c-Fms抑制剂筛选模型的建立及化合物的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白激酶是细胞内一类最重要的功能蛋白,在细胞信号通路中发挥着重要的作用。酪氨酸蛋白激酶(PTKs)是重要的蛋白激酶,其介导或者参与的细胞内信号通路在调节细胞增殖、分泌、分化和凋亡过程中占重要地位。其功能的失调与恶性肿瘤、免疫疾患、动脉粥样硬化、糖尿病等多种疾病的发生密切相关。PTKs抑制剂可有效调节PTKs活性,治疗PTKs参与的“细胞信号紊乱”相关疾病。研发活性高、选择性强的新型PTKs抑制剂具有重要意义。
     巨噬细胞集落刺激因子受体激酶(c-Fms),是由原癌基因c-fms编码的一种受体酪氨酸激酶,与血小板衍生生长因子α、β受体(PDGFRα,β)、干细胞生长因子受体(SCFR/c-Kit)、FMS样酪氨酸激酶3(FLT-3)等同属于Ⅲ型受体酪氨酸激酶家族。c-Fms与其配体巨噬细胞集落刺激因子(M-CSF)结合后,形成二聚体,进而表现出酪氨酸激酶的催化活性,激活c-Fms介导的胞内信号转导途径,促进单核巨噬细胞系的存活、增殖和分化。c-fms基因序列缺失、重复复制、突变、染色体易位等因素导致c-Fms的激酶活性异常增强,与骨髓增生异常综合征(MDS)、急性髓系白血病(AML)、急性巨核细胞白血病(AMKL)、动脉粥样硬化、乳腺癌、子宫颈癌、类风湿性关节炎等疾病密切相关。鉴于c-Fms独特的生物学作用与病理生理学特点,研发靶向该受体激酶的抑制剂可能发现新的靶向治疗药物。目前处于临床前研究阶段发展较好的c-Fms抑制剂有GW2580、Ki20227和JNJ-28312141,它们可有效抑制c-Fms激酶的磷酸化,改善小鼠肿瘤细胞转移引起的骨质溶解和糜烂;JNJ-28312141还可抑制大鼠移植肿瘤细胞的生长。因此,新型c-Fms抑制剂的发现是目前国际新药研发的一个重点和热点。鉴于高效筛选模型是新药发现的关键和核心的环节。因此,确定本课题研究的目的是:(1)建立c-Fms抑制剂的高效筛选模型和方法;(2)进行筛选化合物,以期发现活性强的新型c-Fms抑制剂。
     本研究工作由两部分组成:第一部分,c-Fms抑制剂筛选模型的建立,包括两个方面:(1)基于高内涵分析技术c-Fms抑制剂筛选模型的建立;(2)基于激酶盘不依赖M-CSF的c-Fms抑制剂细胞水平筛选模型的建立。第二部分,利用M-CSF依赖的细胞株和所建立的基于高内涵分析技术的c-Fms激酶抑制剂筛选模型进行化合物的筛选。
     第一部分,c-Fms抑制剂筛选模型的建立。
     基于高内涵分析技术c-Fms抑制剂筛选模型的建立:采用分子克隆和细胞转染技术,将构建的含有人c-Fms cDNA全长序列的真核表达载体,转染已稳定表达GFP-STAT1融合蛋白的人骨肉瘤细胞(U2OS),采用有限稀释法和小玻片培养法获得同时稳定表达人c-Fms和GFP-STAT1融合蛋白的单克隆细胞株(c-Fms/GFP-STAT1_U2OS)。以重组人巨噬细胞集落刺激因子(rhM-CSF)处理该细胞,诱导GFP-STAT1核转位,采用高内涵分析系统获取细胞图像,并用细胞核转位分析模块(Nuclear Trafficking Analysis Module)定量分析GFP-STAT1的核转位程度。在该细胞模型上对rhM-CSF的有效浓度、处理时间和细胞接种密度等实验条件进行优化,通过Z′因子评估该细胞模型的可靠性,并采用已知的c-Fms抑制剂GW2580等进一步确证模型的有效性。结果表明,实验中细胞接种密度0.2~1.0×104个/孔,rhM-CSF处理细胞的时间在30min较为适宜;rhM-CSF诱发细胞内GFP-STAT1发生核转位的EC50为43.50±3.68 ng/mL;rhM-CSF终浓度为200ng/mL时,Z′因子值为0.618。c-Fms选择性抑制剂GW2580抑制GFP-STAT1核转位的IC50为24.86±1.50nM,完全抑制c-Fms介导GFP-STAT1核转位的浓度为0.3μM。多靶标的受体酪氨酸激酶抑制剂Sutent抑制GFP-STAT1核转位的IC50为14.85±0.55nM;Imatinib抑制GFP-STAT1发生核转位的IC50为196.14±21.69nM。综上表明,本研究成功建立了能够用于c-Fms抑制剂筛选的基于高内涵分析的新细胞模型。
     基于激酶盘不依赖M-CSF的c-Fms抑制剂细胞水平筛选模型的建立:采用DNA重组技术,将人的c-Src豆蔻酰化多肽、TEL(Translocation E26 transforming-specific Leukaemia)转录因子的螺旋-环-螺旋结构域(HLH domain)、人c-Fms激酶结构域(c-Fms kinase domain,cFmskd)以及c-Myc多肽标签的DNA序列克隆到pCORON/neo载体上,构建pCORON/neo-HcSrc-Tel-cfmskd-Myc激酶盘真核表达载体。通过脂质体转染方法将该载体分别转染已稳定表达GFP-STAT1融合蛋白的人骨肉瘤细胞和稳定表达EGFP-STAT3融合蛋白的幼仓鼠肾细胞(EGFP-STAT3_BHK),在细胞中表达mTEL-cFmskd豆蔻酰化融合蛋白,诱导GFP-STAT1或EGFP-STAT3发生核转位。采用IN Cell Analyzer1000获取细胞图像,并以细胞核转位分析模块定量分析GFP-STAT1和EGFP-STAT3融合蛋白的核转位程度。用0.03μM、0.3μM的c-Fms抑制剂GW2580、Sutent和Imatinib分别处理转染激酶盘真核表达载体12h后的EGFP-STAT3_BHK细胞,考察c-Fms抑制剂对表达的mTEL-cFmskd豆蔻酰化融合蛋白诱导EGFP-STAT3发生核转位的影响。结果,成功构建的pCORON/neo-HcSrc-Tel-cfmskd-Myc激酶盘真核表达载体转染细胞24h后,可在U2OS或BHK细胞中有效诱导GFP-STAT1或EGFP-STAT3发生核转位现象。在黑色底透96孔培养板中,100、200、400、600和800ng/孔的载体转染BHK细胞,对细胞内EGFP-STAT3的核转位程度无明显影响,所对应的Z′因子值分别为0.600、0.701、0.574、0.812和0.637。0.3μM的c-Fms抑制剂GW2580(P<0.05)和Sutent(P<0.01)能有效抑制mTEL-cFmskd诱导EGFP-STAT3核转位,也进一步证实该筛选模型的可行性。以上结果表明该体系可作为c-Fms抑制剂筛选的新方法。
     第二部分,利用M-CSF依赖的小鼠骨髓性白血病细胞(M-NFS-60)和基于高内涵分析技术的依赖M-CSF的c-Fms抑制剂筛选模型,对靶向c-Fms设计及合成的34个新化合物进行活性筛选。在M-NFS-60细胞模型上,有10个化合物对M-NFS-60细胞的增殖具有较好的抑制活性,其中化合物LK-A051、LK-B030和LK-B023的I C50分别为0.64±0.03μM、0.63±0.02μM和1.41±0.20μM。在c-Fms/GFP-STAT1_U2OS细胞模型上,阳性化合物GW2580抑制c-Fms介导的GFP-STAT1核转位的IC50为24.86±1.50nM。在已筛选的新化合物中,LK-A051和LK-B023对GFP-STAT1核转位具有较好的抑制活性,其IC50分别为3.88±0.49nM和1.62±0.04μM。化合物LK-A051的活性明显高于三个已知c-Fms抑制剂。
     综上所述,本课题主要结论如下:
     1)基于c-Fms介导的细胞内信号转导通路,成功建立基于高内涵分析技术依赖rhM-CSF的c-Fms抑制剂筛选模型。已知的c-Fms抑制剂GW2580、Sutent和Imatinib在该模型上的抑制活性是文献已报道其他细胞模型的3~10倍。因此,与其他模型相比,该模型具有灵敏、高效等优点。
     2)成功构建以人c-Fms为代表的pCORON/neo-HcSrc-Tel-cfmskd-Myc激酶盘真核表达载体。该载体在GFP-STAT1_U2OS和EGFP-STAT3_BHK细胞中表达能有效诱导胞内GFP-STAT1和EGFP-STAT3发生核转位。100~800ng/孔的载体转染细胞诱导EGFP-STAT3发生核转位的Z′因子值均大于0.5,且c-Fms激酶抑制剂能显著抑制EGFP-STAT3核转位的发生,提示该模型可用于c-Fms抑制剂的筛选。该模型为更广泛的激酶抑制剂筛选模型的建立提供了一种通式,为激酶抑制剂的筛选提供了一个新的思路。
     3)采用M-NFS-60细胞和c-Fms/GFP-STAT1_U2OS细胞筛选模型,完成了34个新化合物的筛选,发现化合物LK-A051的活性明显高于阳性化合物。
Kinases, one of the most important classes of protein in cells, play a key role in cellular signaling pathways. Protein tyrosine kinases (PTKs) are one of main member of kinases, and the signal transduction pathways mediated by PTKs are implicated in the control of a variety of biological processes, including cell proliferation, secretion, differentiation, and apoptosis. Disorder of PTKs may lead to many diseases, including malignant tumor, immunizing disease, atherosclerosis and diabetes. However, protein tyrosine kinases inhibitors can effectively block tyrosine kinases phosphorylation and subsequently block the cellular signals that are involved in the development of disease. Therefore, developing novel PTKs inhibitors with higher potencies and selectivity possess a great prospect.
     Macrophage-colony stimulating factor receptor(c-Fms), encoded by the c-fms proto-oncogene, is a member of type III receptor tyrosine kinase family which include platelet-derived growth factor receptorα,β(PDGFRα,β), stem cell growth factor receptor(SCFR/c-Kit) and FMS-like tyrosine kinase-3(FLT-3). After binding of its ligand (M-CSF or CSF-1) to the extracellular domain of c-Fms, dimerization was formed, phosphorylation of the intracellular FMS domain was induced, and then the catalytic activity of tyrosine kinases was exhibited. M-CSF/c-Fms complex with the catalytic activity of tyrosine kinases activates downstream cytoplasmic signaling, which lead to the survival, proliferation and differentiation of the monocyte- macrophage lineage. Deletion, repeat replication, mutation and chromosome translocation of c-fms gene are closely associated with many diseases, including myelodysplastic syndrome (MDS), acute myelocytic leukemia (AML), acute megakaryoblastic leukemia (AMKL), atherosclerosis, mammary cancer, cervical carcinoma and rheumatoid arthritis. These have made c-Fms as an attractive therapeutic target for c-Fms-associated diseases. Currently reported c-Fms inhibitors such as GW2580, Ki20227 and JNJ-28312141, are all in pre-clinical status. Therefore, researches have been focusing on the study of novel c-Fms inhibitors in past few years. However, efficient screening models and methods for PTKs inhibitors are the key to get potent candidate compounds from a great many compounds. Therefore, the purposes of the present study are, (1) to establish screening assays for human c-Fms inhibitors, and (2) then screening new compounds that were designed based on the structure of c-Fms and synthesized in our laboratory.
     According to the purposes of the study, the present work is composed of two parts.
     In the first part, to construct a eukaryotic expression vector including the cDNA for full-length human c-Fms, and then the vector was transfected into human osteosarcoma cell (U2OS) in which GFP-fused STAT1 (GFP-STAT1) protein had been stably expressed. By limiting dilution analysis and small slide culture, the cells (c-Fms /GFP-STAT1_U2OS) expressing human c-Fms and GFP-fused STAT1 protein were sorted. By using IN Cell Analyzer, GFP-STAT1 fusion protein nuclear translocation mediated by recombinant human macrophage colony-stimulating factor (rhM-CSF) in cells was observed, and then the data were analyzed with Nuclear Trafficking Analysis Module. The half-effective concentration (EC50) of rhM-CSF in GFP-STAT1 nuclear translocation assay was 43.50±3.68ng/ml. The performance of high-content screening assay based on the c-Fms /GFP-STAT1_U2OS cells that respond to 200ng/ml rhM-CSF could be assessed by calculating the Z′-factor of the model. The value of Z′-factor was 0.618, which means the screening assay was an excellent for screening of c-Fms inhibitors. Time course analysis of the GFP-STAT1 nuclear translocation indicated that the maximal translocation occurred approximately at 30 minutes after stimulation with 200ng/ml rhM-CSF. However, the seeding densities ranging from 0.2×104 to 1.0×104 cells per well in a black, clear-bottom 96-well plate showed no significant effect on GFP-STAT1 nuclear translocation. In addition, human c-Fms inhibitor GW2580 completely inhibited GFP-STAT1 nuclear translocation mediated by 200ng/ml rhM-CSF at 0.3μM, and IC50 was 24.86±1.50nM. Sutent and Imatinib, two Multitargeted tyrosine kinase inhibitors, also displayed antagonism activity against GFP-STAT1 nuclear translocation /GFP-STAT1_U2OS cells at submicromolar concentrations (ICin c-Fms 50 was 14.85±0.55nM and 196.14±21.69nM, respectively).
     By recombinant DNA technology, the DNA sequence of polypeptide for myristoylation of human c-Src, helix-loop-helix domain of human TEL, kinase domain of macrophage colony-stimulating factor receptor and c-Myc tag were inserted into pCORON/neo plasmid to generate kinase panel eukaryotic expression vector pCORON/neo-HcSrc-Tel-cfmskd-Myc. mTEL-cFmskd expression vector was transfected into GFP-STAT1_U2OS cells and EGFP-STAT3_BHK cells in a black, clear-bottom 96-well plate by Lipofection. Using IN Cell Analyzer 1000, the GFP-STAT1 or EGFP-STAT3 fusion protein nuclear translocation induced by mTEL-cFmskd myristoylated fusion protein was observed 24 hours after transfection. 100, 200, 400, 600 and 800ng/well of kinase panel eukaryotic expression vector showed no obvious effect on EGFP-STAT3 fusion protein nuclear translocation, and the value of Z′-factor were calculated to be 0.600, 0.701, 0.574, 0.812 and 0.637, respectively. In addition, GW2580 (P<0.05) and Sutent (P<0.01) could markedly inhibit EGFP-STAT3 nuclear translocation at 0.3μM. But the nuclear translocation was resistant to Imatinib at the same concentration. These results suggested that M-CSF-independent high-content screening assay was available.
     In the second part, 34 novel compounds were evaluated in M-CSF-dependent M-NFS-60cells proliferation assay and rhM-CSF-dependent GFP-STAT1 translocation assay. In M-NFS-60 cells proliferation assay, GW2580 inhibited the growth of M-CSF-dependent M-NFS-60 cells at micromolar concentrations (IC50 was 0.69±0.32μM) as reported. LK-A051, LK-B030 and LK-B023 also inhibited the growth of the cells (IC50 was 0.64±0.03μM, 0.63±0.02μM, and 1.41±0.20μM, respectively). Yet, in M-CSF-dependent high-content screening assay, only LK-B023 and LK-A051 effectivelly inhibit GFP-STAT1 nuclear translocation (IC50 was 1.62±0.04μM and 3.88±0.49nM).
     In summary, major conclusions of the present work are as follows:
     1) The cells (c-Fms/GFP-STAT1_U2OS) expressing human c-Fms and GFP-fused STAT1 protein were successfully sorted. GFP-STAT1 protein nuclear translocation mediated by rhM-CSF in c-Fms/GFP-STAT1_U2OS cells was observed by IN Cell Analyzer. M-CSF-dependent high-content screening assay for human c-Fms inhibitors were established, and reported c-Fms inhibitors all dose related inhibited GFP-STAT1 nuclear translocation mediated by rhM-CSF in the c-Fms/GFP-STAT1_U2OS cells. And the activity of kown c-Fms inhibitors in high-content screening assay was 3 to 10 times than other cell assay. Thus, indicating the established high-content screening assay was more sensitive and efficient.
     2) pCORON/neo-HcSrc-Tel-cfmskd-Myc kinase panel eukaryotic expression vector was transfected into GFP-STAT1_U2OS cells and EGFP-STAT3_BHK cells and successfully expressed mTEL-cFmskd. The GFP-STAT1 and EGFP-STAT3 fusion protein nuclear translocation induced by mTEL-cFmskd myristoylated fusion protein was observed 24 hours after transfection. GW2580 and Sutent obviously inhibited EGFP-STAT3 nuclear translocation at 0.3μM. But the nuclear translocation was resistant to Imatinib at the same concentration. The model could be used in screening of c-Fms kinase inhibitors, and the present assay also provides a general formula for establishing assays for other kinase inhibitors.
     3) 34 new compounds had been evaluated in vitro, and compound LK-A051 was demonstrated to be a more powerful human c-Fms inhibitor than the reported inhibitors.
引文
[1] Netterwald J. Kinomics: The New Star [J]. Drug Discovery & Development 2007. 10(7):22-25.
    [2] Donner L, Fedele LA, Garon CF, Anderson SJ, Sherr CJ. McDonough feline sarcoma virus: characterization of the molecularly cloned provirus and its feline oncogene (v-fms) [J]. J Virol. 1982. 41(2):489-500.
    [3] Groffen J, Heisterkamp N, Spurr N, Dana S, Wasmuth JJ, Stephenson JR. Chromosomal localization of the human c-fms oncogene [J]. Nucleic Acids Res. 1983. 11(18):6331-6339.
    [4] Hampe A, Shamoon BM, Gobet M, Sherr CJ, Galibert F. Nucleotide sequence and structural organization of the human FMS proto-oncogene [J]. Oncogene Res. 1989. 4(1):9-17.
    [5] Roberts WM, Shapiro LH, Ashmun RA, Look AT. Transcription of the human colony-stimulating factor-1 receptor gene is regulated by separate tissue-specific promoters [J]. Blood. 1992. 79(3):586-593.
    [6] Tkachuk M, Gisler RH. The promoter of macrophage colony-stimulating factor receptor is active in astrocytes [J]. Neurosci Lett. 1997. 225(2):121-125.
    [7] Coussens L, Van Beveren C, Smith D, Chen E, Mitchell RL, Isacke CM, Verma IM, Ullrich A. Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus [J]. Nature. 1986. 320(6059):277-280.
    [8] Kamps MP, Taylor SS, Sefton BM. Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites [J]. Nature. 1984. 310(5978):589-592.
    [9] Woolford J, Rothwell V, Rohrschneider L. Characterization of the human c-fms gene product and its expression in cells of the monocyte-macrophage lineage [J]. Mol Cell Biol. 1985. 5(12):3458-3466.
    [10] Till KJ, Lopez A, Slupsky J, Cawley JC. C-fms protein expression by B-cells, with particular reference to the hairy cells of hairy-cell leukaemia [J]. Br J Haematol. 1993. 83(2):223-231.
    [11] Pallud C, Lidereau R, Beuvon F, Tang R, Pouillart P, Scholl S. [Expression of CSF-1 (colony stimulating factor) and its receptor (c-fms) in breast tumors] [J]. Pathol Biol (Paris). 1993. 41(1):30.
    [12] Kauma SW, Aukerman SL, Eierman D, Turner T. Colony-stimulating factor-1 and c-fms expression in human endometrial tissues and placenta during the menstrual cycle and early pregnancy [J]. J Clin Endocrinol Metab. 1991. 73(4):746-751.
    [13] Pampfer S, Daiter E, Barad D, Pollard JW. Expression of the colony-stimulating factor-1 receptor (c-fms proto-oncogene product) in the human uterus and placenta [J]. Biol Reprod. 1992. 46(1):48-57.
    [14] Fulop V, Mok SC, Genest DR, Szigetvari I, Cseh I, Berkowitz RS. c-myc, c-erbB-2, c-fms and bcl-2 oncoproteins. Expression in normal placenta, partial and complete mole, and choriocarcinoma [J]. J Reprod Med. 1998. 43(2):101-110.
    [15] Yokoyama S, Niimi S, Tsuruoka M, Kijima T, Fukuda Y, Komuro N, Terashima Y. The expression of c-myc, c-fms, c-sis oncogenes in the trophoblast of normal pregnancy and trophoblastic disease [J]. Nippon Sanka Fujinka Gakkai Zasshi. 1988. 40(12):1867-1874.
    [16] Sherr CJ, Roussel MF, Rettenmier CW. Colony-stimulating factor-1 receptor(c-fms) [J]. J Cell Biochem. 1988. 38(3):179-187.
    [17] Sariban E, Mitchell T, Kufe D. Expression of the c-fms proto-oncogene during human monocytic differentiation [J]. Nature. 1985. 316(6023):64-66.
    [18] Metcalf D, Foster R. Bone marrow colony-stimulating activity of serum from mice with viral-induced leukemia [J]. J Natl Cancer Inst. 1967. 39(6):1235-1245.
    [19] Foster R, Jr., Metcalf D, Kirchmyer R. Induction of bone marrow colony-stimulating activity by a filterable agent in leukemic and normal mouse serum [J]. J Exp Med. 1968. 127(5):853-866.
    [20] Foster R, Jr., Metcalf D, Robinson WA, Bradley TR. Bone marrow colony stimulating activity in human sera. Results of two independent surveys in Buffalo and Melbourne [J]. Br J Haematol. 1968. 15(2):147-159.
    [21] Robinson WA, Stanley ER, Metcalf D. Stimulation of bone marrow colony growth in vitro by human urine [J]. Blood. 1969. 33(3):396-399.
    [22] Stanley ER, Hansen G, Woodcock J, Metcalf D. Colony stimulating factor and the regulation of granulopoiesis and macrophage production [J]. Federation proceedings. 1975. 34(13):2272-2278.
    [23] Stanley ER, Cifone M, Heard PM, Defendi V. Factors regulating macrophage production and growth: identity of colony-stimulating factor and macrophage growth factor [J]. J Exp Med. 1976. 143(3):631-647.
    [24] Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, Dan Q, Sanchez R, Jeffes EW, Wepsic HT, Myers MP, Koths K, Jadus MR. Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies [J]. Int Immunopharmacol. 2008. 8(10):1354-1376.
    [25] Sherr CJ. Colony-stimulating factor-1 receptor [J]. Blood. 1990. 75(1):1-12.
    [26] Gill K, Kirma N, Gunna VS, Santanam N, Parthasarathy S, Tekmal RR. Regulation of colony stimulating factor-1 (CSF-1) in endometrial cells: glucocorticoids and oxidative stress regulate the expression of CSF-1 and its receptor c-fms in endometrial cells [J]. Fertil Steril. 2001. 76(5):1005-1011.
    [27] Horiguchi J, Warren MK, Ralph P, Kufe D. Expression of the macrophage specific colony-stimulating factor (CSF-1) during human monocytic differentiation [J]. Biochem Biophys Res Commun. 1986. 141(3):924-930.
    [28] Rambaldi A, Young DC, Griffin JD. Expression of the M-CSF (CSF-1) gene by human monocytes [J]. Blood. 1987. 69(5):1409-1413.
    [29] Tobler A, Meier R, Seitz M, Dewald B, Baggiolini M, Fey MF. Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts [J]. Blood. 1992. 79(1):45-51.
    [30] Green M, Harrington MA. A comparison of macrophage colony-stimulating factor (M-CSF) gene expression in primary and immortalized endothelial cells [J]. J Hematother Stem Cell Res. 2000. 9(2):237-246.
    [31] Hallet MM, Praloran V, Vie H, Peyrat MA, Wong G, Witek-Giannotti J, Soulillou JP, Moreau JF. Macrophage colony-stimulating factor (CSF-1) gene expression in human T-lymphocyte clones [J]. Blood. 1991. 77(4):780-786.
    [32] Wang C, Kelleher CA, Cheng GY, Miyauchi J, Wong GG, Clark SC, Minden MD, McCulloch EA. Expression of the CSF-1 gene in the blast cells of acute myeloblastic leukemia: association with reduced growth capacity [J]. J Cell Physiol. 1988. 135(1):133-138.
    [33] Parwaresch MR, Kreipe H, Felgner J, Heidorn K, Jaquet K, Bodewadt-Radzun S, Radzun HJ. M-CSF and M-CSF-receptor gene expression in acute myelomonocytic leukemias [J]. Leuk Res. 1990. 14(1):27-37.
    [34] Horiguchi J, Sherman ML, Sampson-Johannes A, Weber BL, Kufe DW. CSF-1and C-FMS gene expression in human carcinoma cell lines [J]. Biochem Biophys Res Commun. 1988. 157(1):395-401.
    [35] Asschert JG, Vellenga E, Hollema H, van der Zee AG, de Vries EG. Expression of macrophage colony-stimulating factor (M-CSF), interleukin-6, (IL-6), interleukin-1 beta (IL-1 beta), interleukin-11 (IL-11) and tumour necrosis factor-alpha (TNF-alpha) in p53-characterised human ovarian carcinomas [J]. Eur J Cancer. 1997. 33(13):2246-2251.
    [36] Tang R, Beuvon F, Ojeda M, Mosseri V, Pouillart P, Scholl S. M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes? [J]. J Cell Biochem. 1992. 50(4):350-356.
    [37] Beuvon F, Palud C, Tang R, de la Rochefordiere A, Kheirallah S, Pouillart P, Scholl SM. [CSF-1 (colony stimulating factors 1) and CSF-1 receptor. General review and expression in invasive breast tumors] [J]. Bull Cancer. 1993. 80(1):29-35.
    [38] Hamilton JA. CSF-1 and cell cycle control in macrophages [J]. Mol Reprod Dev. 1997. 46(1):19-23.
    [39] Courtneidge SA, Dhand R, Pilat D, Twamley GM, Waterfield MD, Roussel MF. Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor [J]. Embo J. 1993. 12(3):943-950.
    [40] Bartram CR, Bohlke JV, Adolph S, Hameister H, Ganser A, Anger B, Heisterkamp N, Groffen J. Deletion of c-fms sequences in the 5q- syndrome [J]. Leukemia. 1987. 1(2):146-149.
    [41] Mufti GJ. Chromosomal deletions in the myelodysplastic syndrome [J]. Leukemia research. 1992. 16(1):35-41.
    [42] Dubreuil P, Torres H, Courcoul MA, Birg F, Mannoni P. c-fms expression is a molecular marker of human acute myeloid leukemias [J]. Blood. 1988. 72(3):1081-1085.
    [43] Gu TL, Mercher T, Tyner JW, Goss VL, Walters DK, Cornejo MG, Reeves C, Popova L, Lee K, Heinrich MC, Rush J, Daibata M, Miyoshi I, Gilliland DG, Druker BJ, Polakiewicz RD. A novel fusion of RBM6 to CSF1R in acute megakaryoblastic leukemia [J]. Blood. 2007. 110(1):323-333.
    [44] Tamura T, Brost H, Kabisch A, Lampert F, Hadwiger-Fangmeier A, Niemann H. Detection of fms-oncogene-specific tyrosine kinase activity in human leukemia cells [J]. J Cancer Res Clin Oncol. 1989. 115(3):235-241.
    [45] Li G, Song YH, Wu KF, Lin YM, Cao ZY, Zheng GG. Clone and expression of mutant M-CSF and its receptor from human leukemic cell line J6-1 [J]. Leuk Res. 2002. 26(4):377-382.
    [46] Inaba T, Yamada N, Gotoda T, Shimano H, Shimada M, Momomura K, Kadowaki T, Motoyoshi K, Tsukada T, Morisaki N, et al. Expression of M-CSF receptor encoded by c-fms on smooth muscle cells derived from arteriosclerotic lesion [J]. J Biol Chem. 1992. 267(8):5693-5699.
    [47] Rettenmier CW, Sacca R, Furman WL, Roussel MF, Holt JT, Nienhuis AW, Stanley ER, Sherr CJ. Expression of the human c-fms proto-oncogene product (colony-stimulating factor-1 receptor) on peripheral blood mononuclear cells and choriocarcinoma cell lines [J]. J Clin Invest. 1986. 77(6):1740-1746.
    [48] Rambaldi A, Wakamiya N, Vellenga E, Horiguchi J, Warren MK, Kufe D, Griffin JD. Expression of the macrophage colony-stimulating factor and c-fms genes in human acute myeloblastic leukemia cells [J]. J Clin Invest. 1988. 81(4):1030-1035.
    [49] Alleva DG, Askew D, Burger CJ, Elgert KD. Macrophage priming and activation during fibrosarcoma growth: expression of c-myb, c-myc, c-fos, and c-fms [J]. Immunol Invest. 1994. 23(6-7):457-472.
    [50] Yang DH, Huang W, Cui J, Shu JC, Tang SH, Zhang WJ, Liang JH. The relationship between point mutation and abnormal expression of c-fms oncogene in hepatocellular carcinoma [J]. Hepatobiliary Pancreat Dis Int. 2004. 3(1):86-89.
    [51] Kirma N, Hammes LS, Liu YG, Nair HB, Valente PT, Kumar S, Flowers LC, Tekmal RR. Elevated expression of the oncogene c-fms and its ligand, the macrophage colony-stimulating factor-1, in cervical cancer and the role of transforming growth factor-beta1 in inducing c-fms expression [J]. Cancer Res. 2007. 67(5):1918-1926.
    [52] Roussel MF. Regulation of cell cycle entry and G1 progression by CSF-1 [J]. Mol Reprod Dev. 1997. 46(1):11-18.
    [53] Sherr CJ, Ashmun RA, Downing JR, Ohtsuka M, Quan SG, Golde DW, Roussel MF. Inhibition of colony-stimulating factor-1 activity by monoclonal antibodies to the human CSF-1 receptor [J]. Blood. 1989. 73(7):1786-1793.
    [54] Cui J, Yang D. [Construction of c-fms antisense eukaryotic expressing vector bearing AFP enhancer and its clinical significance] [J]. Zhonghua Gan Zang Bing Za Zhi. 2001. 9(5):297-299.
    [55] Manthey CL, Johnson DL, Illig CR, Tuman RW, Zhou Z, Baker JF, Chaikin MA, Donatelli RR, Franks CF, Zeng L, Crysler C, Chen Y, Yurkow EJ, Boczon L, Meegalla SK, Wilson KJ, Wall MJ, Chen J, Ballentine SK, Ott H, Baumann C, Lawrence D, Tomczuk BE, Molloy CJ. JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia [J]. Mol Cancer Ther. 2009. 8(11):3151-3161.
    [56] Conway JG, McDonald B, Parham J, Keith B, Rusnak DW, Shaw E, Jansen M, Lin P, Payne A, Crosby RM, Johnson JH, Frick L, Lin MH, Depee S, Tadepalli S, Votta B, James I, Fuller K, Chambers TJ, Kull FC, Chamberlain SD, Hutchins JT. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580 [J]. Proc Natl Acad Sci U S A. 2005. 102(44):16078-16083.
    [57] Conway JG, Pink H, Bergquist ML, Han B, Depee S, Tadepalli S, Lin P, Crumrine RC, Binz J, Clark RL, Selph JL, Stimpson SA, Hutchins JT, Chamberlain SD, Brodie TA. Effects of the cFMS kinase inhibitor 5-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)pyrimidine-2,4-diamine (GW2580) in normal and arthritic rats [J]. J Pharmacol Exp Ther. 2008. 326(1):41-50.
    [58] Irvine KM, Andrews MR, Fernandez-Rojo MA, Schroder K, Burns CJ, Su S, Wilks AF, Parton RG, Hume DA, Sweet MJ. Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages [J]. J Leukoc Biol. 2009. 85(2):278-288.
    [59] Ohno H, Kubo K, Murooka H, Kobayashi Y, Nishitoba T, Shibuya M, Yoneda T, Isoe T. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model [J]. Mol Cancer Ther. 2006. 5(11):2634-2643.
    [60] Ohno H, Uemura Y, Murooka H, Takanashi H, Tokieda T, Ohzeki Y, Kubo K, Serizawa I. The orally-active and selective c-Fms tyrosine kinase inhibitor Ki20227 inhibits disease progression in a collagen-induced arthritis mouse model[J]. Eur J Immunol. 2008. 38(1):283-291.
    [61] Uemura Y, Ohno H, Ohzeki Y, Takanashi H, Murooka H, Kubo K, Serizawa I. The selective M-CSF receptor tyrosine kinase inhibitor Ki20227 suppresses experimental autoimmune encephalomyelitis [J]. J Neuroimmunol. 2008. 195(1-2):73-80.
    [62] Scott DA, Aquila BM, Bebernitz GA, Cook DJ, Dakin LA, Deegan TL, Hattersley MM, Ioannidis S, Lyne PD, Omer CA, Ye M, Zheng X. Pyridyl and thiazolyl bisamide CSF-1R inhibitors for the treatment of cancer [J]. Bioorg Med Chem Lett. 2008. 18(17):4794-4797.
    [63] Burns CJ, Harte MF, Bu X, Fantino E, Giarrusso M, Joffe M, Kurek M, Legge FS, Razzino P, Su S, Treutlein H, Wan SS, Zeng J, Wilks AF. Discovery of 2-(alpha-methylbenzylamino) pyrazines as potent Type II inhibitors of FMS [J]. Bioorg Med Chem Lett. 2009. 19(4):1206-1209.
    [64] Huang H, Hutta DA, Rinker JM, Hu H, Parsons WH, Schubert C, Desjarlais RL, Crysler CS, Chaikin MA, Donatelli RR, Chen Y, Cheng D, Zhou Z, Yurkow E, Manthey CL, Player MR. Pyrido[2,3-d]pyrimidin-5-ones: A Novel Class of Antiinflammatory Macrophage Colony-Stimulating Factor-1 Receptor Inhibitors (dagger) [J]. J Med Chem. 2009.
    [65] Rini BI. SU11248 and AG013736: current data and future trials in renal cell carcinoma [J]. Clin Genitourin Cancer. 2005. 4(3):175-180.
    [66] Houk BE, Bello CL, Kang D, Amantea M. A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients [J]. Clin Cancer Res. 2009. 15(7):2497-2506.
    [67] George S, Blay JY, Casali PG, Le Cesne A, Stephenson P, Deprimo SE, Harmon CS, Law CN, Morgan JA, Ray-Coquard I, Tassell V, Cohen DP, Demetri GD. Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure [J]. Eur J Cancer. 2009.
    [68] Park KS, Lee JL, Ahn H, Koh JM, Park I, Choi JS, Kim YR, Park TS, Ahn JH, Lee DH, Kim TW, Lee JS. Sunitinib, a novel therapy for anthracycline- and cisplatin-refractory malignant pheochromocytoma [J]. Jpn J Clin Oncol. 2009. 39(5):327-331.
    [69] Maur D, Panou C, Valachis A, Kamposioras K, Tsali L. Tyrosine kinase inhibitors in treatment of fibrous histiocytoma [J]. Exp Oncol. 2009. 31(1):60-61.
    [70] Medioni J, Choueiri TK, Zinzindohoue F, Cho D, Fournier L, Oudard S. Response of renal cell carcinoma pancreatic metastasis to sunitinib treatment: a retrospective analysis [J]. J Urol. 2009. 181(6):2470-2475; discussion 2475.
    [71] Guo J, Marcotte PA, McCall JO, Dai Y, Pease LJ, Michaelides MR, Davidsen SK, Glaser KB. Inhibition of phosphorylation of the colony-stimulating factor-1 receptor (c-Fms) tyrosine kinase in transfected cells by ABT-869 and other tyrosine kinase inhibitors [J]. Mol Cancer Ther. 2006. 5(4):1007-1013.
    [72] Murray LJ, Abrams TJ, Long KR, Ngai TJ, Olson LM, Hong W, Keast PK, Brassard JA, O'Farrell AM, Cherrington JM, Pryer NK. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model [J]. Clin Exp Metastasis. 2003. 20(8):757-766.
    [73] Dai Y, Hartandi K, Ji Z, Ahmed AA, Albert DH, Bauch JL, Bouska JJ, Bousquet PF, Cunha GA, Glaser KB, Harris CM, Hickman D, Guo J, Li J, Marcotte PA, Marsh KC, Moskey MD, Martin RL, Olson AM, Osterling DJ, Pease LJ, Soni NB, Stewart KD, Stoll VS, Tapang P, Reuter DR, Davidsen SK, Michaelides MR.Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N'-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor [J]. J Med Chem. 2007. 50(7):1584-1597.
    [74] Shankar DB, Li J, Tapang P, Owen McCall J, Pease LJ, Dai Y, Wei RQ, Albert DH, Bouska JJ, Osterling DJ, Guo J, Marcotte PA, Johnson EF, Soni N, Hartandi K, Michaelides MR, Davidsen SK, Priceman SJ, Chang JC, Rhodes K, Shah N, Moore TB, Sakamoto KM, Glaser KB. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia [J]. Blood. 2007. 109(8):3400-3408.
    [75] Hiraga T, Nakamura H. Imatinib mesylate suppresses bone metastases of breast cancer by inhibiting osteoclasts through the blockade of c-Fms signals [J]. Int J Cancer. 2009. 124(1):215-222.
    [76] Zhen-kai L, Jing A, Mei-yu G. Advances in Research of Protein-tyrosine Kinase Inhibitors as Anticancer Drug [J]. Progress in Modern Biomedicine. 2010. 10(16):3134-3137.
    [77] Tavare JM, Fletcher LM, Welsh GI. Using green fluorescent protein to study intracellular signalling [J]. J Endocrinol. 2001. 170(2):297-306.
    [78] Bickle M. The beautiful cell: high-content screening in drug discovery [J]. Anal Bioanal Chem. 2010. 398(1):219-226.
    [79] Zhang JH, Chung TD, Oldenburg KR. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays [J]. J Biomol Screen. 1999. 4(2):67-73.
    [80] Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, Hughes TP, Lyons AB. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib [J]. Blood. 2005. 105(8):3127-3132.
    [81] Chappell JC, Bautch VL. Vascular development: genetic mechanisms and links to vascular disease [J]. Curr Top Dev Biol. 2010. 90:43-72.
    [82] Matrougui K. Diabetes and microvascular pathophysiology: role of epidermal growth factor receptor tyrosine kinase [J]. Diabetes Metab Res Rev. 2010. 26(1):13-16.
    [83] D'Aura Swanson C, Paniagua RT, Lindstrom TM, Robinson WH. Tyrosine kinases as targets for the treatment of rheumatoid arthritis [J]. Nat Rev Rheumatol. 2009. 5(6):317-324.
    [84] Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation [J]. Cell. 1994. 77(2):307-316.
    [85] Szymczyna BR, Arrowsmith CH. DNA binding specificity studies of four ETS proteins support an indirect read-out mechanism of protein-DNA recognition [J]. J Biol Chem. 2000. 275(37):28363-28370.
    [86] Poirel H, Oury C, Carron C, Duprez E, Laabi Y, Tsapis A, Romana SP, Mauchauffe M, Le Coniat M, Berger R, Ghysdael J, Bernard OA. The TEL gene products: nuclear phosphoproteins with DNA binding properties [J]. Oncogene. 1997. 14(3):349-357.
    [87] Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK, Rowley JD, Witte ON, Gilliland DG. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia [J]. Mol Cell Biol. 1996. 16(8):4107-4116.
    [88] Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, Van Rompaey L, Baens M, Van den Berghe H, Marynen P. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result oft(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia [J]. Blood. 1997. 90(7):2535-2540.
    [89] Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma [J]. Nat Genet. 1998. 18(2):184-187.
    [90] Melnick JS, Janes J, Kim S, Chang JY, Sipes DG, Gunderson D, Jarnes L, Matzen JT, Garcia ME, Hood TL, Beigi R, Xia G, Harig RA, Asatryan H, Yan SF, Zhou Y, Gu XJ, Saadat A, Zhou V, King FJ, Shaw CM, Su AI, Downs R, Gray NS, Schultz PG, Warmuth M, Caldwell JS. An efficient rapid system for profiling the cellular activities of molecular libraries [J]. Proc Natl Acad Sci U S A. 2006. 103(9):3153-3158.
    [91] Leonard WJ, O'Shea JJ. Jaks and STATs: biological implications [J]. Annual review of immunology. 1998. 16:293-322.
    [92] Nakoinz I, Lee MT, Weaver JF, Ralph P. Differentiation of the IL-3-dependent NFS-60 cell line and adaption to growth in macrophage colony-stimulating factor [J]. J Immunol. 1990. 145(3):860-864.