主要组织相容性复合体I类相关基因A(MICA)在人体器官移植免疫中作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一研究目的
     1. MICA (MHC class I related Chain A)是一种表达于细胞膜表面的多态性糖蛋白分子。为了探索MICA分子在器官移植免疫中的作用,我们对新分离的人体血管内皮细胞和其它细胞株的MICA-mRNA和蛋白质表达进行分析。
     2.人体器官移植患者被发现有抗MICA同种异体(Allo)抗体存在。为了简明MICA抗体在器官移植免疫中的作用,我们对已经检测到的MICA抗体阳性标本进行血清学分型,并对其识别的抗原表位进行定位分析。
     3.晚期肝病患者外周血中的可溶性MICA分子(sMICA)显着性地高于正常人群。为了研究sMICA分子对肝移植效果的可能影响作用,我们对受者血清sMICA浓度与肝移植术后发生的胆道并发症(BCS)相关性进行观察。
     二实验材料和方法
     1.建立高分辨的MICA等位基因分型方法
     一次PCR反应从基因组DNA中扩增出包括外显子2,3,4和5在内的MICA基因序列(2.2 kb)。再按两段分别以4个正反方向反应的测序引物进行测序分析。MICA跨膜区(TM)不同的GCT重复序列产生的复合信号交由电脑程序进行分离处理。
     2.血管内皮细胞的分离和培养
     新生儿脐带静脉血管内皮细胞被分离和培养至4-6代。应用RT-PCR方法检测MICA mRNA在11例新分离培养的HUVEC和7种其它细胞株转录水平,应用细胞流式术检测细胞膜表面的MICA分子的表达情况;同时应用免疫印迹的方法对整个细胞MICA蛋白的表达水平进行检测和分析。
     3.建立MICA等位基因稳定表达细胞株
     将完整的MICA-cDNA克隆插入pEGFP-N1。再将构建的质粒用电穿孔的方法导入人B淋巴细胞株Hmy. C1R。经G418药物筛选后成功表达MICA的细胞呈现绿色的荧光,可在荧光显微镜下观察,并用细胞流式仪器进行分离纯化。经过培养后获得稳定过表达的转染细胞株可用单克隆抗体进行检测和分析。
     4.应用杆状病毒-昆虫细胞蛋白表达系统制备MICA等位基因重组蛋白
     将11个常见的MICA等位基因cDNA克隆至pFastBac-1质粒中,加上2种杂交和2种点突变的构建质粒DNA转化至预置杆状病毒的大肠杆菌DH10Bac,以获得带有MICA基因的重组病毒DNA。重组的杆状病毒能感染Sf9昆虫细胞,分泌大量的可溶性重组蛋白。通过His-tag与Ni离子蛋白纯化系统进行初步提纯,和经MICA单克隆抗体亲和柱进行第二次纯化。用化学的方法纯化的重组蛋白质分别标记到蛋白质液态芯片组件(微球)。建立一种能同时检测多种抗体的免疫学检测方法(Luminex flow cytometry)。根据血清抗体对多抗原液态芯片反应格局和MICA等位基因重组蛋白的氨基酸序列比对分析结果,判定MICA抗体的血清型及其识别的多态性MICA抗原表位。
     5.血清中sMICA浓度定量分析与肝移植病例对象
     对133例肝移植前和移植后血清sMICA的浓度进行了回顾性的调查分析。另外88例健康人群作为对照,试验方法为双抗体夹心ELISA。sMICA在正常人群的正态分布状况由正常人群血清中sMICA浓度经统计学处理获得。大于95%正常值范围的上限判定为高浓度的sMICA阈值。接受肝移植的病人所有的临床资料和BCS的诊断记录从病案资料中收集获得。
     三结果
     1.新分离的人血管内皮细胞膜表面有MICA的表达
     RT-PCR结果显示MICA mRNA在所有检测细胞中有表达,流式细胞术和免疫印迹的检测结果显示HUVEC细胞膜或胞浆中MICA蛋白表达量很高,而人体淋巴细胞膜表面和胞浆未检出MICA分子的表达。结果表明MICA mRNA广泛表达于人体细胞,而MICA蛋白质在血管内皮细胞有很高的表达。
     2.应用人抗MICA抗体特异性确定MICA抗原的多态性表位
     我们确定了14种MICA抗原多态性表位,其中9种抗原表位与单个的氨基酸相关。1种与两个相邻的氨基酸有关,1种与3个氨基酸有关;有3种抗原表位比较复杂,仅从蛋白质的一级结构不能很好理解。我们发现了两种相互对立的血清型MICA抗体,这种组特异性抗体对杂交和点突变的重组蛋白表位的识别结果提示其与6个MICA组特异性的氨基酸相关联。
     3.肝移植术后胆道并发症与患者血中高sMICA血症相关
     sMICA的检测结果提示37.6%的肝病晚期患者的sMICA显着性高于正常值范围。在肝移植后仍出现高浓度的sMICA的病人中,有34.4%的受者出现供体肝胆道并发症状。而肝移植后处于正常sMICA浓度的病人中仅有17.3%的受者出现胆道并发症。胆道并发症发生的风险与受者在接受肝移植后存在的高浓度sMICA有着显着性的相关关系(P=0.0365)。进一步的分析发现患者在移植前有高浓度的sMICA。移植后原高sMICA血症的病人在sMICA浓度恢复正常后,其胆道并发症的发生率较移植后仍然维持高浓度的sMICA的患者显着降低(10.5%对38.7%,P=0.0302)。在对具有sMICA动态改变特征的病理分组的Log-rank检验分析揭示胆道并发症与sMICA的动态改变存在显着的相关关系(P=O.0188)。
     四结论
     1.人体血管内皮细胞表面表达MICA分子事实说明多态性MICA作为一种移植抗原参与体液免疫排斥反应成为可能。
     2.我们在国际上率先报导了14种MICA抗体血清型和识别表位的分析结果。MICA抗原表位的确定对理解MICA抗体的产生和移植免疫中发挥的作用具有理论和现实意义。同时为致敏的受者选择合适的供者奠定MICA配型的实验基础。
     4.我们发现肝移植术后高sMICA血症的患者比较容易发生胆道并发症的问题。结果提示sMICA在肝移植免疫中可能发挥一定的免疫调节作用。对病人血清中sMICA浓度的监视可作为一项肝移植后胆道并发症发生具有诊断意义评价指标。
1. Aims of Research
     (1) MICA (MHC class I related Chain A) are polymorphic glycoproteins expressed on cell surface. In order to explore the role of polymorphic MICA molecules on organ transplantation, we analyzed the expression of MICA in freshly isolated human umbilical vein endothelial cells (HUVEC) and other cell lines.
     (2) Patients who lose their graft have been found to have specific allo-antibodies against MICA antigens. To understand the development of MICA antibodies and their role in organ transplantation, we defined the serologic types of MICA antibodies from recipients with allografts.
     (3) The patients with late liver diseases were found to have higher levels of serum sMICA than the healthy population. In order to observe the effect of sMICA on liver transplantation, we investigated whether high levels serum sMICA are associated with incidence of biliary cast sysdrome (BCS) following liver transplantation.
     2. Methods and Materials
     (1) Establishment of MICA allele-level typing method.
     One PCR amplification was performed to obtain templates of 2.2 kb including exons 2,3,4, and 5 of MICA to be sequenced with two forward and two reverse primers. Overlay of nucleotide sequencing signals resulting from presence of different GCT repeats in exon 5 from two different MICA alleles can be identified by a computer-based analysis.
     (2) Isolation and culture of HUVEC.
     Human umbilical vein endothelial cells were isolated from umbilical cord veins and cultured within 4-6 passages. RT-PCR was used to analyze MICA mRNA that expressed on 11 HUEVCs and 7 culture cell lines. Surface MICA expression was examined by flow cytometry with monoclonal antibody staining. Total MICA proteins were accessed by Western blot.
     (3)Establishment of MICA stable transfected cells.
     The cDNA containing full-length MICA was cloned into plasmid pEGFP-N1. Then the constructs were transfected into human B cell line Hmy.C1R. After G418 selection, stable transfected cells were monitored by fluorescence microscopy and sorted by flow cytometry. Suface MICA expression was demonstrated by flow cytometry with the monoclonal antibodies 6B3 and 3.2H3.
     (4) Production of MICA allele recombinants using a Bac-to-Bac Baculovirus Expression system.
     11 MICA alleles were cloned into the plasmid pFastBac-1.2 hybrids and 2 mutants MICA molecules were made from two normal MICA alleles. The baculovirus with MICA gene was obtained from transformation of DH10Bac (E. coli) with the constructed-vectors. MICA recombinant proteins were produced in insect cells (Sf9) which were infected with baculovirus. Soluble MICA recombinant proteins fused with a His-tag (6 histidines) were purified by nickel-affinity agarose followed by mAb 6B3-affinity agarose. Using such materials, we have established the Luminex Flow Cytometry assay to identify the specificity of MICA antibodies. MICA serologic patterns of reactivity were determined with single MICA antigens which were bound to Luminex beads.
     (5) Quantitation of serum sMICA and patients with liver transplantation.
     Serum sMICA was retrospectively evaluated in pre-and post-transplant sera from 133 consecutive primary liver transplant patients and in sera from 88 healthy volunteers using sandwich ELISA. Normal distribution of serum sMICA was described by the data obtained from healthy population and sMICA concentration that was greater than the upper bound 95% normal range was considered as high levels of sMICA. Patient records were reviewed to identify patients who developed BCS.
     3. Results
     (1) MICA was expressed on the surface of human endothelial cells.
     The results show that all of tested cells were found to have MICA mRNA expression by RT-PCR. HUEVCs have surface MICA expressed in high level, but MICA protein expression in T and B lymphocytes was not detected in flow cytometry and Western blot with MICA specifice monoclonal antibodies 6B3 and 1.7AD.
     (2) Determination of the MICA epitopes that are recognized by human antibodies against MICA.
     Human sera selected in this study were found to recognize up to 14 distinct MICA epitopes. Among these, nine epitopes correlated with a single unique amino acid:one shared two signature amino acids, one shared three signature amino acids in close proximity, and three epitopes involved multiple amino acids in a nonlinear sequence. Two groups of public epitopes (MICA-G1 and MICA-G2) were characterized and their epitopes were speculated to relate six amino acids.
     (3) High level serum sMICA are associated with BCS following liver transplantation.
     We show that 37.6% of patients with end-stage liver diseases had significantly higher pre-transplant serum sMICA than in healthy population.34.4% of recipients with post-transplant high levels of sMICA developed BCS. In contrast,17.3% of patients with post-transplant normal levels of sMICA developed BCS. The risk of BCS development is significantly associated with the presence of post-transplant high levels of sMICA (P=0.0365). Further analysis disclosed that patients with decreased post-transplant sMICA following liver transplantation had a lower incidence rate of BCS than those with remained high levels of sMICA after transplantation (10.5% vs.38.7%, P=0.0302). Furthermore, log-rank test showed that BCS occurrence was significantly associated with dynamic changes of sMICA among different groups (P=0.0188).
     4. Conclusion
     (1) The expression of MICA on the surface of endothelial cells makes this polymorphic molecule a possible target during the immune response of graft rejection in organ transplantation.
     (2) We first reported 14 MICA epitopes that were indentified by human MICA antibodies. Those epitopes may help to understand the development of MICA antibodies and to identify the suitable donors for the sensitized transplant recipients.
     (3) We found that biliary cast syndrome is more likely to develop in recipients who have post-transplant high levels of sMICA. The data suggested that sMICA might have some immunologic effect on BCS development following liver transplantation. Monitoring of serum sMICA could have a prognostic value in assessment of patients with liver transplantation.
引文
[1]Trivedi HL. Immunobiology of rejection and adaptation. Transplant Processings.2007,39(3):647
    [2]Allen KJ, Mifsud NA, Williamson R, Bertolino P, Hardikar W. Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transplantation.2008,14(5):688
    [3]Ratner LE, Hadley GA, Hanto DW and Mohanakumar T. Immunology of renal allograft rejection. Archives of pathology & laboratory medicine.1991; 115(3):283
    [4]Anderson CB, Jendrisak MD, Flye MW, Hanto DW, anderman CK, Rodey GE and Sicard GA. Concomitant Immunosuppression and donor-specific transfusions prior to renal transplantation. Transplant Processings.1989; 3:53
    [5]Cecka JM, Zhang Q, Reed EF. Preformed cytotoxic antibodies in potential allograft recipients:recent data. Human Immunology,2005; 66(4):343
    [6]Shoker AS, Sheridan D, Kalra J. The differential effect of alloantigen-blocking antibodies on unprimed and memory T helper cells. Transplantation.1995; 25(4):184
    [7]Anderson CB, Tyler JD, Rodey GE, Etheredge EE, Anderman CK, Flye MW, Jendrisak MD, Sicard GA. Preoperative immunomodulation of renal allograft recipients by concomitant immunosuppression and donor-specific transfusions. Transplant Processings.1987; 19(1):1494
    [8]Bahram S, Bresnahan M, Geraghty DE, et al. A second lineage of mam2 malian major histocompatibility complex class Ⅰ genes[J]. Proc Natl Acad Sci USA,1994,91(14):6259-6263.
    [9]Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression OF nkg2d and T-cell activation. Nature.2002 419(6908):734-8
    [10]Zou Y, Stastny P, Susal C, Dohler B, Opelz G (2007) Antibodies against MICA antigens and kidney-transplant rejection. N Engl J Med 357:1293-1300
    [11]Bauer, S., V. Gron, J, Wu.A. Steinle, J.H. Phillips, L.L. Lanier, and T.Spies, Activation of NK cells and T cells by NKG2D, a receptor for stress inducible MICA. Science,1999; 285:727.
    [12]Steinle A., P.Li, D.L.Morris,V. Groh, L.L. Lanier, R.K. Strong, and T.Spies. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics,2001,53:279
    [13]Eleme, K., S.B. Taner, B. Onfelt. L.M. Collinson, F.E. McCann. N.J. Chalupny, D, et al. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J. EXP. Med, 2004,199:1005
    [14]Jinushi M, Takehara T, Kanto T, Tatsumi T, Groh V, Spies T, Miyagi T, Suzuki T, Sasaki Y, Hayashi N. Critical role of MHC cllas I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J Immunol.2003,170(3): 1249-56
    [15]Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH, Strong RK, Groh V, Spies T. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature.2007,447(7143):482-6
    [16]Suarez-Alvarez B, Lopez-Vazquez A, Baltar JM, Ortega F, Lopez-Larrea C. Potential role of NKG2D and its ligands in organ transplantation:new target for immunointervention. Am J Transplant.2009; 9(2):251-7
    [17]Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y et al. Triplet repeat polymorphism in the transmembrane region of the MICA gene:a strong association of six GCT repetitions with Behcet disease. Proc Natl Acad Sci U S A.1997 Feb 18;94(4):1298-303.
    [18]Obuchi N, Takahashi M, Nouchi T, Satoh M, Arimura T, Ueda K, Akai J, Ota M, Naruse T, Inoko H, Numano F, Kimura A. Identification of MICA alleles with a long Leu-repeat in the transmembrane region and no cytoplasmic tail due to a frameshift-deletion in exon 4. Tissue Antigens.2001 Jun;57(6):520-35.
    [19]Komatsu-Wakui M, Tokunaga K, Ishikawa Y, Kashiwase K, Moriyama S, Tsuchiya N, Ando H, Shiina T, Geraghty DE, Inoko H, Juji T:MIC-A polymorphism in Japanese and a MIC-A-MIC-B null haplotype. Immunogenetics.1999; 49:620.
    [20]Ahmad T, Marshall SE, Mulcahy-Hawes K, Orchard T, Crawshaw J, Armuzzi A, Neville M, van Heel D, Barnardo M, Welsh KI, Jewell DP, Bunce M:High resolution MIC genotyping:design and application to the investigation of inflammatory bowel disease susceptibility. Tissue Antigens.2002; 60:164
    [21]Petersdorf EW, Shuler KB, Longton GM, Spies T, Hansen JA:Population study of allelic diversity in the human MHC class I-related MIC-A gene. Immunogenetics.1999; 49:605.
    [22]Ota M, Katsuyama Y, Mizuki N, Ando H, Furihata K, Ono S, Pivetti-Pezzi P, Tabbara KF et al. Trinucleotide repeat polymorphism within exon 5 of the MICA gene (MHC class I chain-related gene A):allele frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kazakhstan, Iranian, Saudi Arabian, Greek and Italian. Tissue Antigens 49:448
    [23]Fodil N, Pellet P, Laloux L, Hauptmann G, Theodorou I, Bahram S:MICA haplotypic diversity. Immunogenetics.1999; 49:557
    [24]Zou Y, Heinemann FM, Grosse-Wilde H, Sireci G, Wang Z, Lavingia B et al. Detection of anti-MICA antibodies in patients awaiting kidney transplantation, during the post-transplant course, and in eluates from rejected kidney allografts by Luminex flow cytometry. Hum Immunol.2006; 67:230-237
    [25]Zhang Y, Han M, Vorhaben R, Giang C, Lavingia B, Stastny P:Study of MICA alleles in 201 African Americans by multiplexed single nucleotide extension (MSNE) typing. Hum Immunol.2006; 64:130,2003.
    [26]Vitiani LR, Potolicchio I, D'Amato M, Baricordi OR, Sorrentino R. MICA exon 5 microsatellite typing by DNA heteroduplex analysis:a new polymorphism in the transmembrane region. Tissue Antigens.1998 Mar;51(3):309-11.
    [27]Parmar S, Del Lima M, Zou Y, Patah PA, Liu P, Cano P et al. Donor-recipient mismatches in MHC class I chain-related gene A in unrelated donor transplantation lead to increased incidence of acute graft-versus-host disease. Blood.2009;114(14):2884-7.
    [28]Hirschberg H, Rolstad B, Thorsby E. The role of human endothelial cells in allograft rejection[J].Some in vitro correlates. Scand J Urol Nephrol,1975,S29:33-36.
    [29]Salih HR, Rammensee HG, Steinle A. Cutting edge:down-regulation of MICA on human tumors by proteolytic shedding. J Immunol,2002,169(8):4098-4102.
    [30]Petersdorf EW, Shuler KB, Longton G, et al. Population study of alleliciversity in the human MHC class realted MICA gene[J]. Immunogenetics,1999,49(7-8): 605-612.
    [31]Feng ML, Guo XJ, Zhang JY, et al. Study on the haplotypes of MICA and MICB microsatellite and HLA-B locus in the Guangzhou Han population[J]. Tissue Antigens,2004,64(3):281-285.
    [32]Bahram S. MIC genes:from genetics to biology[J]. Adv Immunol,2000,76:1-60.
    [33]Groh V, Steinle A, Bauer S, et al. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells[J]. Science,1998, 279(5357):1737-1740.
    [34]Zwirner NW, Marcos CY, Mirbaha F, Zou Y, Stastny P. Identification of MICA as a new polymorphic alloantigen recognized by antibodies in sera of organ transplant recipients[J]. Human Immunol 2000,61:917-924.
    [35]Hankey KG, Drachenberg CB, Papadimitriou JC, et al. MIC expression in renal and pancreatic allografts[J]. Transplantation,2002,73 (2):304-306.
    [36]Beatriz SA, Antonio LV, Roberto DP, et al. Post transplant soluble MICA and MICA antibodies predict subsequent heart graft outcome[J]. Transplant Immunology,2006,17(1):43-46.
    [37]Amezaga N, Crespo M, Lopez Cobos M, et al. Relevance of MICA antibodies in acute humoral rejection in renal transplant patients[J]. Transplant Immunology,2006,17(1):39-42.
    [38]Zou Y, Mirbaha F, Lazaro A, et al. MICA is a target for complement dependent cytotoxicity with mouse monoclonal antibodies and human alloantibodies[J]. Hum Immunol,2002,63(1):30-39.
    [39]Stastny P. Introduction:MICA/MICB in innate immunity, adaptive immunity, autoimmunity, cancer, and in the immune response to transplants[J]. Hum Immunol,2006,67(3):141-144.
    [40]Kitts P A, Possee R D. A method for producing recombinant baculovirus expression vectors at high frequency.Virology,1993;314(5):810
    [41]Miyamoto M, Naruo K, Seko C et al. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property.J Biol Chem,1993;268:2857
    [42]于永利,麻彤辉,杨贵贞.TA克隆及双链DNA测序:介绍一种快速克隆及分析PCR产物的方法.中国免疫学杂志,1994;10(1):5
    [43]Ledent P, Duez C, Vanhove M, Lejeune A, Fonze E, Charlier P et al. Unexpected influence of a C-terminal-fused His-tag on the processing of an enzyme and on the kinetic and folding parameters. FEBS Lett.1997 Aug 18;413(2):194-6.
    [44]Hou S, Chen X, Wang H, Tao M, Hu Z. Efficient method to generate homologous recombinant baculovirus genomes in E. coli. Biotechniques.2002 Apr;32(4):783-4,786,788.
    [45]Luckow V A, Lee S C, Barry G F. Effect generation of infections recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol,1993;67(8):4566.
    [46]Hancock K, Narang S, Pattabhi S, Yushak ML, Khan A, Lin SC et al (2008) False positive reactivity of recombinant, diagnostic, glycoproteins produced in High Five insect cells:effect of glycosylation. J Immunol Methods 330:130-136
    [47]Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ et al (2003) IMGT/HLA and IMGT/MHC:sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311-314
    [48]Vermehren D, Sumitran-Holgersson S (2002) Isolation of precursor endothelial cells from peripheral blood for donor-specific crossmatching before organ transplantation. Transplantation 74:1479-1486
    [49]Zou Y, Bresnahan W, Taylor RT, Stastny P (2005) Effect of human cytomegalovirus on expression of MHC class I-related chains A. J Immunol 174:3098-3104
    [50]Zou Y, Han M, Wang Z, Stastny P (2006a) MICA allele-level typing by sequence-based typing with computerized assignment of polymorphic sites and short tandem repeats within the transmembrane region. Hum Immunol 67:145-151.
    [51]P. Barton, A. Maier, R. Steininger, F. Muhlbacher and G. Lechner, Biliary sludge after liver transplantation:1. Imaging findings and efficacy of various imaging procedures, AJR Am J Roentgenol 164 (1995), pp.859-864.
    [52]J.J. Canete, J.T. Aidlen, M.E. Uknis and L. Cicalese, Images of interest. Hepatobiliary and pancreatic:biliary cast syndrome, J Gastroenterol Hepatol 20 (2005), p.791.
    [53]H.J. O'Connor, C.R. Vickers, J.A. Buckels, P. McMaster, J.M. Neuberger and R.J. West et al., Role of endoscopic retrograde cholangiopancreatography after orthotopic liver transplantation, Gut 32 (1991), pp.419-423.
    [54]R. Sheng, C.B. Ramirez, A.B. Zajko and W.L. Campbell, Biliary stones and sludge in liver transplant patients:a 13-year experience, Radiology 198 (1996), pp.243-247.
    [55]N.V. Gor, R.M. Levy, J. Ahn, D. Kogan, S.F. Dodson and S.M. Cohen, Biliary cast syndrome following liver transplantation:predictive factors and clinical outcomes, Liver Transpl 14 (10) (2008), pp.1466-1472.
    [56]R. Waldram, R. Williams and R.Y. Calne, Bile composition and bile cast formation after transplantation of the liver in man, Transplantation 19 (1975), pp.382-397.
    [57]P. Barton, A. Maier, R. Steininger, F. Muhlbacher and G. Lechner, Biliary sludge after liver transplantation:2. Treatment with interventional techniques versus surgery and/or oral chemolysis, AJR Am J Roentgenol 164 (1995), pp. 865-869.
    [58]P. Barton, A. Maier and R. Steininger et al., Biliary sludge after liver transplantation:1) Imaging findings and efficacy of various imaging procedures, AJR Am J Roentgenol 164 (1955), pp.859-864.
    [59]S.D. Parry and P. Muiesan, Cholangiopathy and the biliary cast syndrome, Eur J Gastroenterol Hepatol 15 (2003), pp.341-343.
    [60]J.N. Shah, W.G. Haigh, S.P. Lee, M.R. Lucey, C.M. Brensinger and M.L. Kochman et al., Biliary casts after orthotopic liver transplantation:clinical factors, treatment, biochemical analysis, Am J Gastroenterol 98 (2003), pp. 1861-1867.
    [61]S.H. Bak, H.S. Choi, S.Y. Yang, D.W. Jun, S.H. Han and H.L. Lee et al., Obstructive jaundice due to biliary cast syndrome followed by orthotopic liver transplantation, Korean J Gastroenterol 48 (2006), pp.119-123.
    [62]T.E. Starzl, C.W. Putnam, J.F. Hansbrough, K.A. Porter and H.A. Reid, Biliary complications after liver transplantation with special reference to the biliary cast syndrome and techniques of secondary duct repair, Surgery 81 (1977), pp. 212-221.
    [63]S.C. Chan, C.M. Lo, C.L. Liu and S.T. Fan, Resurgence of biliary cast syndrome, Liver Transpl 11 (2005), pp.242-243.
    [64]V. Tieng, C. Le Bouguenec, L. du Merle, P. Bertheau, P. Desreumaux, A. Janin and D. Charron et al., Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA, Proc Natl Acad Sci U S A 99 (5) (2002), pp.2977-2982.
    [65]I. Quiroga, M. Salio, D.D. Koo, L. Cerundolo, D. Shepherd and V. Cerundolo et al., Expression of MHC class I-related chain B (MICB) molecules on renal transplant biopsies, Transplantation 81 (8) (2006), pp.1196-1203.
    [66]J. Wu, Y. Song, A.B. Bakker, S. Bauer, T. Spies and L.L. Lanier et al., An activating immunoreceptor complex formed by NKG2D and DAP 10, Science 285 (5428) (1999), pp.730-732.
    [67]K. Ogasawara and L.L. Lanier, NKG2D in NK an T cell-mediated immunity, J Clin Immunol 25 (2005), pp.534-540.
    [68]K. Kohga, T. Takehara, T. Tatsumi, K. Ohkawa, T. Miyagi and N. Hiramatsu et al., Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma, Cancer Sci 99 (8) (2008), pp.1643-1649.
    [69]Y. Zou and P. Stastny, Alternatively spliced forms of MICA and MICB lacking exon 3 in a human cell line and evidence of presence of similar RNA in human peripheral blood mononuclear cells, Immunogenetics 54 (9) (2002), pp. 671-674.
    [70]E.L. Kapan and P. Meire, Nonparametric estimation from incomplete observations, J Am Sta Assoc 53 (1958), pp.457-481.
    [71]B. Suarez-Alvarez, A. Lopez-Vazquez, B. Diaz-Molina, M.J. Bernardo-Rodriguez, R. Alvarez-Lopez and D. Pascual et al., The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allograft rejection, Transplantation 82 (3) (2006), pp. 354-361.
    [72]M. Uzunel, H. Kasimu, M. Joshi, X. Ge, J. Liu and B. Xu et al., Evidence for no relevance of anti-major histocompatibility complex class I-related chain a antibodies in liver transplantation, Liver Transpl 14 (12) (2008), pp.1793-1802.
    [73]M. Jinushi, T. Takehara, T. Tatsumi, N. Hiramatsu, R. Sakamori and S. Yamaguchi et al., Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas, J Hepatol 43 (6) (2005), pp.1013-1020.
    [74]R. Patel, A.D. Badley, J. Larson-Keller, W.S. Harmsen, D.M. Ilstrup and R.H. Wiesner et al., Relevance and risk factors of enterococcal bacteremia following liver transplantation, Transplantation 61 (8) (1996), pp.1192-1197.
    [75]L. Halme, K. Hockerstedt and I. Lautenschlager, Cytomegalovirus infection and development of biliary complications after liver transplantation, Transplantation 75 (11) (2003), pp.1853-1858.
    [76]J.B. Park, C.H. Kwon, G.S. Choi, J.M. Chun, G.O. Jung and S.J. Kim et al., Prolonged cold ischemic time is a risk factor for biliary strictures in duct-to-duct biliary reconstruction in living donor liver transplantation, Transplantation 86 (11) (2008), pp.1536-1542.
    [1]Lopez-Larrea C, Suarez-Alvarez B, Lopez-Soto A, Lopez-Vazquez A, Gonzalez S. The NKG2D receptor:Sensing stressed cells. Trends Mol Med 2008; 14:179-189.
    [2]Wu J, Song Y, Bakker AB et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999; 285:730-732.
    [3]Gonzalez S, Lopez-Soto A, Suarez-Alvarez B, Lopez-Vazquez A, Lopez-Larrea C. NKG2D ligands:Key targets of the immune response. Trends Immunol 2008 (in press).
    [4]Quiroga I, Salio M, Koo DD et al. Expression of MHC class I-related Chain B (MICB) molecules on renal transplant biopsies. Transplantation 2006; 81: 1196-1203.
    [5]Hankey KG, Drachenberg CB, Papadimitriou JC et al. MIC expression in renal and pancreatic allografts. Transplantation 2002; 73:304-306.
    [6]Suarez-Alvarez B, Lopez-Vazquez A, Gonzalez MZ et al. The relationship of anti-MICA antibodies and MICA expression with heart allograft rejection. Am J Transplant 2007; 7:1842-1848.
    [7]Ascon DB, Lopez-Briones S, Liu M et al. Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J Immunol 2006; 177:3380-3387.
    [8]Feng L, Cheng F, Ye Z et al. The effect of renal ischemia-reperfusion injury on expression of RAE-1 and H60 in mice kidney. Transplant Proc 2006; 38: 2195-2198.
    [9]Seiler M, Brabcova I, Viklicky 0 et al. Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation. Am J Transplant 2007; 7:423-433.
    [10]Salih HR, Holdenrieder S, Steinle A. Soluble NKG2D ligands:Prevalence, release, and functional impact. Front Biosci 2008; 13:3448-3456.
    [11]Kaiser BK, Yim D, Chow IT et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 2007; 447:482-486.
    [12]Suarez-Alvarez B, Lopez-Vazquez A, Diaz-Molina B et al. The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allograft rejection. Transplantation 2006; 82:354-361.
    [13]Rodriguez-Rodero S, Gonzalez S, Rodrigo L et al. Transcriptional regulation of MICA and MICB:A novel polymorphism in MICB promoter alters transcriptional regulation by Spl. Eur J Immunol 2007; 37:1938-1953.
    [14]Mizutani K, Terasaki P, Rosen A et al. Serial ten-year follow-up of HLA and MICA antibody production prior to kidney graft failure. Am J Transplant 2005; 5:2265-2272.
    [15]Terasaki PI, Ozawa M, Castro R. Four-year follow-up of a prospective trial of HLA and MICA antibodies on kidney graft survival. Am J Transplant 2007; 7: 408-415.
    [16]Sumitran-Holgersson S, Wilczek HE, Holgersson J, Soderstrom K. Identification of the nonclassical HLA molecules, mica, as targets for humoral immunity associated with irreversible rejection of kidney allografts. Transplantation 2002; 74:268-277.
    [17]Zou Y, Stastny P, Susal C, Dohler B, Opelz G (2007) Antibodies against MICA antigens and kidney-transplant rejection. N Engl J Med 357:1293-1300
    [18]Ogasawara K, Benjamin J, Takaki R, Phillips JH, Lanier LL. Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. Nat Immunol 2005; 6:938-945.
    [19]Kitchens WH, Uehara S, Chase CM, Colvin RB, Russell PS, Madsen JC. The changing role of natural killer cells in solid organ rejection and tolerance. Transplantation 2006; 81:811-817.
    [20]McNerney ME, Lee KM, Zhou P et al. Role of natural killer cell subsets in cardiac allograft rejection. Am J Transplant 2006; 6:505-513.
    [21]Maier S, Tertilt C, Chambron N et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/-mice. Nat Med 2001; 7:557-562.
    [22]Uehara S, Chase CM, Kitchens WH et al. NK cells can trigger allograft vasculopathy:The role of hybrid resistance in solid organ allografts. J Immunol 2005;175:3424-3430.
    [23]Kroemer A, Xiao X, Degauque N et al. The innate NK cells, allograft rejection, and a key role for IL-15. J Immunol 2008; 180:7818-7826.
    [24]Zwirner NW, Fuertes MB, Girart MV, Domaica CI, Rossi LE. Cytokine-driven regulation of NK cell functions in tumor immunity:Role of the MICA-NKG2D system. Cytokine Growth Factor Rev 2007; 18:159-170.
    [25]Kim J, Chang CK, Hayden T et al. The activating immunoreceptor NKG2D and its ligands are involved in allograft transplant rejection. J Immunol 2007; 179: 6416-6420.
    [26]Ito A, Shimura H, Nitahara A et al. NK cells contribute to the skin graft rejection promoted by CD4+ T cells activated through the indirect allorecognition pathway. Int Immunol 2008; 20:1343-1349.
    [27]Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E. Natural-killer cells and dendritic cells:"l'union fait la force." Blood 2005; 106:2252-2258.
    [28]Vitale M, Della Chiesa M, Carlomagno S et al. NK-dependent DC maturation is mediated by TNFalpha and IFNgamma released upon engagement of the NKp30 triggering receptor. Blood 2005; 106:566-571.
    [29]Jinushi M, Takehara T, Kanto T et al. Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation:Impairment in chronic hepatitis C virus infection. J Immunol 2003; 170:1249-1256.
    [30]Schrama D, Terheyden P, Otto K et al. Expression of the NKG2D ligand UL16 binding protein-1 (ULBP-1) on dendritic cells. Eur J Immunol 2006; 36:65-72.
    [31]Qiao Y, Liu B, Li Z. Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2D ligands on dendritic cells. Cancer Immun 2008; 8:12.
    [32]Guan H, Moretto M, Bzik DJ, Gigley J, Khan IA. NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway. J Immunol 2007; 179:590-596.
    [33]Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 2006; 203: 1851-1858.
    [34]Beilke JN, Kuhl NR, Van Kaer L, Gill RG. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat Med 2005; 11:1059-1065.
    [35]Molinero LL, Fuertes MB, Rabinovich GA, Fainboim L, Zwirner NW. Activation-induced expression of MICA on T lymphocytes involves engagement of CD3 and CD28. JLeukoc Biol 2002; 71:791-797.
    [36]Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 2006; 176:1582-1587.
    [37]Roy S, Barnes PF, Garg A, Wu S, Cosman D, Vankayalapati R. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J Immunol 2008; 180:1729-1736.
    [38]Streblow DN, Orloff SL, Nelson JA. Acceleration of allograft failure by cytomegalovirus. Curr Opin Immunol 2007; 19:577-582.
    [39]Saez-Borderias A, Guma M, Angulo A, Bellosillo B, Pende D, Lopez-Botet M. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur J Immunol 2006; 36:3198-3206.
    [40]Kim YJ, Han MK, Broxmeyer HE.4-1BB regulates NKG2D costimulation in human cord blood CD8+ T cells. Blood 2008; 111:1378-1386.
    [1]Bahram S, Bresnahan M, Geraghty DE, et al.:A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 1994, 91:6259-6263.
    [2]Groh V, Bahram S, Bauer S, et al.:Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A 1996,93:12445-12450.
    [3]Obuchi N, Takahashi M, Nouchi T, et al.:Identification of MICA alleles with a long Leu-repeat in the transmembrane region and no cytoplasmic tail due to a frameshift-deletion in exon 4. Tissue Antigens 2001,57:520-535.
    [4]Prilliman KR, Crawford D, Hickman HD, et al.:Alpha-2 domain polymorphism and HLA class I peptide loading. Tissue Antigens 1999,54:450-460.
    [5]Fodil N, Laloux L, Wanner V, et al.:Allelic repertoire of the human MHC class I MICA gene. Immunogenetics 1996,44:351-357.
    [6]Groh V, Steinle A, Bauer S, et al.:Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 1998,279:1737-1740.
    [7]Jinushi M, Takehara T, Kanto T, et al.:Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J Immunol 2003,170:1249-1256.
    [8]Zwirner NW, Dole K, Stastny P. Differential surface expression of MICA by endothelial cells, fibroblasts, keratinocytes, and monocytes. Hum Immunol 1999, 60:323-330.
    [9]Molinero LL, Domaica CI, Fuertes MB, et al:Intracellular expression of MICA in activated CD4 T lymphocytes and protection from NK cell-mediated MICA-dependent cytotoxicity. Hum Immunol 2006,67:170-182.
    [10]Bauer S, Groh V, Wu J, et al.:Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999,285:727-729.
    [11]Hankey KG, Drachenberg CB, Papadimitriou JC, et al.:MIC expression in renal and pancreatic allografts. Transplantation 2002,73:304-306.
    [12]Quiroga I, Salio M, Koo DD, et al.:Expression of MHC class I-related Chain B (MICB) molecules on renal transplant biopsies. Transplantation 2006,81:1196-1203.
    [13]Collins RW, Stephens HA, Clare MA, et al.:High resolution molecular phototyping of MICA and MICB alleles using sequence specific primers. Hum Immunol 2002,63:783-794.
    [14]Zhang Y, Lazaro AM, Lavingia B, et al.:Typing for all known MICA alleles by group-specific PCR and SSOP. Hum Immunol 2001,62:620-631.
    [15]Katsuyama Y, Ota M, Ando H, et al.:Sequencing based typing for genetic polymorphisms in exons,2,3 and 4 of the MICA gene. Tissue Antigens 1999, 54:178-184.
    [16]Zou Y, Han M, Wang Z, et al.:MICA allele-level typing by sequence-based typing with computerized assignment of polymorphic sites and short tandem repeats within the transmembrane region. Hum Immunol 2006,67:145-151.
    [17]Mizuki N, Ota M, Kimura M, et al.:Triplet repeat polymorphism in the transmembrane region of the MICA gene:a strong association of six GCT repetitions with Behcet disease. Proc Natl Acad Sci U S A 1997,94:1298-1303.
    [18]Zwirner NW, Fernandez-Vina MA, Stastny P. MICA, a new polymorphic HLA-related antigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes. Immunogenetics 1998,47:139-148.
    [19]Zwirner NW, Marcos CY, Mirbaha F, et al.:Identification of MICA as a new polymorphic alloantigen recognized by antibodies in sera of organ transplant recipients. Hum Immunol 2000,61:917-924.
    [20]Zou Y, Heinemann FM, Grosse-Wilde H, et al.:Detection of anti-MICA antibodies in patients awaiting kidney transplantation, during the post-transplant course, and in eluates from rejected kidney allografts by Luminex flow cytometry. Hum Immunol 2006,67:230-237.
    [21]Mizutani K, Terasaki P, Rosen A, et al.:Serial ten-year follow-up of HLA and MICA antibody production prior to kidney graft failure. Am J Transplant 2005, 5:2265-2272.
    [22]Mizutani K, Terasaki P, Bignon JD, et al.:Association of kidney transplant failure and antibodies against MICA. Hum Immunol 2006,67:683-691.
    [23]**Zou Y, Qin Z, Silveus A, et al.:Polymorphisms of MICA recognized by human alloantibodies. Immunogenetics 2009,61:91-100.
    [24]*Duquesnoy RJ, Mostecki J, Hariharan J, et al.:Structurally based epitope analysis of major histocompatibility complex class I-related chain A (MICA) antibody specificity patterns. Hum Immunol 2008,69:826-832.
    [25]*Hancock K, Narang S, Pattabhi S, et al.:False positive reactivity of recombinant, diagnostic, glycoproteins produced in High Five insect cells:effect of glycosylation. J Immunol Methods 2008,330:130-136.
    [26]Zou Y, Mirbaha F, Lazaro A, et al.:MICA is a target for complement-dependent cytotoxicity with mouse monoclonal antibodies and human alloantibodies. Hum Immunol 2002,63:30-39.
    [27]**Zou Y, Stastny P, Susal C, et al.:Antibodies against MICA antigens and kidney-transplant rejection. N Engl J Med 2007,357:1293-1300.
    [28]*Panigrahi A, Gupta N, Siddiqui JA, et al.:Post transplant development of MICA and anti-HLA antibodies is associated with acute rejection episodes and renal allograft loss. Hum Immunol 2007,68:362-367.
    [29]* Terasaki PI, Ozawa M, Castro R. Four-year follow-up of a prospective trial of HLA and MICA antibodies on kidney graft survival. Am J Transplant 2007,7:408-415.
    [30]*Suarez-Alvarez B, Lopez-Vazquez A, Gonzalez MZ, et al.:The relationship of anti-MICA antibodies and MICA expression with heart allograft rejection. Am J Transplant 2007,7:1842-1848.