用于光纤传感器的带隙型光子晶体光纤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤是近年来一种比较新型的光纤,它主要包括改进的全内反射型光子晶体光纤和带隙型光子晶体光纤两大类。本论文主要研究的是带隙型光子晶体光纤。带隙型光子晶体光纤以其独特的结构和导光机制,使其具有其他很多普通光纤无法比拟的优良特性,拥有广泛的应用前景。光纤传感器具有灵敏度高、防磁、防爆、远程控制等优点,能够解决常规检测技术难以完全胜任的检测问题。而将带隙型光子晶体光纤应用于光纤气体传感,将会使得气体传感与检测的灵敏度得到进一步的提高。本论文主要进行了以下几方面的工作:
     1.总结了近些年来光子晶体光纤和光纤传感器的一些研究进展;综述了光子晶体光纤、带隙型光子晶体光纤的导光机制、特性及应用等方面以及传感器和光纤传感器方面的相关知识。
     2.从分析将带隙型光子晶体光纤应用于光纤传感器的优势出发,主要针对一氧化碳、甲烷和乙炔气体,根据其气体特性及传感器对带隙型光子晶体光纤的性能要求,利用平面波展开法和矢量有限元法,通过分析计算,得出所需的光纤的基本参数,即纤芯的半径、空气孔的半径和间距,使其在纤芯中的传输率达到90%以上,提高其检测的灵敏度。
Photonic crystal fiber (PCF for short) is a new class of optical fiber developed in recent years, divided into modified-total internal reflection photonic crystal fiber (M-TIR-PCF for short) and photonic bandgap photonic crystal fiber (PBG-PCF for short). We studied on PBG-PCF in this dissertation. Due to its special structure and light propagation mechanism, PBG-PCF performs superiorly to common fibers in many aspects, and it presents wide application prospects in many fields. The gas sensors provide high sensitivity, immunity to electromagnetic field, remote control and using under difficult circumstances. The gas sensors using hollow core photonic bandgap photonic crystal fiber can improve the detection sensitivity further. The main contents of this dissertation are as follows:
     1. Sum up the research process on the application of the photonic crystal fiber and fiber-optic senor. The optical basic principles, excellent features, applications of the PCF and PBG-PCF have been summarized. And we have summarized something about fiber-optic sensor in this dissertation.
     2. Through analyzed the advantages of the gas sensors using hollow core photonic bandgap photonic crystal fiber, the specific parameters are calculated for the hollow core photonic bandgap fibers which are used for the gas sensors by means of plane wave method and finite element method for applying the hollow core photonic bandgap fiber to the CO, CH4, C2H2 gas sensing and detecting. The specific parameters include the radius of the core of fiber, the radius and distance between two air holes. The results show that the in-core transmission power is more than 90%, which indicate that it can improve the detection sensitivity.
引文
[1]T. L. Wu and C. H. Chao, A novel ultraflattened dispersion photonic crystal fiber, [J]. IEEE Photon. Technol. Lett.,2005,17(1):67-69.
    [2]F.P. Kapron, D.B.Keck, R.D. Maurer, Radiation Losses in Glass Optical Waveguides. [J]. Applied Physics Lett.,1970,17(10):423-425.
    [3]Yablonovitch E., Inhibited spontaneous emission in solid-state physics and electronics. [J]. Phys.Rev.Lett.,1987,58:2059-2061.
    [4]John S., Strong localization of photons incertain disordered dielectric superlattices. [J]. Phys.Rev.Lett.,1987,58:2486-2488.
    [5]Yablonovitch E, Gmitter T. Photonic band structure:the face-centered-cubic case employing nonspherical atoms. [J]. Phys. Rev. Lett.,1991,67:2295-2298
    [6]Birks T A, Roberts P J, Russell P S J et al., Full 2-D photonic bandgaps in silica/air structure. [J]. Electron. Lett.,1995,31(22):1941-1943.
    [7]J. C. Knight, T. A. Birks, P. St. J. Russell, et al, All-silica single-mode optical fiber with photonic crystal cladding. [J]. Opt. Letter.,1996,21(19):1547-1549.
    [8]J. C. Knight, T. A. Birks, P. St. J. Russell, et al, Pure silica single-mode fiber with hexagonal photonic crystal cladding. [C]. OFC'96, paper PD3-1.
    [9]S Y Lin, J G Fleming, D L Hetherington, et al. A three-dimensional photonic crystal operating at infrared wavelengths. [J]. Nature,1998,394:251
    [10]Ortigosa-Blanch A, Knight J C, Wadsworth W J, et al., Highly birefringent photoniccrystal fibers. [J].Optics Letters,2000,25:1325-1327.
    [11]G.P.Agrawal, Nonlinear Fiber Optics 3rd edition. [M]. Boston:Academic Press,2001:3-4.
    [12]K. Saitoh, N. A. Mortensen, M. Koshiba, Air-core photonic band-gap fibers:the impact of surface modes. [J]. Opt. Express,2004,12(3):394-400.
    [13]St. J. Russell et al., Recent progress in photonic crystal fibers, OFC'00, Paper ThDl, 2000.
    [14]J. Broeng, S. E. Barkou, T. Sondergaard, et al, Analysis of air-guiding photonic bandgap fibers.[J]. Optics Letters.2000,25:96-98.
    [15]S. John, J. Wang, Quantum optics of localized light in a photonic band gap. [J]. Phys. Rev, 1991, B43(16):12772-12776.
    [16]J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous dispersiion in photonic crystal fiber, [J]. IEEE Photon. Technol. Lett.,2000,12(7):807-809.
    [17]Philip Russell, Photonic Crystal Fibers. [J]. Science,2003,299(1):358-362.
    [18]Knight J C, Broeng J, Birks T A et al., Photonic band gap guidance in optical fibers. [J]. Science,1998,282(5393):1476-1478.
    [19]Cregan R F, Mangan B J, Knight J C et al., Single-mode photonic bandgap guidance of light in air. [J]. Science,1999,285(5433):1537-1539.
    [20]廖延彪,黎敏,张敏,匡武,光纤传感技术与应用.[M].北京:清华大学出版社.2009.
    [1]Eli Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. [J].Phys. Rev Letters.1987,58(20):2059-2062.
    [2]S. John, Strong localization of photons in certain disordered dielectric super-lattices. [J]. Phys. Rev Letters.1987,58(23):2486-2489.
    [3]K. M. Ho, C. T. Chen, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. [J]. Phys. Rev Letters.1990,65(20):3152-3155.
    [4]E. Yablonovitch, Photonic band structure:the face-centered-cubic case employing nonspherical atoms. [J]. Phys. Rev Letters.1991,67(17):2295-2298.
    [5]E. Yablonovitch, Photonic band-gap structure. [J]. Opt. Soc. Am B.1993,10(2): 283-295.
    [6]E. Yablonovitch, Photonic band-gap crystals. [J]. Phys. Condens. Matter.1993,5: 2443-2460.
    [7]S. G. Johnson, S. Fan, P. R. Villeneuve, el.al. Guide modes in photonic cryatal slabs. [J]. Phys. Rev. B.1999,60(8):5751-5758.
    [8]S. G. Johnson, P. R. Villeneuve, S. Fan, el.al. Linear waveguides in photonic-crystal slabs. [J]. Phys. Rev. B.2000,62(12):8212-8222.
    [9]陈超,周桂耀,苑金辉,米艳,光子晶体光纤研究进展.[J].燕山大学学报.2008,32(2):129-133.
    [10]S. John, J. Wang, Quantum optics of localized light in a photonic band gap. [J]. Phys. Rev, 1991, B43(16):12772-12776.
    [11]张立辉,王岚,黄翔,田志雄,光子晶体的能带结构及应用前景.[J].武汉教育学院学报.2001,20(6):58-61.
    [12]S Y Lin, J G Fleming, D L Hetherington, et al. A three-dimensional photonic crystal operating at infrared wavelengths. [J]. Nature,1998,394:251
    [13]J Sabarinathan, P Bhattacharya, D Zhu, et al. Submicron three-dimensional infrared GaAs/AlxOy.based photonic crystal using single-step epitaxial growth. [J]. Appl.Phys.Lett.,2001,78:3024
    [14]S Rowson,et al. Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared. [J]. Appl.Phys.,1998,83:5061
    [15]A Blanco, E Chomski,S Grabtchak,et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. [J]. Nature,2000, 405:437
    [16]Yablonovitch E, Gmitter T. Photonic band structure:the face-centered-cubic case employing nonspherical atoms. [J]. Phys. Rev. Lett.,1991,67:2295-2298
    [17]M Campbell,D N Sharp,et al.Fabrication of photonic crystals for the visible spectrum by holographic lithography. [J]. Nature,2000,404:53
    [18]T J Chen, et al.Laser diffraction determination of the crystalline structure of an electrorheological fluid. [J]. Phys.Rev.Lett.,1992,68:2555
    [19]KNIGHT J C, BIRKS T A, RUSSELL P St J, et al, All-sillica single-mode optical fiber with photonic crystal cladding. [J]. Opt.Lett.,1996,21(19):1547-1549.
    [20]BIRKS T A, KNIGHT J C, RUSSELL P St J,Endlessly single-mode photonic srystal fiber. [J]. Opt.Lett.,1997,22(13):961-963.
    [21]KNIGHT J C, BROENG J, BIRKS T A, et al, Photonic band gap guidance in optical fibers. [J].Scince,1998,282(5393):1476-1478.
    [22]LI Chun-lei, SHENG Qiu-qin, The Relation between the nonlinear coefficient of PCF and its geometry parameters and the optical wavelength. [J].Acta Photonica Sinica,2006, 35(5):734-737.
    [23]李晓青,张书敏,李丹,等,光子晶体光纤中超连续谱产生的理论与实验研究.[J].光子学报.2008,37(9):1805-11809.
    [24]Philip Russell, Photonic Crystal Fibers. [J]. Science,2003,299(1):358-362.
    [25]Birks T. A., Roberts P. J., Russell P., Full 2-D Photonic Bandgaps in Silica/Air Structures. [J]. Electronics Letters,1995,31:1941-1943.
    [26]P. Petropoulos, V. Finazzi, R.C.Moore, et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers.[J]. OPTICS EXPRESS.2003.11:3568-3573
    [27]Saitoh K, Koshiba M. Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion. [J]. Opt Express 2003,11:843-8S2.
    [28]Ortigosa-Blanch A, Diez A, Gado-Pina M, et al., Ultrahigh birefringent nonlinear microstructured fiber. [J].IEEE Photonics Technology Letters,2004 16:1667-1669.
    [29]Nielsen M. D, Folkenberg J.R., Mortensen N. A., et al., Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers. [J].Opt. Express,2004, 12:430-435.
    [30]Ortigosa-Blanch A, Knight J C, Wadsworth W J, et al., Highly birefringent photonic crystal fibers. [J].Optics Letters,2000,25:1325-1327.
    [31]Folkenberg J R, Nielsen M.D., Mortensen N.A, et al., Polarization maintaining large mode area photonic crystal fiber. [J]. Opt. Express,2004,12(5):959-960.
    [32]唐灿,刘永智,光子晶体光纤的研究与应用.[J].光电子技术.2005,25(3):181-186.
    [33]CHI Hao, ZENG Qing-ji, JIANG Chun, Photonic crystal fiber. theory,applications and recent progress. [J]. Journal of Optoelecteonics Laser,2002,13(5):534-537.
    [34]G.P.Agrawal, Nonlinear Fiber Optics 3rd edition. [M]. Boston:Academic Press,2001:3-4.
    [35]J. Broeng, S. E. Barkou, T. Sondergaard, etal., Analysis of air-guiding photonic bandgap fibers, [J]. optics Letters, vol.25, pp.96-98,2000.
    [36]St. J. Russell et al., Recent progress in photonic crystal fibers, OFC'00, Paper ThD1, 2000.
    [37]T. A. Birks et al., Endlessly single-mode photonic crystal fiber, [J]. Opt. Lett.,1997, 22:961-963.
    [38]J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous dispersiion in photonic crystal fiber, [J]. IEEE Photon. Technol. Lett.,2000,12(7):807-809.
    [39]J. K Ranka, R. S. Windeler, A. JStentz, Visible continuum generation in air-silica micro structure optical fibers with anomalous dispersion at 800nm, [J]. Opt. Lett.,2000, 25(1):25-27.
    [40]T. L. Wu and C. H. Chao, A novel ultraflattened dispersion photonic crystal fiber, [J]. IEEE Photon. Technol. Lett.,2005,17(1):67-69.
    [41]A. Ferrando, E. Silvestr, J. J. Miret, et al. Nearly zero ultraflattened dispersion in photonic crystal fiber, [J]. Opt. Lett.,2000,25(1):790-792.
    [42]P. Petropoulos, H. Evendorff-Heidepriem, V. Finazzi, et al., Highly nonlinear and anomalously dispersive lead silicate glass holey fibers, [J].Opt. Express,2003, 11(26):3568-3573
    [43]A. Peyrilloux, T. Chartier, A. Hideur, et al.Highly birefringent index-guiding photonic crystal fibers. [J]. J.Lightwave Techonl.,2003,21(2):536-539.
    [44]J. Ju, W. Jin, and M.S. Demokan, Properties of a highly birefrigent photonic crystal fiber.[J].IEEE Electron.Lett.,2003,15(10):1375-1377.
    [45]M. J. Steel and R. M. Osgood, Elliptical-hole photonic crystal fibers.[J].Opt. Lett.,2001, 26(4):229-231.
    [46]Russell P, Photonic crystal fibers. [J]. Science,2003,299(5605):358-362.
    [47]Cregan R F, Mangan B J, Knight J C et al.. Single-mode photonic bandgap guidance of light in air. [J]. Science,1999,285(5433):1537-1539.
    [48]Birks T A, Roberts P J, Russell P S J, et al., Full 2-D photonic bandgaps in silica/air structure. [J]. Electron. Lett.,1995,31(22):1941-1943.
    [49]Knight J C, Broeng J, Birks T A, et al., Photonic band gap guidance in optical fibers. [J].Science,1998,282(5393):1476-1478.
    [50]West J A, Venkataraman N, Smith C M, et al. Photonic Crystal Fibers. [M]. ECOC 2001, Amsterdam:Netherlonds, Paper Th.A.2, pp.582-585.
    [51]F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams andP. J. Roberts, Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgapfibers. [J]. Opt. Express,2004,12: 835-840.
    [52]Renn M.J, Pastel R, Lewandowski H J, Laser guidance and trapping of mesoscale particles in hollow-core optical fibers. [J]. Phys. Rev. lett.1999,82(71):1574-1577.
    [53]R Benabid, J. C. Knight, P. St. J. Russel, Particle levitation and guidance in hollow-core photonic crystal fiber. [J].OPTICS EXPRESS.2002,10(21):1195-1203.
    [54]S. G Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic,S. A. Jacobs, J. D. Joannopoulos, and Y. J. Fink, Low-loss asymptotically single-mode propagation in large-core omniguide fibers. [J]. Opt. Express.2001,9: 748-79.
    [55]Bertrand Gauvreau, Alireza Hassani, Majid Fassi Fehri, AndreiKabashin, Maksim Skorobogatiy, Photonic bandgap fiber-based Surface Plasmon Resonance sensors. [J]. Opt. Express.2007,12(17):4080-4087.
    [56]J. Broeng, S. E. Barkou, T. Sondergaard, et al, Analysis of air-guiding photonic bandgap fibers. [J]. Optics Letters.2000,25:96-98.
    [57]Lagsgaard J, Bjarklev A, Doped photonic bandgap fibers for short-wavelength nonlinear devices. [J]. Opt. Lett.2003,28(10):783-785.
    [58]倪正华,刘兆伦,刘晓东,等,光子带隙光纤的奇异特性和应用.[J].激光与光电子学进展.2004,41(11):10-14.
    [59]M. J. F. Digonnet, H. K. Kim, J. Shin, et al. Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers. [J]. Opt. Express,2004, 12(9):1864-1872.
    [60]K. Saitoh, N. A. Mortensen, M. Koshiba, Air-core photonic band-gap fibers:the impact of surface modes. [J]. Opt. Express,2004,12(3):394-400.
    [61]P. Roberts, F. County, H. Sabert, et al., Ultimate low loss of hollow-core photonic crystal fibers. [J]. Opt. Express,2005,13(1):236-244.
    [62]Kiarash Zamani Aghaie, Michel J. F. Digonnet, and Shanhui Fan, Optimization of the splice loss between photonic-bandgap fibers and conventional sinhle-mode fibers. [J]. Optics Letters,2010,35(12):1938-1940.
    [63]Mortensen N. A., Nielsen M. D., Modeling of realistic cladding structures for air-core photonic band-gap fibers. [J]. Opt. Lett.,2004,29(4):349-351.
    [64]Saitoh K, Koshiba M, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. [J]. Opt. Express,2004,11(23):3100-3109.
    [65]Larsen T T, Hermann D S, Broeng J, at al., A novel photonic crystal fibre switch. [J]. in Proceedings of CLEO Europe,2003, post-deadline paper CEP1-9-THU.
    [66]West J A, Smith C M, Borrelli N F, et al., Surface modes in air-core photonic band-gap fibers. [J]. Opt. Express,2004,12(8):1485-1496.
    [1]刘永顺,牛文学,浅谈传感器.[J].物理与工程.2003,13(4):45-46.
    [2]强锡富,传感器.[M].北京:机械工业出版社.2002.
    [3]周乐挺,传感器与检测技术.[M].北京:高等教育出版社.2005.
    [4]李彩娜,浅谈传感器技术的发展.[J].无锡南洋学院学报.2008,7(2):40-42.
    [5]隋文涛,张丹,传感器静态特性的评定.[J].传感器与微系统.2007,26(3):80-81.
    [6]刘永顺,牛文学,浅谈传感器.[J].物理与工程.2003,13(4):45-46.
    [7]李彩娜,浅谈传感器技术的发展.[J].无锡南洋学院学报.2008,7(2):40-42.
    [8]黎敏,廖延彪,光纤传感器及其应用技术.[M].湖北:武汉大学出版社.2008.
    [9]Culshaw B, Smart Structures and Materials. Norwood:Artech House,1996.
    [10]Culshaw B, Optic Fiber Sensing and Signal Processing.1984.
    [11]郑宏军,黎晰,杨恒新,两种典型的光纤传感器研究现状与发展趋势.[J].传感技术学报.2001,12(4):281-283.
    [12]廖延彪,黎敏,张敏,匡武,光纤传感技术与应用.[M].北京:清华大学出版社.2009.
    [13]陈峰华,孟继轲,光纤传感器及其应用研究.[J].太原科技大学学报.2005,26(2):99-101.
    [14]Cavaleiro P M, Araujo F M, Metal-coaled fiber Bragg grating sensor for electric current metering. [J]. Electron. Lett..1998,34(11):1133-1135.
    [15]唐宇,刘传菊,光纤传感器及其研究现状.[J].科技资讯.2009,7:16-17.
    [16]Zhang Y, Jin W, Yu H B, etc. Novel intra-cavity sensing network based on mode-locked fiber laser. IEEE Photonic Tech.2002,14(9):1336-1338.
    [17]Stephen H Poland, et al. Methods for integrating optical fibers with advanced aerospace materials 2 smart sensing, processing, and instrumentation. SPIE.1993,918: 122-135.
    [18]黄威等,光纤陀螺在航空武器装备中的应用及前景.[J].航空兵器.2004,11(2):49-52.
    [1]A. Peyrilloux, S. Fevrier, J. Marcou, et al, Comparison between the finite element method, the localized function method and a novel equivalent index method for modeling Photonic Crystal Fibres. [J]. J. Opt. A,2002,4(3):257-262.
    [2]张德生,董孝义,张伟刚,等,用阶跃有效折射率模型研究光子晶体光纤色散特性.[J].物理学报.2005,54(3):1235-1240.
    [3]Steven G. Johnson, J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. [J]. OPTICS EXPRESS,2001,8(3):173-190.
    [4]曾辉,杨亚培,FDTD法与平面波展开法在光子禁带计算中的差异分析.[J].电子科技大学学报.2005,34(6):901-904.
    [5]Shangping Guo, Plane Wave Expansion Method For Photonic Band Gap Calculation Using MATLAB. [J]. PWM manual 1.00,2001,1-32.
    [6]Rossella Zoli, Marco Gnan, Davide Castaldini, Gaetano Bellanca, Paolo Bassi, Reformulation of the plane wave method to model photonic crystals. [J]. OPTICS EXPRESS,2003, 11(22):2905-2910.
    [7]Shangping Guo, Sacharia Albin, Simple plane wave implementation for photonic crystal calculations. [J]. OPTICS EXPRESS,2003,11(2):167-175.
    [8]余建立,沈虹君,基于等效介质二维光子晶体平面波展开法的理论研究.[J1.量子光学学报.2008,14(3):317-321.
    [9]周利斌,平面波展开法计算一维光子晶体能带.[J].科技创新导报.2010,25:88-90.
    [10]张洪宪,光纤气体传感器系统的设计.[J].重庆科技学院学报.2008,10(3):63-65.
    [11]张景超,刘瑾,王玉田,杨海马,新型光纤CO气体传感器的研究.[J].光电子.激光.2004,15(4):428-431.
    [12]李虹,监测甲烷浓度的红外光吸收法光纤传感器.[J].量子电子学报.2002,19(4):355-357.
    [13]靳伟,阮双琛等,光纤传感技术新进展.[M].北京:科学出版社.2005.
    [14]B. T. Kuhlmey, K. Pathmanandavel, R. C. McPhedran, Multipole analysis of photonic crystal fibers with coated inclusions. [J]. Opt. Express.2006,14(22):10851-10864.
    [15]M. Qiu, Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. [J]. Microwave Opt. Technol.Lett.,2001,30(5):327-330.
    [16]Z. M. Zhu, T. G. Brown, Full-vectorial finite-difference analysis of microstructured optical fibers. [J]. Opt. Express,2002,10(17):853-864.
    [17]L. Adamowicz, V. Q. Nguyen, Electromagnetic field in a slab of photonic crystal by BPM. [J]. Optics and laser in Engineering,2001,35(2):67-78.
    [18]A. Cucinotta, S.selleri, L.Vincetti, et al., Holey fiber analysis through the finite element method. [J]. IEEE Photonics Technology Letters,2002,14:1530-1532.
    [19]F Brechet, J. Marcou, D. Pagnoux, P.Roy, Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers by the Finite Element Method. [J]. Optical Fiber Technology,2000,16:181-191.
    [20]Koshiba M., Full-vector analysis of photonic crystal fibers using the finite element method. [J]. IEICE Trans. Electron,2002, E85-C:881-888.
    [1]赵勇,光纤传感原理与应用技术.[M].北京:清华大学出版社.2007.
    [2]Russell, P. Photonic crystal fibers. [J]. Science,2003,299(5605):358-362.
    [3]琚雪梅,张巍,毕东云,司良友,红外吸收型C02气体传感器的设计.[J].传感器技术.2005,24(8):62-64.
    [4]J. Weirich, J. Laegsgard, L. Scolari, et al.Based liquid crystal infiltrated photonic bandgap fiber. [J]. Opt. Express,2009,17(6):4442-4453.
    [5]F. Luan, A. K. George, T. D. Hedley, et al, All-solid photonic bandgap fiber. [J]. Opt. Lett,2004,29(20):2369-2371.
    [6]T. A. Birks, F. Luan, G. J. Pearce, et al, Bend loss in all-solid bandgap fibers. [J]. Opt. Express,2006,14(2):562-569.
    [7]T. Birks, D. Bird, T. Hedley, et al, Scaling laws and vector effects in bandgap-guiding fibres. [J]. Opt. Express,2004,12(1):69-74.
    [8]余贶碌,吴重庆,郭旋,王智,王拥军,光纤气体传感网络的研究进展.[J].半导体光电.2010,31(1):1-7.
    [9]郭铁梁,光纤气体传感技术及其应用.[J].煤矿机械.2004,4:122-124.
    [10]K. Busch, S. John, Photonic Band Gap Formation in Certain Self-organizing Systems. [J]. Phys.Rev. E,1998,58(3):3896-3908.
    [11]P. R. Villeneuve, M. Piche, Photonic band gaps in two-dimensional square and hexagonal lattices. [J]. Phys. Rev. B,1992,46(8):4969-4972.
    [12]程同蕾,李曙光,周桂耀,侯监田,空芯光子晶体光纤纤芯中的功率分数及其带隙特性.[J].中国激光.2007,34(2):249-254.
    [13]郭铁梁,光纤气体传感技术及其应用.[J].煤矿机械.2004,(4):122-124.
    [14]张景超,王瑾,王玉田,杨海马,新型光纤CO气体传感器的研究.[J].光电子激光.2004,15(4):428-431.
    [15]张虎,王秋国,杨伯君,于丽,空芯光子带隙光纤纤芯截切半径的研究.[J].半导体光电.2008,29(3):411-414.
    [16]T. Ritari, J. Tuominen, H. Ludvigsen et al., Gas sensing using air-guiding photonic bandgap fibers. [J]. Opt. Express,2004,12(17):4080-4087.
    [17]Chan K, Ito H, Inaba H, Absorption measurement of v2+2v3 band of CH4 at 1.33 μm using an InGaAsP light emitting diode. [J]. Appl. Optics,1983, 22(23):3803-3804.
    [18]Chan K, Ito H, Inaba H, Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link. [J]. Appl. Optics,1984,23(19):3415-3420.