微结构光波导光学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体作为一种新型的人工光学材料,是现代光学与电磁学的热点研究领域。光子晶体拥有光子带隙,能更好的控制光的传播,在此基础上开发的微结构光波导能实现传统光波导无法实现的功能。
     本论文采用有限元法分析了微结构光波导的光学特性,主要内容包括:
     (1)利用有限元法讨论了微结构光纤的光纤模式特性和传输特性,为微结构光纤的综合设计提供了一定的理论参考。
     (2)利用有限元法分别研究了空芯带隙微结构光纤、四角弧形微结构光纤和双缺陷微结构光纤的结构参数对其光纤模式特性和传输特性的影响。其中,空芯带隙光纤我们用拓扑优化的方法,优化了内层空气孔环的角直径;双缺陷光纤中取特定的参数值时(dc=0.9μm,Λ=1.3μm,di=0.48μm,和do=0.48μm)可以在很大波长范围内得到相对比较平坦的色散和色散斜率曲线。
     (3)研究了两种结构的光子晶体波导输出端的能量分布。第一种是二维菱形介质柱光波导,通过改变出口介质柱的位置使光场产生汇聚。第二种是二维圆形介质柱光波导,通过优化出口介质柱的位置和大小,使出射光波场得到汇聚并使场强得到加强。
As new-fashioned synthetic optical material, photonic crystals has been a focus of the recent research on electromagnetic wave and optical.photonic crystals can control the propagation of light for its band gap structure, and microstructured optical waveguides (MOWs) can realize many functions which the original optical devices cannot.
     This dissertation adopted finite element method to analyze the optical properties of MOWs, the main contents as follows:
     (1)Using finite element method, the mode characteristics and propagation characteristics of microstructured optical fibers were investigated, which may be a reference for design of microstructure optical fibers.
     (2) Using finite element method, we analyzed the effects of the structural parameters of the Air-core Photonic Bandgap Fibers (PBGFs), square lattice arc microstructure photonic crystal fiber and two core microstructure photonic crystal fiber on the mode characteristics and propagation characteristics separately. Using the topology optimization method the corner of the inner air ring in the PBGFs were improved. When the parameter of two core microstructure optical fiber dc=0.9μm A=13μm, di=0.48μm, and do=0.48μm we can get relatively flatted and near zero dispersion and dispersion slope curve.
     (3) This thesis we discuss the energy distributions of the light shooting out from the two structure of microstructure optical waveguide. One is two-dimensional rotating square dielectric pillar microstructure optical waveguide, an effective method by changing the position of the pillar at the export of the microstructure optical waveguide for the emitting light beams can produce a focusing emission beam. The other microstructure optical waveguide structure is two-dimensional circle dielectric pillar microstructure optical waveguide, for which we optimal the size and position of the pillar at the export of the two-dimensional rotating square dielectric pillar microstructure optical waveguide until the emitting light beams can produce a focusing and enhance emission beam.
引文
[1]E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett.,58,2059 (1987).
    [2]S. John, "Strong localization of photons in certain disordered dielectric super lattices," Phys. Rev. Lett.,58,2486 (1987).
    [3]L. Shen, S. He, S. Xiao, "Large absolute band in two-dimension photonic crystals formed by large dielectric pixels," Phys. Rev. B,66,165315 (2002).
    [4]E. Yablonovitch, T. J. Gmitter K. M. Leung, "Photonic band structure:The face-centered-cubic case employing nonspherical atoms," Phys. Rev, Lett., 67,2295-2298(1991).
    [5]H. Kosake, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S.K awakam I, "Superprism phenomena in photonic c.rystals," Phys. Rev. B,58, R10096 (1998).
    [6]George Ouyang, Yong Xu, and Amnon Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibers," Opt. Express, vol.10, no.17,2002, pp.899-908.
    [7]P. A. Champert, S. V. Popov, J. R. Taylor, "Generation of multiwatt, broadband continua in holey fibers," Opt. Lett., vol.27, no.2,2002, pp.122-124.
    [8]S. F. Mingaleev, Yu.S.Kivshar, Nonlinear Photonic Crystals:Toward All-Optical Technologies, Opt. Photon. News,13,48(2002).
    [9]Jian Zhou, Tajima. Katsusuke, Nakajima. Kazuhide, Kurokawa. Kenji, Fukai, Chisato, Matsui, Takashi, Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol., vol.11, no.2,2005, pp-101-110.
    [10]H. Gersen, TJ Karle, RJP Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst T.F. Krauss, L. Kuipers, "Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides," Phys. Rev. Lett.,94,073903 (2005).
    [11]A. Mekis, J. C. Chen, I. Kurland, S. Fan, Pierre R. Villeneuve, J.D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett.,77,3787(1996).
    [12]Anders Bjarklev, Jes Broeng, Photonic Crystal Fibres (Springer,2003).
    [13]S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Slgalas, W. Zubrzycki, S. R. Kurtz, J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature,394,251(1998).
    [14]Y. Jeong. J. K Sahu, D. N. Payne and J. Nilsson, "Ytterbium-doped Large-core fibre laser with 610W of near diffraction-limited output power," IEEE Electron. Lett., vol.40, no.24, Nov 2004, pp.1527-1528.
    [15]W. J. Wadsworth, J.C. Knight W.H. Reeves, P. St. J. Russell and J. Arriaga "Yb3+-doped photonic crystal fibre laser,"IEEE Electron. Lett., vol.36, no.17,Aug 2000, pp.1452-1454.
    [16]Knight J. C. Birks T A, Russell P St I et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett,1996,21(19):1547-1549:
    [17]池颢等,光子晶体光纤的原理、应用和研究进展,[J]光电子激光,2002,13(5):534-537.
    [18]N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, J.Broeng, "Numerical aperture of single-mode photonic crystal fibers," IEEE Photon. Technol Lett., vol.14, no.8,2002, pp.1094-1096.
    [19]T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett., vol.22, no.13,1997, pp.961-963.
    [20]Ni Yi, "Large Negative Dispersion in Square Solid-Core Photonic Bandgap Fibers," IEEE.J. Quan.Eleclron., vol.41, no.5,2005, ppp.666-670.
    [21]D. Torkel Engeness, Mihai Ibanescu, G. Steven Johnson, Ori Weisberg, Maksim Skorobogatiy, Steven Jacobs, and Yoel Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express, vol.11, no.10,2003, pp. 1175-1196.
    [22]George Ouyang, Yong Xu, and Amnon Yariv,'Theoretical study on dispersion compensation in air-core Bragg fibers," Opt Express, vol.10, no.17,2002, pp.899-908.
    [23]J C Knight,J Arriaga,T A Birks, et. al. Anomalous Dispersion in Photonic Crystal Fiber. [J] IEEE Photonics Technology Leters.2000,12(7):807-809
    [24]K. Saitoh, M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol, vol.23, no.11,2005, pp.3580-3590.
    [25]K. Suzuki, H.Kubota, S. Kawanishi, M. TanakaM. Fujita, "High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarisation-maintaining photonic crystal," IEEE Electron. Lett, vol.37, no.23,2001, pp. 1399-1401.
    [26]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett, vol.25, no.18,2000, pp.1325-1327.
    [27]T. A. Birks, D. Mogilevtsev, J. C Knight, P. St. J. Russell, J. Broeng, P.J. Roberts, J. A. West, D. C. Allan, J. C. Fajardo,'The analogy between photonic crystal fibers and step index fibers," OFC'98, FG4,1998, pp.114-116
    [28]A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, M. V. Andres, "Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett., vol.24, no.5, pp.276-278.
    [29]Min Qiu, "Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method," Microwave and Opt. Technol Lett., vol.30, no.5,2001,pp. pp.327-330.
    [30]M. Koshiba, Optical Waveguide Theory by the Finite Element Method, KTK Scientific Publishers and Kluwer Academic Publishers, Dordrecht, Holland,1992.
    [31]O. C, Zienkiewitz, The Finite Element Method,3rd ed., McGraw-Hill, New York, 1973.
    [32]Tsuji Y, Koshiba M and Takimoto N. Finite beam propagation method for anisotropic optical waveguides[J]. J. Lightw. Technol.,1999,17(4):723-728.
    [33]Tsuji Y, Koshiba M and Shiraishi T. Finite beam propagation method for three-dimensional optical waveguide structures [J]. J. Lightw. Technol.,1997,15(9): 1728-1734.
    [1]Wu J Y, Kingsland D M, Lee J F, "A comparison of anisotropic PML to Berenger's PML and its application to the finite element method for EM scattering." IEEE Trans. Antennas Propagation, vol.45, no.1,1999, pp.40-50.
    [2]TeixeiraF L, Chew W C, "General closed-form PML constitutive linear media," IEEE Microwave Guided Wave Lett., vol.8,1998, pp.223-225.
    [3]M. Koshiba, Y. Tsuji, S. Sasaki, "High-Performance Absorbing Boundary Conditions for Photonic Crystal Waveguide Simulations," IEEE Microwave and Wireless Components Letters, vol.11, no.4,2001, pp.152-154.
    [4]Hernandez H E, hernandez F A, Lu Y, et al, "Vectorial Finite Element Modelling of 2D leaky Waveguides," IEEE Trans. Magnetics, vol.31, no.3,1995, pp.1710-1713.
    [5]O. C. Zienkiewitz, The Finite Element Method,3rd ed., McGraw-Hill, New York, 1973.
    [6]金建铭(美)著,王建国译,葛德彪校.电磁场有限元方法.西安:西安电子科技大学出版社,2001.
    [7]Finazzi V, Monro T M, Richardson D J, " Small-core silica holey fibers:nonlinearity and confinement loss trade-offs", Journal of The Optical Society of America B,20(7), 2003,1427-1436
    [8]White T P, McPhedran R C, de Sterke C M, et al, "Confinement losses in microstructured optical fibers", Optics Letters,26(21),2001,1660-1662
    [9]Taorong Gong, Fengping Yan, Lin Wang, Yifang Li, Pen Liu, Yang Liu, Yanhua Wang and Shuisheng Jian, "Comparison of the properties among photonic crystal fibers with different elliptical inner cladding configuration," Proc. of SPIE Vol.6781,67814I,2007
    [10]Fang Hong, Lou Shuqin, Guo Tieying, Yao Lei, Li Honglei and Jian Shuisheng, "Design of highly nonlinear photonic crystal fibers with flattened dispersion over S+C+L wavelength bands" Proc. of SPIE Vol.6781,67810P,2007.
    [11]Ming CHEN, Chunfei LI, Weibiao WANG, Mai XU, Yuxue XIA, Song CHEN and Shaojie MA, "Dispersion compensating properties of microstructure fiber," Proc. of SPIE Vol.6025,60250C,2006.
    [12]Mourad Zghal and Rim Cherif, "Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers," Optical Engineering 46(12),128002,December 2007.
    [1]Ronald Holzlohner, Sven Burger, Peter J. Roberts, Jan Pomplun, "Efficient optimization of hollow-core photonic crystal fiber desing using the finite-element method," Journal of the European Optical Society-Rapid Publications, vol 1,06001 (2006).
    [2]Ming CHEN, Chunfei LI, Weibiao WANG, Mai XU, Yuxue XIA, Song CHEN and Shaojie MA, "Dispersion compensating properties of microstructure fiber," Proc. of SPIE Vol.6025,60250C,2006.
    [3]Ming Wu, Hairong Liu, Dexiu Huang, Weijun Tong and Huifeng Wei, "Design of broadband dispersion compensating fiber with the small core photonic crystal fiber,"Proc. of SPIE Vol.6781,67813U,2007.
    [4]Mourad Zghal and Rim Cherif, "Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers," Optical Engineering 46(12),128002,December 2007.
    [5]M. Koshiba, Y. Tsuji, S. Sasaki, "High-Performance Absorbing Boundary Conditions for Photonic Crystal Waveguide Simulations," IEEE Microwave and Wireless Components Letters, vol.11, no.4,2001, pp.152-154.
    [6]White T P, McPhedran R C, de Sterke C M, et al, "Confinement losses in microstructured optical fibers", Optics Letters,26(21),2001,1660-1662.
    [1]E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett.,58,2059 (1987).
    [2]高慎杰,刘家飞.二维光子晶体波导输出端的能量分布.首都师范大学学报,2008,29(1).
    [3]Mekis A, Chen J C,Kurland,et al.High transmission through sharp bends in photonic crystal waveuides[J].Phy Rev Lett,1996,77(18):3787-3790.
    [4]Toshihiko Baba, AyumuMotegi Light Propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate [J]. IEEE Journal of Quantum Electronics,2002,38(7): 743-752.
    [5]Park H G, Hwang J K,Huh J., et al Characteristics of modified single-defect two-dimensional photonic crystal lasers[J]. IEEE Journal of Quantum Electronics, 2002,38(10):1353-1365.
    [1]E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett.,58,2059 (1987).
    [2]S. John, "Strong localization of photons in certain disordered dielectric super lattices," Phys. Rev. Lett.,58,2486 (1987).
    [3]T. A. Birks, D. Mogilevtsev, J. C Knight, P. St. J. Russell, J. Broeng, P.J. Roberts, J. A. West, D. C. Allan, J. C. Fajardo,'The analogy between photonic crystal fibers and step index fibers," OFC'98, FG4,1998, pp.114-116.
    [4]De Sterke, C. Martijn, T.P. White, B.T. Kuhlmey, R.C. McPbedran, D.Maystre, G. Renversez, L.C.Botten, "Muhipole method for microstructured optical fibers.I. Formulation," J. Opt. Soc. Am. B:Optical Physics, vol.19, no.10,2002, pp.2322-2330.
    [5]D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Localized function method for modeling defect modes in 2-D photonic crystals,".J. Lighswave Technol, vol.17, no.11, 1999, pp.2078-2081.
    [6]Guobin Ren, Zhi Wang, Shuqin Lou, Shuisheng Jian, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express, vol.11, no.11,2003, pp.1310-1321.
    [7]Min Qiu, "Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method," Microwave and Opt. Technol Lett., vol.30, no.5,2001, pp. pp.327-330.
    [8]M. Koshiba, Optical Waveguide Theory by the Finite Element Method, KTK Scientific Publishers and Kluwer Academic Publishers, Dordrecht, Holland,1992.
    [9]O. C, Zienkiewitz, The Finite Element Method,3rd ed., McGraw-Hill, New York, 1973.
    [10]Tsuji Y, Koshiba M and Takimoto N. Finite beam propagation method for anisotropic optical waveguides[J]. J. Lightw. Technol.,1999,17(4):723-728.
    [11]Tsuji Y, Koshiba M and Shiraishi T. Finite beam propagation method for three-dimensional optical waveguide structures[J]. J. Lightw. Technol.,1997,15(9): 1728-1734.