血,应用流式细胞术检测外周血循环中mDC和pDC分别占外周血单个核细胞(PBMC)的比例。抗凝全血通过淋巴细胞分离液进行密度梯度法离心,分出PBMC,并进一步经免疫磁珠阳性选择的方法分离单核细胞,细胞因子白介素4和粒细胞巨噬细胞集落刺激因子体外诱导为MoDC,经poly(I:C)刺激后,用流式细胞仪检测MoDC的表型(HLA-DR、CD83、CD80、CD86),并通过同种混合淋巴细胞反应(MLR)检测MoDC刺激同种异体T淋巴细胞增殖的能力。
     1、健康对照组mDC和pDC占PBMC百分率分别为0.52%±0.04%和0.31%±0.02%;CHB组mDC和pDC占PBMC的百分率分别为0.53%±0.11%和0.2%±0.03%;ACLF组mDC和pDC占PBMC的百分率分别为0.18%±0.02%和0.15%±0.02%。ACLF组mDC占PBMC的百分率较CHB组及健康对照组均明显降低(P<0.001),但CHB组与健康对照组差异无统计学意义(P=0.927)。与健康对照组相比,ACLF组和CHB组pDC的百分率均显著降低(P<0.001),但ACLF组和CHB组之间差异无统计学意义(P=0.113)。
     2、经poly(I:C)刺激后健康对照组MoDC表面MHCⅡ类分子HLA-DR、成熟的标志CD83及协同刺激分子CD86和CD80平均荧光强度的表达分别为302.1±5.6、205.1±13.7、346.7±14.6、38.8±1.0;CHB组HLA-DR、CD83、CD86和CD80表达分别为272.2±3.38、173.0±6.4、315.5±7.93、30.6±0.57;ACLF组HLA-DR、CD83、CD86和CD80表达分别为223.0±5.5、148.2±6.1、219.1±7.1、25.0±0.6。CHB组MoDC四种表面标志物的表达均低于健康对照组,但高于ACLF组。
     3、MLR检测HBV感染者MoDC刺激T细胞增殖的能力低于健康对照组,重型乙型肝炎组降低尤为显著(P<0.001)。
     重型乙型肝炎患者外周血mDC和pDC占PBMC比率显著下降,MoDC表型缺失、成熟障碍以及功能低下,可能为重型乙型肝炎的发病机制之一。
     Toll样受体(TLR)是天然免疫系统中非常重要的一类模式识别受体,TLR3大量分布于树突状细胞,能识别病毒及其复制中间产物,TLR3触发后能促进核因子-κB (NF-κB)和干扰素调节因子3(IRF3)入核,继而分泌大量的促炎性细胞因子及干扰素β(IFN-β),可能与HBV感染的临床结局及预后相关。本研究观察慢性重型乙型肝炎患者外周血树突状细胞TLR3触发后信号转导通路的变化,探讨TLR3信号转导通路的改变与重型乙型肝炎疾病进展的相关性。
     筛选ACLF患者60例,CHB患者40例,并以20例健康者作对照,抽取入选研究对象的抗凝全血,通过淋巴细胞分离液进行密度梯度法离心和CD14+免疫磁珠阳性选择法分离单核细胞,细胞因子白介素4和粒细胞巨噬细胞集落刺激因子体外诱导为MoDC,经poly(I:C)刺激后,用流式细胞仪检测TLR3平均荧光强度(MFI),免疫印迹法检测TLR3蛋白水平,实时荧光定量PCR检测TLR3及TLR3信号通路上关键转录因子(核因子κB和干扰素调节因子3)的表达,用液相蛋白流式检测细胞培养上清中促炎性因子白细胞介素(IL)-6、IL-8、IL-10、IL-12p70、IL-1β和肿瘤坏死因子α(TNF-α)的分泌水平,酶联免疫吸附试验检测细胞培养上清中干扰素β(IFN-β)。
     1、相对于健康对照组,ACLF组MoDC上TLR3mRNA的表达下降57.7%,而CHB组下降41.5%,ACLF组较CHB组明显降低,三组之间具有显著性差异(P<0.001)。经免疫印迹法检测TLR3蛋白水平的表达趋势与转录水平一致,MoDC上TLR3的表达自健康对照组至CHB组至ACLF组依次减弱。MoDCs上TLR3的MFI在健康对照组明显高于两个疾病组(P<0.001);而ACLF组TLR3 MFI低于CHB患者(P=0.006),差异具有统计学意义。
     2、健康对照组MoDC分泌IL-6、IL-8、IL-10、IL-12p70、TNF-α、IL-1β的水平分别为:(711.64±61.64)ng/L、(5893.53±377.53)ng/L、(51.66±9.72)ng/L(39±0.89)ng/L、(7370.01±597.66)ng/L、(40.55±4.72)ng/L;CHB组MoDC分泌IL-6、TNF-α、IL-12p70、IL-10、IL-1β和IL-8的水平分别为:(1081.64±82.5)ng/L、(4181.66±413.35)ng/L、(59.44±10.37)ng/L、(36.44±2.66)ng/L、(12627.67±924.33)ng/L、(27.75±2.49)ng/L;ACLF组MoDC分泌IL-6、TNF-α、IL-12p70、IL-10、IL-1β和IL-8的水平分别为:(1551±161)ng/L、(2959.86±415.58)ng/L、(30.62±2.97)ng/L、(29±1.03)ng/L、(19263.61±1110.58)ng/L、(25.12±1.05)ng/L;ACLF组MoDCs分泌IL-6和TNF-α显著高于CHB和健康对照组,IL-12p70、IL-10、IL-1β和IL-8分泌异常。
     3、MoDCs分泌IFN-β水平在各组之间的差异与TLR3表达趋势相同,健康对照组为(156.10±6.98) pg/ml,CHB组为(133.95±5.45)pg/ml, ACLF组为(74.77±3.1) pg/ml。CHB组MoDCs分泌IFN-β水平低于健康对照组(P=0.019);ACLF组MoDCs分泌IFN-β水平低于CHB组(P<0.001),更低于健康对照组(P<0.001)。
     4、针对ACLF患者进一步分析,ACLF中存活组TLR3/IFN-β显著高于死亡组(P<0.001),而TLR3/IFN-β与HBeAg状态无显著相关性。ACLF组患者NF-κB mRNA显著高于CHB和健康对照组,而IRF3 mRNA低于CHB和NC组。与重型肝炎相关的临床参数相关性分析发现TLR3/IFN-β的分泌水平与凝血酶原活动度呈负相关,与总胆红素成正相关,而与谷丙转氨酶和病毒载量无显著相关性。
     重型乙型肝炎患者TLR3信号转导通路受损,促炎性细胞因子分泌异常,Ⅰ型干扰素分泌降低可能是导致肝细胞严重免疫损伤及HBV持续感染的原因之
Dendritic cells (DCs) are potent antigen-presenting cells (APCs), which bridge innate and adaptive immune responses and shape the balance between induction of immunity and tolerance. As sentinels, DCs alert the immune system, and determine the quantity and quality of the emerging immune response. Persistence of hepatitis B virus (HBV) infection is associated with reduced anti-viral T cell responses. Impaired dendritic cell (DC) function was suggested as the cause of reduced T cell stimulation in chronic HBV carriers, however, its role in hepatitis B virus (HBV)-related chronic-on-acute liver failure is still largely unknown. To investigate the frequencies of circulating dendritic cell (DC) subsets and the function of monocyte-derived dendritic cells in patients with hepatitis B related acute-on-chronic liver failure, we assayed the circulating precursor DC subsets (including mDC and pDC) and the ability of MoDCs in patients at various stages of HBV infection.
     Peripheral blood was collected from hepatitis B related acute-on-chronic liver failure patients (ACLF, n=60) and chronic hepatitis B (CHB, n=40) as well as normal controls (NCs, n=20). Circulating mDC and pDC frequencies in peripheral blood mononuclear cells (PBMC) were analyzed by flow cytometric analysis. Purified monocytes were isolated by combination of Histopaque-1.077 and CD 14 Microbeads. Monocyte-derived dendritic cells (MoDCs) generated in vitro in the presence of interleukin (IL)-4 and granulocyte macrophage colony-stimulating factor upon activation by poly I:C. Costimulatory molecule expression and allostimulatory mixed lymphocyte reaction (AMLR)of MoDCs were detected in patients with hepatitis B
     1. The peripheral mDC and pDC frequency in normal controls were 0.52%±0.04% and 0.31%±0.02%, respectively. In addition, the peripheral mDC and pDC frequency in patients with CHB were 0.53%±0.11% and 0.2%±0.03%, respectively. Those of ACLF were 0.18%±0.02% and 0.15%±0.02%. The number of circulating mDC decreased only in patients with hepatitis B related ACLF compared with that in normal controls. However, pDC numbers decreased in both CHB and ACLF patients. We observed a further decrease the pDC numbers in ACLF compared to CHB patients, however, but this difference did not achieve P< 0.05 statistical significance.
     2. After in vitro challenge with poly(I:C), the expression of NC-DC surface molecular such as MHC classⅡmolecules (HLA-DR), and the mature marker CD83, as well as costimulatory molecules CD86, CD80 were 302.1±5.6,205.1±13.7,346.7±14.6, and 38.8±1.0, respectively. But both groups showed low expressions of above surface molecular (272.2±3.38,173.0±6.4,315.5±7.93, and 30.6±0.57 in CHB group; 223.0±5.5,148.2±6.1,219.1±7.1, and 25.0±0.6 in ACLF group). MoDC from ACLF patients showed lower expression of costimulatory molecules CD80, CD86 and the mature marker CD83, as well as MHCⅡmolecule (HLA-DR) compared to CHB and NC group.
     3. Interestingly, MoDC impaired allostimulatory mixed lymphocyte reaction from ACLF patients compared with those in CHB patients and NCs.
     Our results suggest that patients with hepatitis B related ACLF have a significantly lower expression of surface markers and impaired AMLR of MoDC, as well as decreased number of circulating mDC and pDC, which may be partially related to HBV disease progression in these patients.
     Toll-like receptors (TLRs) are a class of proteins that play key roles in innate immunity through recognition of microbial components. TLR3 is expressed abundantly in dendritic cells, and is responsible for recognizing viral pathogens and inducing proinflammtory cytokine and interferon beta (IFN-β) production. Although TLR3 has been reported to be involved in several diseases caused by viral infections, its role in hepatitis B virus (HBV)-induced hepatitis is still largely unknown. This study aims to investigate the expression of TLR3 signaling in monocyte derived dendritic cells (MoDC) from ACLF, to assess the contribution of TLR3 in ACLF.
     Peripheral blood was collected from ACLF patients (n=60) and chronic hepatitis B (CHB, n=40) as well as normal controls (n=20). Purified monocytes were isolated by combination of Histopaque-1.077 and CD 14 Microbeads. Monocyte-derived dendritic cells (MoDCs) generated in vitro in the presence of interleukin (IL)-4 and granulocyte macrophage colony-stimulating factor upon activation by TLR3 ligand (poly I:C). TLR3 pathway genes of extracted RNA were detected using real-time PCR. The level of TLR3 protein was measured by flow cytometric analysis and western blotting. Supernatant fluids from the cultures were analyzed for levels of 6 different pro-inflammatory cytokines, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70, and TNF-a by flow cytometric, and interferonβwas measured by ELISA.
     1. We found that expression of TLR3 mRNA was decreased significantly in monocyte-derived dendritic cells (MoDCs) from patients with CHB (41.5%) or ACLF (57.7%), compared with NCs. Particularly in ACLF patients, the TLR3 expression was further decreased under that in CHB patients (P<0.001). Data from western blotting and flow cytometry analysis further confirm the above observation at the protein level. In addition, the MFI of TLR3 was lower in HBV infection patients than NC group (P< 0.001), we observed a further decrease in TLR3 MFI in ACLF compared to CHB patients (P=0.006).
     2. Interestingly, ACLF-MoDC produced imbalanced relative levels of pro-inflammatory cytokines, particularly IL-6 and TNF-α, were higher than CHB patients and controls. While, aberrant amounts were found of IL-12p70, IL-10, IL-1β, and IL-8 on MoDCs in ACLF.
     3. The secretion of IFN-βfrom DC of control group, patients with CHB and ACLF were (156.10±6.98) pg/ml, (133.95±5.45)pg/ml, and (74.77±3.1) pg/ml, respectively. The secretion of IFN-βwas mirrored on the expression of TLR3. The secretion of IFN-βwas lower in patients with CHB and ACLF than NC group (P< 0.001). We observed a further decrease in IFN-P in ACLF compared to CHB patients (P< 0.001).
     4. Compared with surviving patients, TLR3 and IFN-βexpression was significantly lower in non-surviving ACLF patients, which strongly indicated a correlation between TLR3 signaling impairment in MoDCs and disease severity in ACLF patients. Further linear correlation analysis demonstrated significant correlations between expression of TLR3 signaling components (TLR3 and IFN-β) and disease severity markers (prothrombin activity and total bilirubin) for individual ACLF patients.
     The results suggest impaired TLR3 pathway signaling in MoDC from patients with ACLF, resulting in secretion of selective pro-inflammatory cytokines and IFN-βintegral to the inflammatory response that may be critical in the pathogenesis of ACLF.
引文
[1]Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection[J]. Science,1999; 284 (5415):825-829.
    [2]Ladner SK, Otto MJ, Barker CS, et al. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells:A novel system for screening potential inhibitors of HBV replication[J]. Antimicrobial Agents and Chemotherapy,1997; 41(8):1715-1720.
    [3]Tavakoli S, Schwerin W, Rohwer A, et al. Phenotype and function of monocyte derived dendritic cells in chronic hepatitis B virus infection[J]. Journal of General Virology,2004; 85:2829-2836.
    [4]Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity[J]. Cell,2006; 124(4):783-801.
    [5]Barton GM, Medzhitov R. Toll-like receptor signaling pathways[J]. Science,2003; 300(5625):1524-1525.
    [6]Zhang DK, Zhang GL, Hayden MS, et al. A toll-like receptor that prevents infection by uropathogenic bacteria[J]. Science,2004; 303(5663):1522-1526.
    [7]Honda K, Takaoka A, Taniguchi T. Type I inteferon gene induction by the interferon regulatory factor family of transcription factors[J]. Immunity, 2006; 25(3):349-360.
    [8]Saito T, Gale M. Principles of intracellular viral recognition[J]. Current Opinion in Immunology,2007; 19(1):17-23.
    [9]林希,朱坚胜,王赓歌,等.肝衰竭患者外周血单核细胞Toll样受体表达与炎性细胞因子关系的研究[J].中华临床感染病杂志,2009;2(4).
    [10]Xu N, Yao HP, Sun Z, et al. Toll-like receptor 7 and 9 expression in peripheral blood mononuclear cells from patients with chronic hepatitis B and related hepatocellular carcinoma[J]. Acta Pharmacologica Sinica,2008; 29(2):239-244.
    [11]Arjona A, Ledizet M, Anthony K, et al. West Nile virus envelope protein inhibits dsRNA-induced innate immune responses[J]. Journal of Immunology,2007; 179(12):8403-8409.
    [12]Kong KF, Delroux K, Wang XM, et al. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly[J]. Journal of Virology,2008; 82(15):7613-7623.
    [13]Town T, Jeng D, Alexopoulou L, et al. Microglia recognize double-stranded RNA via TLR3[J]. Journal of Immunology,2006; 176(6):3804-3812.
    [14]Klouwenberg PK, Tan L, Werkman W, et al. The Role of Toll-like Receptors in Regulating the Immune Response against Respiratory Syncytial Virus[J]. Critical Reviews in Immunology,2009; 29(6):531-550.
    [15]West J, Damania B. Upregulation of the TLR3 pathway by Kaposi's sarcoma-associated herpesvirus during primary infection[J]. Journal of Virology,2008; 82(11):5440-5449.
    [16]Tsai YT, Chang SY, Lee CN, et al. Human TLR3 recognizes dengue virus and modulates viral replication in vitro[J]. Cellular Microbiology,2009; 11(4):604-615.
    [17]Isogawa M, Robek MD, Furuichi Y, et al. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo[J]. Journal of Virology,2005; 79(11):7269-7272.
    [18]Wu J, Lu MJ, Meng ZJ, et al. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice[J]. Hepatology,2007; 46(6):1769-1778.
    [19]陈明泉,施光峰,李谦,等.不同病毒载量的慢性乙型肝炎患者外周血树突状细胞的表型和功能[J].中华肝脏病杂志,2007;1(13):19-23.
    [20]陈明泉,施光峰,卢清,等.慢性乙型肝炎患者外周血树突状细胞上Toll样受体的表达变化[J].中华传染病杂志,2007;25(12):719-722.
    [21]Bertoletti A, Ferrari C. Kinetics of the immune response during HBV and HCV infection[J]. Hepatology,2003; 38(1):4-13.
    [22]Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection[J]. Nature Reviews Immunology,2005; 5(3):215-229.
    [23]Banchereau J, Steinman RM. Dendritic cells and the control of immunity[J]. Nature,1998; 392(6673):245-252.
    [24]Akbar SMF, Horiike N, Onji M, et al. Dendritic cells and chronic hepatitis virus carriers[J]. Intervirology,2001; 44(4):199-208.
    [25]Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells[J]. Annual Review of Immunology,2000; 18(767-+.
    [26]Shortman K, Liu YJ. Mouse and human dendritic cell subtypes[J]. Nature Reviews Immunology,2002; 2(3):151-161.
    [27]Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity[J]. Cell,2001; 106(3):259-262.
    [28]Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens[J]. Journal of Experimental Medicine,2001; 194(6):863-869.
    [29]Dudziak D, Kamphorst AO, Heidkamp GF, et al. Differential antigen processing by dendritic cell subsets in vivo[J]. Science,2007; 315(5808):107-111.
    [30]Sallusto F, Lanzavecchia A. Efficient presentation of soluble-antigen by cultured human dendritic cells is maintained by granulocyte-macrophage colony-stimulating factor plus interleukin-4 and down-regulated bu tumor-necrosis-factor-alpha [J]. Journal of Experimental Medicine,1994; 179(4):1109-1118.
    [31]Liu YJ. IPC:Professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors[J]. Annual Review of Immunology,2005; 23(275-306.
    [32]van der Molen RG, Sprengers D, Binda RS, et al. Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B[J]. Hepatology,2004; 40(3):738-746.
    [33]Wang FS, Xing LH, Liu MX, et al. Dysfunction of peripheral blood dendritic cells from patients with chronic hepatitis B virus infection[J]. World Journal of Gastroenterology,2001; 7(4):537-541.
    [34]Arima S, Akbar SMF, Michitaka K, et al. Impaired function of antigen-presenting dendritic cells in patients with chronic hepatitis B:Localization of HBV DNA and HBV RNA in blood DC by in situ hybridization[J]. International Journal of Molecular Medicine,2003; 11(2):169-174.
    [35]Beckebaum S, Cicinnati VR, Dworacki G, et al. Reduction in the circulating pDCl/pDC2 ratio and impaired function of ex vivo-generated DC1 in chronic hepatitis B infection[J]. Clinical Immunology,2002; 104(2):138-150.
    [36]Sarin SK, Kumar A, Almeida JA, et al. Acute-on-chronic liver failure:consensus recommendations of the Asian Pacific Association for the study of the liver (APASL)[J]. Hepatol. Int.,2009; 3(1):269-282.
    [37]中华医学会感染病学分会肝衰竭与人工肝学组,中华医学会肝病学分会重型肝病与人工肝学组.肝衰竭诊疗指南[J].中华肝脏病杂志,2006;14(9):643-646.
    [38]中华医学会肝病学分会,中华医学会感染病学分会.慢性乙型肝炎防治指南[J].中华传染病杂志,2005;23(6):421-431.
    [39]Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[J]. Blood,2005; 105(10):4120-4126.
    [40]Kunitani H, Shimizu Y, Murata H, et al. Phenotypic analysis of circulating and intrahepatic dendritic cell subsets in patients with chronic liver diseases[J]. Journal of Hepatology,2002; 36(6):734-741.
    [41]Duan XZ, Zhuang H, Wang M, et al. Decreased numbers and impaired function of circulating dendritic cell subsets in patients with chronic hepatitis B infection (R2)[J]. Journal of Gastroenterology and Hepatology,2005; 20(2):234-242.
    [42]Leon B, Lopez-Bravo M, Ardavin C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania[J]. Immunity,2007; 26(4):519-531.
    [43]Randolph GJ, Jakubzick C, Qu CF. Antigen presentation by monocytes and monocyte-derived cells[J]. Current Opinion in Immunology,2008; 20(1):52-60.
    [44]Shepard CW, Finelli L, Fiore AE, et al. Epidemiology of hepatitis B and hepatitis B virus infection in United States children[J]. Pediatric Infectious Disease Journal,2005; 24(9):755-760.
    [45]Guan R. Treatment of chronic hepatitis B infection using interferon[J]. Med J Malaysia, 2005; 60 Suppl B(28-33.
    [46]Steinman RM. The Dendritic Cell System and Its Role in Immunogenicity[J]. Annual Review of Immunology,1991; 9(271-296.
    [47]Verdijk RM, Mutis T, Esendam B, et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells[J]. Journal of Immunology,1999; 163(1):57-61.
    [48]Ostapowicz G, Fontana RJ, Schiodt FV, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States[J]. Annals of Internal Medicine,2002; 137(12):947-954.
    [49]Ogrady JG, Schalm SW, Williams R. Acute liver-failure-redefining the syndromes [J]. Lancet,1993; 342(8866):273-275.
    [50]Tandon B, Bernauau J, O'Grady J, et al. Recommendations of the International Association for the Study of the Liver Subcommittee on nomenclature of acute and subacute liver failure[J]. Journal of Gastroenterology and Hepatology,1999; 14(5):403-404.
    [51]Sen S, Williams R, Jalan R. The pathophysiological basis of acute-on-chronic liver failure[J]. Liver,2002; 22(5-13.
    [52]王宇明,陈耀凯,顾长海.重型肝炎命名和诊断分型的再认识—附477例临床分析[J].中华肝脏病杂志,2000;8(261-263.
    [53]Lu FM,Zhuang H. Management of hepatitis B in China[J]. Chinese Medical Journal,2009; 122(1):3-4.
    [54]郑树森,徐骁.积极推进中国肝移植的发展[J].中华肝胆外科杂志,2005;11(437-439.
    [55]Ganem D, Prince AM. Mechanisms of disease:Hepatitis B virus infection-Natural history and clinical consequences[J]. New England Journal of Medicine,2004; 350(11):1118-1129.
    [56]Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis[J]. Annual Review of Pathology-Mechanisms of Disease,2006; 1(1):23-61.
    [57]Zou ZS, Li BS, Xu DP, et al. Imbalanced Intrahepatic Cytokine Expression of Interferon-gamma, Tumor Necrosis Factor-alpha, and Interleukin-10 in Patients With Acute-on-Chronic Liver Failure Associated With Hepatitis B Virus Infection[J]. Journal of Clinical Gastroenterology,2009; 43(2):182-190.
    [58]Xu DP, Fu JL, Jin L, et al. Circulating and liver resident CD4(+)CD25(+) regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B-1[J]. Journal of Immunology,2006; 177(1):739-747.
    [59]Zhang Z, Zou ZS, Fu JL, et al. Severe dendritic cell perturbation is actively involved in the pathogenesis of acute-on-chronic hepatitis B liver failure[J]. Journal of Hepatology,2008; 49(3):396-406.
    [60]Li N, Li Q, Qian ZP, et al. Impaired TLR3/IFN-beta signaling in monocyte-derived dendritic cells from patients with acute-on-chronic hepatitis B liver failure:Relevance to the severity of liver damage[J]. Biochemical and Biophysical Research Communications,2009; 390(3):630-635.
    [61]Ichiki Y, He XS, Shimoda S, et al. T cell immunity in hepatitis B and hepatitis C virus infection:implications for autoimmunity[J]. Autoimmunity Reviews,2005; 4(2):82-95.
    [62]Shiraki K. [Asymptomatic carrier of hepatitis B virus-implication and mechanism of the occurrence] [J]. Nippon Rinsho,2004; 62 Suppl 8(222-226.
    [63]Untergasser A, Zedler U, Langenkamp A, et al. Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection[J]. Hepatology,2006; 43(3):539-547.
    [64]Beckebaum S, Cicinnati VR, Zhang X, et al. Hepatitis B virus-induced defect of monocyte-derived dendritic cells leads to impaired T helper type I response in vitro: mechanisms for viral immune escape[J]. Immunology,2003; 109(4):487-495.
    [65]den Brouw MLO, Binda RS, van Roosmalen MH, et al. Hepatitis B virus surface antigen impairs myeloid dendritic cell function:a possible immune escape mechanism of hepatitis B virus[J]. Immunology,2009; 126(2):280-289.
    [66]Glebe D, Urban S. Viral and cellular determinants involved in hepadnaviral entry[J]. World Journal of Gastroenterology,2007; 13(1):22-38.
    [67]Op den Brouw ML, de Jong MAWP, Ludwig IS, et al. Branched oligosaccharide structures on HBV prevent interaction with both DC-SIGN and L-SIGN[J]. J Viral Hepat,2008; 15(9):675-683.
    [68]Op den Brouw ML, Binda RS, van Roosmalen MH, et al. Hepatitis B virus surface antigen impairs myeloid dendritic cell function:a possible immune escape mechanism of hepatitis B virus[J]. Immunology,2009; 126(2):280-289.
    [69]Akbar SMF, Onji M, Inaba K, et al. Low responsiveness of hepatitis-B virus-transgenic mice in antibody-response to T-cell-dependent antigen-defect in antigen-presenting activity of dendritic cells [J]. Immunology,1993; 78(3):468-475.
    [70]Hasebe A, Akbar SMF, Furukawa S, et al. Impaired functional capacities of liver dendritic cells from murine hepatitis B virus (HBV) carriers:relevance to low HBV-specific immune responses[J]. Clinical and Experimental Immunology,2005; 139(1):35-42.
    [71]Loirat D, Mancini-Bourgine M, Abastado JP, et al. HBsAg/HLA-A2 transgenic mice:a model for T cell tolerance to hepatitis B surface antigen in chronic hepatitis B virus infection[J]. International Immunology,2003; 15(10):1125-1136.
    [72]van der Molen RG, Sprengers D, Biesta PJ, et al. Favorable effect of adefovir on the number and functionality of myeloid dendritic cells of patients with chronic HBV[J]. Hepatology, 2006; 44(4):907-914.
    [73]Baginski I, Chemin I, Bouffard P, et al. Detection of polyadenylated RNA in hepatitis-B virus-infected peripheral-blood mononulcear-cells by polymerase chain-reaction [J]. Journal of Infectious Diseases,1991; 163(5):996-1000.
    [74]Bartolome J, Moraleda G, Molina J, et al. Hepatitis-B virus-DNA in liver and peripheral-blood mononuclear-cells during reduction in virus-replication [J]. Gastroenterology,1990; 99(6):1745-1750.
    [75]Kock J, Theilmann L, Galle P, et al. Hepatitis B virus nucleic acids associated with human peripheral blood mononuclear cells do not originate from replicating virus[J]. Hepatology, 1996;23(3):405-413.
    [76]Pasquinelli C, Melegari M, Villa E, et al. Hepatitis-B virus-infection of virus-infection of peripheral blood mononuclear cells is common in acute and chronia hepatitis [J]. Journal of Medical Virology,1990; 31(2):135-140.
    [77]Tavakoli S, Mederacke I, Herzog-Hauff S, et al. Peripheral blood dendritic cells are phenotypically and functionally intact in chronic hepatitis B virus (HBV) infection [J]. Clinical and Experimental Immunology,2008; 151(1):61-70.
    [78]Feldman S, Stein D, Amrute S, et al. Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors[J]. Clinical Immunology,2001; 101(2):201-210.
    [79]Bain C, Fatmi A, Zoulim F, et al. Impaired allostimulatory function of dendritic cells in chronic hepatitis C infection[J]. Gastroenterology,2001; 120(2):512-524.
    [80]Miyatake H, Kanto T, Inoue M, et al. Impaired ability of interferon-alpha-primed dendritic cells to stimulate Thl-type CD4 T-cell response in chronic hepatitis C virus infection[J]. Journal of Viral Hepatitis,2007; 14(6):404-412.
    [81]El-Aggan H, Sidkey F, Farahat N, et al. Peripheral blood dendritic cell subsets and serum interleukin-12 levels in patients with chronic hepatitis C virus infection:relation to disease activity[J]. Liver International,2006; 26(17-17.
    [82]段学章,李捍卫,王敏,等.乙型肝炎病毒感染者树突状细胞(DC)亚群的变化及意义[J].中华微生物学和免疫学杂志,2004;24(11):892-896.
    [83]Zhang Z, Chen DW, Yao JX, et al. Increased infiltration of intrahepatic DC subsets closely correlate with viral control and liver injury in immune active pediatric patients with chronic hepatitis B[J]. Clinical Immunology,2007; 122(2):173-180.
    [84]Ke WM, Ye YN, Huang S. Discriminant function for prognostic indexes and probability of death in chronic severe hepatitis B[J]. J. Gastroenterol.,2003; 38(9):861-864.
    [85]Zhang Z, Zou ZS, Fu JL, et al. Severe dendritic cell perturbation is actively involved in the pathogenesis of acute-on-chronic hepatitis B liver failure[J]. J. Hepatol.,2008; 49(3):396-406.
    [86]Zou ZS, Li BS, Xu DP, et al. Imbalanced Intrahepatic Cytokine Expression of Interferon-gamma, Tumor Necrosis Factor-alpha, and Interleukin-10 in Patients With Acute-on-Chronic Liver Failure Associated With Hepatitis B Virus Infection[J]. J. Clin. Gastroenterol.,2009; 43(2):182-190.
    [87]Jung MC, Pape GR. Immunology of hepatitis B infection[J]. Lancet Infect. Dis.,2002; 2(1):43-50.
    [88]Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus:The importance of dendritic cells in peripheral T cell tolerance[J]. Proc. Natl. Acad. Sci. U. S. A.,2002; 99(1):351-358.
    [89]Turley SJ, Inaba K, Garrett WS, et al. Transport of peptide-MHC class Ⅱ complexes in developing dendritic cells[J]. Science,2000; 288(5465):522-527.
    [90]Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses[J]. Science,2001; 293(5528):253-256.
    [91]Sousa CRE. Dendritic cells as sensors of infection[J]. Immunity,2001; 14(5):495-498.
    [92]Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses[J]. Nat. Immunol.,2001; 2(10):947-950.
    [93]Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8[J]. Science,2004; 303(5663):1526-1529.
    [94]Isogawa M, Robek MD, Furuichi Y, et al. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo[J]. J. Virol.,2005; 79(11):7269-7272.
    [95]Wu J, Meng ZJ, Jiang M, et al. Hepatitis B Virus Suppresses Toll-like Receptor-Mediated Innate Immune Responses in Murine Parenchymal and Nonparenchymal Liver Cells[J]. Hepatology,2009; 49(4):1132-1140.
    [96]Xu N, Yao HP, Sun Z, et al. Toll-like receptor 7 and 9 expression in peripheral blood mononuclear cells from patients with chronic hepatitis B and related hepatocellular carcinoma[J]. Acta. Pharmacologica. Sinica.,2008; 29(2):239-244.
    [97]Maire M, Parent R, Morand AL, et al. Characterization of the double-stranded RNA responses in human liver progenitor cells[J]. Biochemical and Biophysical Research Communications,2008; 368(3):556-562.
    [98]Akira S, Takeda K. Toll-like receptor signalling[J]. Nature Reviews Immunology,2004; 4(7):499-511.
    [99]Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity[J]. Nature Immunology,2001; 2(8):675-680.
    [100]Takeda K, Kaisho T, Akira S. Toll-like receptors[J]. Annual Review of Immunology,2003; 21(335-376.
    [101]O'Neill LAJ, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling[J]. Nature Reviews Immunology,2007; 7(5):353-364.
    [102]Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses[J]. Nat. Immunol.,2004; 5(10):987-995.
    [103]Visvanathan K, Skinner NA, Thompson AJV, et al. Regulation of toll-like receptor-2 expression in chronic hepatitis B by the precore protein[J]. Hepatology,2007; 45(1):102-110.
    [104]Chen Z, Cheng YM, Xu YF, et al. Expression profiles and function of Toll-like receptors 2 and 4 in peripheral blood mononuclear cells of chronic hepatitis B patients[J]. Clinical Immunology,2008; 128(3):400-408.
    [105]Lian JQ, Wang XQ, Zhang Y, et al. Correlation of Circulating TLR2/4 Expression with CD3(+)/4(+)/8(+) T Cells and Treg cells in HBV-Related Liver Cirrhosis[J]. Viral Immunology,2009; 22(5):301-308.
    [106]Xie Q, Shen HC, Jia NN, et al. Patients with chronic hepatitis B infection display deficiency of plasmacytoid dendritic cells with reduced expression of TLR9[J]. Microbes and Infection, 2009; 11(4):515-523.
    [107]Xing T, Li L, Cao H, et al. Altered immune function of monocytes in different stages of patients with acute on chronic liver failure[J]. Clinical and Experimental Immunology,2007; 147(1):184-188.
    [108]晏春根,谢青,周霞秋.暴发性肝衰竭中Toll样受体2表达的实验研究[J].中华肝脏病杂志,2004;12(9):549-551.
    [109]Takayashiki T, Yoshidome H, Kimura F, et al. Increased expression of toll-like receptor 4 enhances endotoxin-induced hepatic failure in partially hepatectomized mice[J]. Journal of Hepatology,2004; 41(4):621-628.
    [110]陈明泉,施光峰,卢清,等.慢性乙型肝炎患者外周血树突状细胞上Toll样受体的表达变化[J].中华传染病杂志,2007;12(25):719-722.
    [111]李谦,陈明泉,李宁,等.聚肌胞刺激后慢乙肝患者树突状细胞内Toll样受体3的表达变化[J].中华传染病杂志,2009;27(12):733-737.
    [112]张玉杰,施光峰,李谦,等.慢乙肝患者树突状细胞Toll样受体3触发后Ⅰ型干扰素表达的研究[J].中华传染病杂志,2009;27(6):343-347.
    [113]Diehl S, Anguita J, Hoffmeyer A, et al. Inhibition of Thl differentiation by IL-6 is mediated by SOCS1[J]. Immunity,2000; 13(6):805-815.
    [114]Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors[J]. Cytokine & Growth Factor Reviews,2003; 14(3-4):185-191.
    [115]Watts TH. Tnf/tnfr family members in costimulation of T cell responses[J]. Annual Review of Immunology,2005; 23(23-68.
    [116]Jin XL, Zimmers TA, Perez EA, et al. Paradoxical effects of short-and long-term interleukin-6 exposure on liver injury and repair[J]. Hepatology,2006; 43(3):474-484.
    [117]Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis[J]. Immunity,1995; 3(6):673-682.
    [118]Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity[J]. Nature Reviews Immunology,2003; 3(2):133-146.
    [119]O'Garra A, Murphy KM. From IL-10 to IL-12:how pathogens and their products stimulate APCs to induce T(H)1 development[J]. Nature Immunology,2009; 10(9):929-932.
    [120]Webster GJM, Reignat S, Maini MK, et al. Incubation phase of acute hepatitis B in man: Dynamic of cellular immune mechanisms[J]. Hepatology,2000; 32(5):1117-1124.
    [121]Maini MK, Bertoletti A. How can the cellular immune response control hepatitis B virus replication?[J]. Journal of Viral Hepatitis,2000; 7(5):321-326.
    [122]Cavanaugh VJ, Guidotti LG, Chisari FV. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice[J]. Journal of Virology,1997; 71(4):3236-3243.
    [123]Barnes BJ, Field AE, Pitha-Rowe PM. Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and transcriptional activity of IFNA genes[J]. Journal of Biological Chemistry,2003; 278(19):16630-16641.
    [124]Schulz O, Diebold SS, Chen M, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells[J]. Nature,2005; 433(7028):887-892.
    [125]Lee HK, Dunzendorfer S, Soldau K, et al. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14[J]. Immunity,2006; 24(2):153-163.
    [126]Choe J, Kelker MS, Wilson IA. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain[J]. Science,2005; 309(5734):581-585.
    [127]Sakaguchi S, Negishi H, Asagiri M, et al. Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock[J]. Biochemical and Biophysical Research Communications,2003; 306(4):860-866.
    [1]Sheth K and Bankey P. The liver as an immune organ. Curr Opin Crit Care,2001. 7(2):99-104.
    [2]Wick MJ, Leithauser F, and Reimann J. The hepatic immune system. Critical Reviews in Immunology,2002.22(1):47-103.
    [3]Racanelli V and Rehermann B. The liver as an immunological organ. Hepatology,2006. 43(2):S54-S62.
    [4]Mencin A, Kluwe J, and Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut,2009.58(5):704-720.
    [5]Mathison JC and Ulevitch RJ. Clearance, tissue distribution, and cellular-localization of intravenously injected lipopolysaccharide in rabbits. Journal of Immunology,1979. 123(5):2133-2143.
    [6]Ruiter DJ, Vandermeulen J, Brouwer A, et al. Uptake by liver-cells of endotoxin following its intravenous-injection. Laboratory Investigation,1981.45(1):38-45.
    [7]van Egmond M, van Garderen E, van Spriel AB, et al. Fc alpha RI-positive liver Kupffer cells:Reappraisal of the function of immunoglobulin A in immunity. Nature Medicine,2000. 6(6):680-685.
    [8]de Creus A, Abe M, Lau AH, et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. Journal of Immunology,2005.174(4):2037-2045.
    [9]Lichtman SN, Wang J, and Lemasters JJ. LPS receptor CD14 participates in release of TNF-alpha in RAW 264.7 and peritoneal cells but not in Kupffer cells. American Journal of Physiology-Gastrointestinal and Liver Physiology,1998.275(1):G39-G46.
    [10]Zarember KA and Godowski PJ. Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. Journal of Immunology,2002.168(2):554-561.
    [11]Liu SB, Gallo DJ, Green AM, et al. Role of toll-like receptors in changes in gene expression and NF-kappa B activation in mouse hepatocytes stimulated with lipopolysaccharide. Infection and Immunity,2002.70(7):3433-3442.
    [12]Matsumura T, Degawa T, Takii T, et al. TRAF6-NF-kappa B pathway is essential for interleukin-1-induced TLR2 expression and its functional response to TLR2 ligand in murine hepatocytes. Immunology,2003.109(1):127-136.
    [13]Matsumura T, Ito A, Takii T, et al. Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. Journal of Interferon and Cytokine Research,2000.20(10):915-921.
    [14]Vanbossuyt H, Dezanger RB, and Wisse E. Cellular and subcellular-distribution in rat-live and its inactivation by bile-salts. Journal of Hepatology,1988.7(3):325-337.
    [15]Mimura Y, Sakisaka S, Harada M, et al. Role of hepatocytes in direct clearance of lipopolysaccharide in rats. Gastroenterology,1995.109(6):1969-1976.
    [16]Scott MJ and Billiar TR. beta 2-Integrin-induced p38 MAPK Activation Is a Key Mediator in the CD14/TLR4/MD2-dependent Uptake of Lipopolysaccharide by Hepatocytes. Journal of Biological Chemistry,2008.283(43):29433-29446.
    [17]Bilzer M, Roggel F, and Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver International,2006.26(10):1175-1186.
    [18]Su GL, Klein RD, Aminlari A, et al. Kupffer cell activation by lipopolysaccharide in rats: Role for lipopolysaccharide binding protein and toll-like receptor 4. Hepatology,2000. 31(4):932-936.
    [19]Fox ES, Thomas P, and Broitman SA. Clearance of gut-derived endotoxins by the liver-release and modification of H-3, C-14 lipopolysaccharide by isolated rat kupffer cells. Gastroenterology,1989.96(2):456-461.
    [20]Seki E, Tsutsui H, Nakano H, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1 beta. Journal of Immunology,2001. 166(4):2651-2657.
    [21]Kopydlowski KM, Salkowski CA, Cody MJ, et al. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. Journal of Immunology,1999. 163(3):1537-1544.
    [22]Seki E, Tsutsui H, Tsuji NM, et al. Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. Journal of Immunology,2002.169(7):3863-3868.
    [23]Schuchmann M, Hermann F, Herkel J, et al. HSP60 and CpG-DNA-oligonucleotides differentially regulate LPS-tolerance of hepatic Kupffer cells. Immunology Letters,2004. 93(2-3):199-204.
    [24]Jiang W, Sun R, Wei HM, et al. Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages. Proceedings of the National Academy of Sciences of the United States of America,2005. 102(47):17077-17082.
    [25]Thobe BM, Frink M, Choudhry MA, et al. Src family kinases regulate p38 MAPK-mediated IL-6 production in Kupffer cells following hypoxia. American Journal of Physiology-Cell Physiology,2006.291(3):C476-C482.
    [26]Knolle P, Schlaak J, Uhrig A, et al. Human kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. Journal of Hepatology,1995.22(2):226-229.
    [27]Kolios G, Valatas V, and Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease. World Journal of Gastroenterology,2006.12(46):7413-7420.
    [28]Dong ZJ, Wei HM, Sun R, et al. The roles of innate immune cells in liver injury and regeneration. Cellular & Molecular Immunology,2007.4:241-252.
    [29]Dong ZJ, Wei HM, Sun R, et al. Involvement of natural killer cells in Polyl:C-induced liver injury. Journal of Hepatology,2004.41(6):966-973.
    [30]Chen YY, Sun R, Jiang W, et al. Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell-and IFN-gamma-dependent manner. Journal of Hepatology,2007.47:183-190.
    [31]Biburger M and Tiegs G. alpha-Galactosylceramide-induced liver injury in mice is mediated by TNF-alpha but independent of Kupffer cells. Journal of Immunology,2005. 175(3):1540-1550.
    [32]Tang TJ, Kwekkeboom J, Laman JD, et al. The role of intrahepatic immune effector cells in inflammatory liver injury and viral control during chronic hepatitis B infection. Journal of Viral Hepatitis,2003.10(3):159-167.
    [33]Su GL. Lipopolysaccharides in liver injury:molecular mechanisms of Kupffer cell activation. American Journal of Physiology-Gastrointestinal and Liver Physiology,2002. 283(2):G256-G265.
    [34]Friedman SL, Rockey DC, and Bissell DM. Hepatic fibrosis 2006:Report of the third AASLD Single Topic Conference. Hepatology,2007.45(l):242-249.
    [35]Iredale JP. Models of liver fibrosis:exploring the dynamic nature of inflammation and repair in a solid organ. Journal of Clinical Investigation,2007.117(3):539-548.
    [36]Bataller R and Brenner DA. Liver fibrosis. Journal of Clinical Investigation,2005. 115(2):209-218.
    [37]Hillebrandt S, Wasmuth HE, Weiskirchen R, et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nature Genetics,2005. 37(8):835-843.
    [38]Gustot T, Lemmers A, Moreno C, et al. Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology,2006.43(5):989-1000.
    [39]Szabo G, Dolganiuc A, and Mandrekar P. Pattern recognition receptors:A contemporary view on liver diseases. Hepatology,2006.44(2):287-298.
    [40]Schwabe RF, Seki E, and Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology,2006.130(6):1886-1900.
    [41]Watanabe A, Hashmi A, Gomes DA, et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology,2007.46:1509-1518.
    [42]Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology,2006.130(2):435-452.
    [43]Jeong WI, Park O, Radaeva S, et al. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology,2006. 44(6):1441-1451.
    [44]Takehara T, Tatsumi T, Suzuki T, et al. Hepatocyte-specific disruption of Bcl-x(L) leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology,2004. 127(4):1189-1197.
    [45]Harada K, Ohira S, Isse K, et al. Lipopolysaccharide activates nuclear factor-KappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Laboratory Investigation,2003.83(11):1657-1667.
    [46]Chen XM, O'Hara SP, Nelson JB, et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappa B. Journal of Immunology,2005.175(11):7447-7456.
    [47]Harada K, Isse K, and Nakanuma Y. Interferon gamma accelerates NF-kappa B activation of biliary epithelial cells induced by toll-like receptor and ligand interaction. Journal of Clinical Pathology,2006.59(2):184-190.
    [48]Uhrig A, Banafsche R, Kremer M, et al. Development and functional consequences of LIPS tolerance in sinusoidal endothelial cells of the liver. Journal of Leukocyte Biology,2005. 77(5):626-633.
    [49]Martin-Armas M, Simon-Santamaria J, Pettersen I, et al. Toll-like receptor 9 (TLR9) is present in murine liver sinusoidal endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides. Journal of Hepatology,2006.44(5):939-946.
    [50]Wu J, Lu MJ, Meng ZJ, et al. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology,2007.46(6):1769-1778.
    [51]Shu SA, Lian ZX, Chuang YH, et al. The rote of CD11c(+) hepatic dendritic cetts in the induction of innate immune responses. Clinical and Experimental Immunology,2007. 149(2):335-343.
    [52]Yoneyama H, Matsuno K, Zhang YY, et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. Journal of Experimental Medicine,2001.193(1):35-49.
    [53]Shields PL, Morland CM, Salmon M, et al. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. Journal of Immunology,1999.163(11):6236-6243.
    [54]Wang J, Sun R, Wei HM, et al. Pre-activation of T lymphocytes by low dose of concanavalin A aggravates toll-like receptor-3 ligand-induced NK cell-mediated liver injury. International Immunopharmacology,2006.6(5):800-807.
    [55]Zhou RB, Wei HM, Sun R, et al. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. Proceedings of the National Academy of Sciences of the United States of America,2007. 104(18):7512-7515.
    [56]Zhou RB, Wei HM, Sun R, et al. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice. Journal of Immunology,2007.178(7):4548-4556.
    [57]Wang J, Sun R, Wei HM, et al. Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism. Journal of Hepatology,2006.44(3):446-454.
    [58]Li BF, Sun R, Wei HM, et al. Interleukin-15 prevents concanavalin A-induced liver injury in mice via NKT cell-dependent mechanism. Hepatology,2006.43(6):1211-1219.
    [59]Wang J, Xu J, Zhang W, et al. TLR3 ligand-induced accumulation of activated splenic natural killer cells into liver. Cell Mol Immunol,2005.2(6):449-453.
    [60]Dong ZJ, Zhang JH, Sun R, et al. Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice. Hepatology,2007.45(6):1400-1412.
    [61]Chen YY, Wei HM, Sun R, et al. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology, 2007.46(3):706-715.
    [62]Zhang C, Zhang J, Wei HM, et al. Imbalance of NKG2D and its inhibitory counterparts: How does tumor escape from innate immunity? International Immunopharmacology,2005. 5(7-8):1099-1111.
    [63]Zhang C, Zhang J, Sun R, et al. Opposing effect of IFN gamma and IFN alpha on expression of NKG2 receptors:Negative regulation of IFN gamma on NK cells. International Immunopharmacology,2005.5(6):1057-1067.
    [64]Chen Y, Cheng M, and Tian Z. Hepatitis B virus down-regulates expressions of MHC class I molecules on hepatoplastoma cell line. Cell Mol Immunol,2006.3(5):373-378.
    [65]Tseng CTK, Miskovsky E, Houghon M, et al. Characterization of liver T-cell receptor gamma delta(+) T cells obtained from individuals chronically infected with hepatitis C virus (HCV):Evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology,2001.33(5):1312-1320.