基于肿瘤靶向治疗的碳纳米管基磁性复合载体的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地开展了碳纳米管(CNTs)基磁性复合粒子的制备、表面修饰及基础性应用等方面的研究工作。内容涉及纳米Fe3O4/CNTs、CoFe2O4、CNTs、NiFe2O4/CNTs磁性复合粒子的制备、纳米CoFe2O4/CNTs磁性复合粒子的氨基化功能修饰及基于磁靶向热疗和放疗应用的功能化磁性纳米复合粒子的制备及表征,为下一步碳纳米管基磁性复合粒子在肿瘤磁靶向治疗中的应用研究奠定了良好的基础。主要内容如下:
     首先,分别采用乙二醇溶剂热法及多元醇法制备了梅花状Fe3O4/CNTs磁性复合粒子、亲油性Fe3O4/CNTs磁性复合粒子及单分散性纳米Fe3O4/CNTs、CoFe2O4/CNTs、NiFe2O4/CNTs磁性复合粒子,并通过XRD、TEM、FTIR、XPS. VSM等分析手段对所合成的产物进行了表征。结果表明,采用乙二醇溶剂热法制备的梅花状Fe3O4/CNTs及亲油性Fe3O4/CNTs纳米磁性复合粒子,Fe304纳米粒子如梅花状或类球形被牢固地附着在CNTs表面,且粒径均匀,晶形完好,磁性能测试表明其饱和磁化强度分别达70.7和50.0 emu·g-1,均显示了良好的磁响应性及超顺磁性;采用多元醇法制备的纳米Me2Fe2O4/CNTs(Me=Fe、Co、Ni)磁性复合粒子,包覆层致密均匀,均呈现良好的单分散性、磁响应性及超顺磁性,可以根据实际需要,通过控制反应条件,得到不同包覆密度及磁性能的单分散性纳米Fe3O4/CNTs、CoFe2O4/CNTs、NiFe2O4/CNTs磁性复合粒子,磁性能测试表明在最佳包覆量时其饱和磁化强度分别为30.6、39.5及36.4emu·g-1。
     其次,对采用不同方法制备的碳纳米管基磁性复合粒子的结构、形貌及磁性能进行了比较和分析。通过对比,选择性能最优的纳米CoFe2O4/CNTs磁性复合粒子作为后续改性实验的载体材料,并采用溶剂-凝胶法以前驱体TEOS作为改性剂对纳米CoFe2O4/CNTs磁性复合粒子表面进行包覆改性,制备出了包覆层厚度均匀可控的具有较强磁响应性的一维纳米SiO2/CoFe2O4/CNTs磁性复合粒子。随后,以γ-氨丙基三甲氧基硅烷(APTES)为氨基化试剂对纳米SiO2/CoFe2O4/CNTs磁性复合粒子进行了进一步的功能化修饰,制备出了表面含有功能基团-NH2的复合载体,并采用XRD、FTIR、VSM等对改性后产物的晶型、结构、组成及磁性能进行了表征与分析。
     最后,开展了基于磁靶向热疗和放疗应用的基础性初步研究。就磁靶向热疗而言,利用酰胺化反应在氨基化纳米SiO2/CoFe2O4/CNTs磁性复合粒子表面接枝叶酸,利用叶酸受体在癌变组织中高度表达但在绝大多数正常组织中几乎不表达,而叶酸与其受体结合能力强的特点,制备了基于热疗应用的兼具磁靶向与特异性生物靶向的双重靶向药物载体:就磁靶向放疗而言,首先在氨基化纳米SiO2/CoFe2O4/CNTs磁性复合粒子表面固载组氨酸,然后在无水无氧的条件下,合成化合物[N(Et)4][Re(CO)3Br3],将其溶于水后,得到了标记前体化合物普通羰基铼fac-[Re(CO)3(H2O)3]+,最后利用组氨酸含有的咪唑基和普通三羰基铼发生配体反应,开展基于磁靶向放疗应用的普通羰基铼模拟标记实验。采用紫外分光光度计测试吸光度并计算出其模拟标记率达80.85%,标记后其饱和磁化强度值为14.7 emu·g-1,仍保持了较好的磁响应性能,为实现后续放射性核素188Re对固载组氨酸的磁性纳米复合粒子的成功标记提供了理论依据和实验基础。
The preparation, surface modification and basic application of carbon nanotubes (CNTs)-based magnetic composite particles were systematically studied in this paper. The research contained the preparation of magnetic nanocomposite particles such as Fe3O4/CNTs、CoFe2O4/CNTs and NiFe2O4/CNTs, the amino functionalization of nano-CoFe2O4/CNTs magnetic composite particles, the preparation and characterization of functional magnetic nanocomposite particles for magnetic targeting hyperthermia and radiotherapy. This work laid a good foundation for the application of CNTs-based magnetic composite particles in magnetic targeted therapy of cancer. The details were described as below:
     Firstly, the plum-shaped Fe3O4/CNTs, hydrophilic Fe3O4/CNTs and monodispersed Fe3O4/CNTs, CoFe2O4/CNTs, NiFe2O4/CNTs magnetic nanocomposite particles were separately prepared by glycol-solvothermal method and polyol method. The synthesized products were characterized by XRD, TEM, FTIR, XPS, VSM, and so on. The results showed that the plum-shaped Fe3O4/CNTs and lipophilic Fe3O4/CNTs nano-magnetic composite particles which were prepared by ethylene glycol Solvothermal, Fe3O4 nanoparticles were firmly attached on the surface of CNTs like plum-shaped or para-spherical. And the Fe3O4 nanoparticles prepared with uniform size and good crystalline. Magnetic property tests showed that the saturation magnetization reached 70.7 emug-1 and 50.0 emu·g-1, respectively, showing good magnetic responsiveness and superparamagnetism. The Me2Fe2O4/CNTs (Me=Fe、Co、Ni) magnetic nanocomposite particles prepared by polyol method, of which the coating was dense and uniform, had good monodispersibility, strong magnetic responsiveness and superparamagnetism. According to actual needs, monodispersed Fe3O4/CNTs, CoFe2O4/CNTs, NiFe2O4/CNTs magnetic nanocomposite particles with different coating density and magnetic properties were prepared by controlling the reaction conditions. Magnetic property tests showed that the saturation magnetization of them are 30.6,39.5 and 36.4 emu·g-1 at the optimum coating amount, respectively.
     Secondly, the structures, morphologies and magnetic responsive properties of CNTs-based magnetic nanocomposite particles prepared by different method have been analyzed and compared. By contrast, the result showed that the CoFe2O4/CNTs magnetic nanocomposite particles with the best properties were more fit as a follow-modified carrier material. The one-dimensional SiO2/CoFe2O4/CNTs magnetic nanocomposite particles with uniform and controllable coating layer of SiO2 were prepared by a sol-gel method using TEOS as a precursor modifier. Subsequently, the SiO2/CoFe2O4/CNTs magnetic nanocomposite particles were further functionalized by y-aminopropyl trimethoxysilane (APTES), and then the amino-modified magnetic nanocomposite particles were prepared. The structures, compositions and magnetic properties of modified composite particles were characterized and analyzed by XRD, FTIR, XPS, VSM, et al.
     Finally, the basic preliminary study based on magnetic targeted hyperthermia and radiotherapy was carried out. On the magnetic targeted hyperthermia, the folic acid was grafted on the surface of amino-modified SiO2/CoFe2O4/CNTs magnetic nanocomposite particles through amidation reaction. The use of folate receptor is highly expressed in cancerous tissue, but in most normal tissues almost no expression, while the dual targeted drug carrier with magnetic target and specifically biological target were prepared; on the magnetic targeted radiotherapy, first of all, the histidine were grafted on the surface of amino-modified SiO2/CoFe2O4/CNTs magnetic nanocomposite particles, then the compound was prepared under anhydrous oxygen-free conditions. When the [N(Et)4][Re(CO)3Br3] was dissolved in the water, the rhenium carbonyl compound precursor fac-[Re(CO)3(H2O)3]+were synthesized. At last, the rhenium carbonyl analog marking experiment based on magnetic targeted radiotherapy were carried out through coordinate reaction between the imidazole group of histidine and general three carbonyl rhenium. The analog marking rate of rhenium calculated by ultraviolet absorbance spectrophotometer was 80.85%, and the saturation magnetization value after marking is 14.7 emu·g-1. The result showed that it remained good magnetic property. The above elementary researches offer the theoretical basis and experimental foundation for the follow-up successful marking of radioactive nuclear 188Re on the magnetic nanocomposite particles which were immobilized by histidine.
引文
[1]徐辉碧,杨祥良.纳米医药[M].第一版.北京:清华大学出版社,2004
    [2]张阳德.纳米生物材料学[M].第一版.北京:化学工业出版社,2005
    [3]杨文胜,高明远,白玉白,等.纳米材料与生物技术[M].第一版.北京:化学工业出版社,2004.
    [4]李玉宝,顾宁,魏于全,等.纳米生物医药材料[M].第一版.北京:化学工业出版社,2004
    [5]陈汝福,陈积圣.纳米技术在肿瘤诊断与治疗中的应用[J].癌症,2004,23(12):1714~1716
    [6]Jordan A. Nanotechnology and consequences for surgical oncology [J]. Kongressbd Dtsch Ges Chir Kongr,2002,119:821~828
    [7]Soppimath K S, Aminabhavi T M, Kulkarni L, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. J. Control. Release,2001,70(1-2):1-20
    [8]Liibbe A S, Alexion C, Bergemann C. Clinical application of magnetic drug targeting [J]. J. Surg. Res.,2001,95(2):200~206
    [9]Gregoriadis G. Liposorne Technology [M]. BocaRaton:CRC Press,1984
    [10]Arruebo M, Fernandez-Pacheco R, Ibarra M R, et al. Magnetic nanoparticles for drug delivery. Nanotoday,2007,2(3):22~32
    [11]Lubbe A S, Bergemann C, Brock J, et al. Physiological aspects in magnetic drug-targeting. J. Magn. Magn. Mater.,1999,194:149~155
    [12]Brass P F, Beitz J, Chen G, et al. Approval summary:gemtu zumab ozogamicin in relapsed acute myeloid leukemia[J]. Clin. Cancer. Res.,2001,7(6): 1490~1496
    [13]Yoshida Y, Fukui S, Fujimoto S, et al. Exvivo investigation of magnetically targeted drug delivery system. J. Magn. Magn. Mater.,2007,310:2880~2882
    [14]Jain T K, Morales M A, Sahoo S K. Iron oxide nanoparticles for sustained delivery of anticancer agents [J]. Molecular Pharmaceutics,2005,2(3):194~205
    [15]Schutt W, Gruttner C, Hafeli U, et. al. Application of magnetic targeting in diagnosis and therapy-possibilities and limitations:A mini review [J]. Hybridoma, 1997,16:109~1177
    [16]Brodesky F M. Monodonal antibodies as magic bullets [J]. Pharm. Res.,1998,5; 1~19.
    [17]Schutt W, Gruttner C, Teller J, et al. Biocompatible magnetic polymer carries for in vivo radionuclide delivery [J]. Artificial. Organs.,1999,23(1):98~103
    [18]Kubo T, Sugita T, Shimose S. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters [J]. International Journal of Oncology,2001,18(1):121~125
    [19]Chana H T, Doa Y Y, Huang P L, et al. Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles [J]. J. Magn. Magn. Mater.,2006,304: e415~e417
    [20]Lee Y J, Jun K W, Park J Y, et al. A simple chemical route for the synthesis of γ-Fe2O3 nanoparticles dispersed in organic solvents via an iron-hydroxy oleate precursor [J]. Journal of Industrial and Engineering Chemistry,2008,14:38~44
    [21]Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) Nanoparticles [J]. J. Am. Chem. Soc.2004,126:273~279
    [22]Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization and application [J]. Angew.Chem. Int. Ed.2007,46: 1222~1244
    [23]Alexiou C, Schmid R J, Jurgons R, et al. Targeting cancer cells:magnetic nanoparticles as drug carriers [J]. Eur. Biophys. J.,2006,249:42~47
    [24]Tobias N. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system [J]. J. Magn. Magn. Mater.,2005,293:483~496
    [25]Dobson J. Magnetic Nanoparticles for Drug Delivery [J]. Drug development research,2006,67:55~60
    [26]Senyei A E, Widder K J. Drug targeting:magnetically responsive albumin microspheres-A review of the system to date [J]. Gynecologic Oncology,1980, 10(3):366~370
    [27]Lubbe A S, Bergemann C, Brock J, et al. Physiologicalaspects in magnetic drug targeting [J], J. Magn. Magn. Mater.,1999,194(1):149~155
    [28]Lubbe A S, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting[J]. J. Surg. Res.,2001,95(2):200~206
    [29]Alexiou C, Arnold W, Klein RJ, et al. Locoregional cancer treatment with magnetic drug targeting [J]. Cancer. Res.,2000,60(23):6641~6648
    [30]任非,陈建良,陈志良,等.MMC聚氰基丙烯酸正丁酯磁性纳米球对BEL-7402人肝癌细胞裸小鼠移植瘤的作用[J].第四军医大学学报,2005,16(26):1510~1512
    [31]Munnier E, Cohen-Jonathan S, Linassier C, et al. Novel method of doxorubicin-SPION reversible association for magnetic drug targeting [J]. International Journal of Pharmaceutics,2008,363:170~176
    [32]Devalapally H, Duan Z F, Seiden M V. et al. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer [J]. Int. J. Cancer.,2007,121: 1830~1838
    [33]Vlerken L E, Duan Z F, Little S R, et al. Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model molecular pharmaceutics [J]. Mol. Pharmaceutics,2008,5 (4):516~526
    [34]Widder K J, Senyer A E, Scarpelli D G, et al. Magnetic microspheres:a model system for site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med.,1978, 58:141~145
    [35]常津.具有靶向抗癌功能的纳米高分子材料-阿霉素免疫磁性毫微粒的体内磁靶向定位实验[J].中国生物医学工程学报,1996,15:354~358.
    [36]Babincova M, Altanerova V, Lampert M, et al. Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field [J]. Z. Naturforsch., 2000,55c:278~281
    [37]Goodwin S, Peterson C, Hoh C, et al. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy [J]. J. Magn. Magn. Mater.,1999,194:132~139
    [38]曹金全,汪勇先,于俊峰,等.磁性纳米微粒的188Re标记[J],同位素,2004,17(2):84~89
    [39]Hafeli U, Pauer G, Failing S, et al. Radiolabeling of magnetic particles with rhenium-188 for cancer therapy [J], J. Magn. Magn. Mater.,2001,225:73~78
    [40]Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer [J]. Lancet. Oncol.,2002,3:487~497
    [41]Langer R, Cleland J L, Hanes J. New advances in microsphere-based single-dose vaccines [J]. Adv. Drug Deliv. Rev.,1998,28:97~119
    [42]Hafeli U O. Magnetically modulated therapeutic systems [J]. International Journal of Pharmaceutics,2004,277:19~24
    [43]Gilchrist R K, Medal R, Shorey W D, et al. Selective inductive heating of lymph nodes [J]. Ann. Oncol.,1957,146:596~606
    [44]Jordan A, Scholz R, Wust P, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int. J. Hyperthermia.,1997,13(6):587~605
    [45]Yanase M, Shinkai M, Honda H, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes:in vitro study [J]. Jpn. J. Cancer Res.,1996, 87:1179~1183
    [46]Jordan A, Scholz R, Maoer-Hauff K, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma [J]. J. Neurooncol.,2006,78: 7~14
    [47]Wada S, Yue L, Tazawak K, et al. New local hypertherm ia using dextran magnetite complex (DM) for oral cavity experimental study in normal hamster tongue[J]. Oral. Dis.,2001,7(3):192~195
    [48]Wada S, Tazawak K, Furuta I, et al. Antitumor effect of new local hypertherm ia using dextran magnetite complex in hamster tongue carcinoma [J]. Oral. Dis., 2003,9(4):218~223
    [49]Guptaa A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26:3995~4021
    [50]Andresen T L, Jensen S S, Jorgensen K. Advanced strategies in liposomal cancer therapy:Problems and prospects of active and tumor specific drug release [J]. Pmgress in Lipid Research,2005,44:68~97
    [51]Takahashi I, Emi Y, Hasuda S, et al. Clinical application of hyperthermia combined with anticancer drugs for the treatment of solid tumors [J]. Surgery, 2002,131(15):S78~S84
    [52]Xu M, Myerson R J, Hunt C, et al. Transfection of human tumour cells with siRNA and the increase in radiation sensitivity and the reduction in heat-induced radiosensitization [J]. Int. J. Hyperthermia,2004,20(2):157~162
    [53]Xu M, Myerson R J, Straube W L, et al. Rediosensitization of heat resistant human tumour cells by 1 hour at 41.1 degrees C and its effect on DNA repair [J]. Int. J. Hyperthermia,2002,18(5):385~403
    [54]Zolzer F, Strefer C. G2-phase delays after irradiation and/or heat treatment as assessed by two-parameter flow cytometry [J]. Radiat. Res.,2001,155(1):50~56
    [55]Saga T, Sakahara H, Nakamoto Y, et al. Enhancement of the therapeutic outcome of radio immunotherapy by combination with whole body mild hyperthermia [J]. Eur. J. Cancer,2001,37(11):1429~1434
    [56]Sawaji Y, Sato T, Taakeuchi A, et al. Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour-derived vascular endothelial growth factor in vivo and in vitro [J]. Br. J. Cancer,2002,86(10): 1597~1603
    [57]Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J], Chem. Rev.,2008,108:2064~2110
    [58]Hijima S. Helical microtubes of graphitic carbon[J]. Nature,1991,354:56~58
    [59]Milne W I, Teo K B K, Amaratunga G A J, et al. Carbon nanotubes as field emission sources [J]. J. Mater. Chem.,2004,14(6):933~943
    [60]Service R F. Molecular electronics nanodevice make fresh strides toward reality [J]. Science,2003,302(5649):1310
    [61]Hafner J H, Cheung C L, Woolley A T, et al. Structural and functional imaging with carbon nanotue AFM probes [J]. Prog. Biophys. Mol. Biol.,2001,77(1): 73~110
    [62]Wang S G, Zhang Q, Wang R L, et al. A novel multiwalled carbon nanotube based biosensor for glucose detection [J]. Biochem. Biophys. Res. Commun., 2003,311(3):572~576
    [63]成会明.碳纳米管[M],第一版,北京:化学工业出版社,2002
    [64]Henning T H, Salama F, Carbon in the universe [J], Science,1998,282: 2204~2210
    [65]Odom T W, Huang J L, Kim P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes [J], Nature,1998,391:62~64
    [66]Bockrath M, Cobden D H, McEuen P L, et al. Single-electron transport in ropes of carbon nanotubes [J]. Science,1997,275:1922~1925
    [67]Chico L, Benedict L X, Louie S G, et al. Erratum:quantum conductance of carbon nanotubes with defects [J]. Phys. Rev. B.,1996,54:2600~2606
    [68]Saito R, Fujita M, Dresselhaus G, Dresselhaus M S, Electronic structure and growth mechanism of carbon tubules [J]. Materials Science and Engieering,1993, B19:186~191
    [69]Overney G, Zhong W, Tomanek D Z, Structural rigidity and low frequency vibrational modes of long carbon tubules [J]. Phys. D,1993,27:93~96
    [70]Yakabson B I, Brabec C J, Bernholc J. Nanomechanics of carbon nanotubes: instabilities beyond linear response [J]. Phys. Rev Lett,1996,76:2511~2514
    [71]Treacy M M J, Ebbesen T W, Gibson J M, Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature,1996,381:678-680
    [72]Yakabson B. I., Smalley R. E., Fullerene nanotubes:C1,000,000 and beyond [J]. Am. Sci.,1997,324~337
    [73]Lu J P. Elastic properties of carbon nanotubes and nanoropes [J]. Phys. Rev. Lett., 1997,79(7):1297~1300
    [74]Ruoff R. S., Lorents D. C., Mechanical and thermal properties of carbon nanotubes [J]. Carbon,1995,33:925~930
    [75]Garcya-Gutierrez M C, Nogales A, et al. Templating of crystallization and shear-induced self-assembly of single-wall [J]. Polymer,2006,47:341~345
    [76]Manedov A A, Kotov N A, Prato M, et al. Molecular design of strong single-wall carbon naonotube/poly-electrolyte multilayer composites [J]. Nature Mater.,2002,1:190~194
    [77]Kam N W S, OConnell M, Wisdom J A, Dai H. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (Ⅳ) anticancer drug design [J]. Proc. Natl. Acad. Sci. USA 2005,102:11600~11605
    [78]Kam N W S, Jessop T C, Wender P A, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing [J]. J. Am. Chem. Soc.,2004,126,6850~6851
    [79]Kam N W, Liu S Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA:an investigation of the uptake mechanism and pathway [J]. Angew. Chem. Int. Ed.,2006,45:577~581
    [80]Klumpp C, Kostarelos K, Prato M, Bianco A. Study on carbon nanotube induced acute pulmonary oxidative damage in mice [J]. Biochimica. Et. Biophysica. Acta. 2006,1758,404~412
    [81]Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes [J]. Chem. Commun.,2004,4: 16~17
    [82]Shi Kam N W, Jessop T C, Wender P A, et al. Nanotube molecular transporters intemalization of carbon nanotube-protein conjugates into mammalian cells [J]. J. Am. Chem. Soc.,2004,126:6850~6851
    [83]Shvedova A A, Castronova V, Kisin E R, et al. Exposure to carbon nanotube material:assessment of nanotube cytotoxiclty using human keratinocyte cells [J]. J. Toxieal. Environ. Health. A,2003,66(20):1909~1926
    [84]Kong J, Franklin N, Zhou C, et al. Nanotube molecular wires as chemical sensors [J]. Science,2000,287:622~625
    [85]Wong S S, Ernesto J, Woolley A T, et al. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology [J]. Nature,1998,394:52~55
    [86]Wooley A T, Guillemette C, Cheung C L, et al. Direct haplotyping of Kilobase-size DNA using carbon nanotube probes [J]. Nat. Biotechnol.,2000, 18(7):760~763
    [87]Seifua D, Hijjib Y, Hirschc G, et al. Chemical method of filling carbon nanotubes with magnetic material [J]. J. Magn. Magn. Mater.,2008,320: 312~315
    [88]Leonhardt A, Hampel S, Miiller C, et al. Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes [J], Chem. Vap. Deposition 2006,12, 380~387
    [89]Cong H T, Cheng H M, Direct synthesis of carbon nanotubes decorated with sizecontrollable Fe nanoparticles encapsulated by graphitic layers [J], Carbon, 2008,46:1417~1423
    [90]Dong Z P, Ma K, He J G, et al. Decorating carbon nanotubes with Cobalt nanoparticles [J], Mater. Lett.,62:4059~4061
    [91]Deng Z F, Yenilmez E, Leu J, et al. Metal-coated carbon nanotube tips for magnetic force microscopy [J], Applied Physics Letters,2004,85:6263~6265
    [92]Ma X C, Cai Y H, Lun N, et al. Microstructural features of Co-filled carbon nanotubes [J]. Mater. Lett.,2003,57:2879~2884
    [93]Tyagia P K, Singha M K, Misraa A, et al. Preparation of Ni-filled carbon nanotubes for key potential applications in nanotechnology [J], Thin Solid Films,2004,469-470:127~130
    [94]Wu H Q, Cao Y J, Yuan P S, et al. Controlled synthesis, structure and magnetic properties of Fe1-xNix alloy nanoparticles attached on carbon nanotubes [J]. Chemical Physics Letters,2005,406:148~153
    [95]Kozhuharova R, Ritschel M, Elefant D, et al. (FexCo1-x)-alloy filled vertically aligned carbon nanotubes grown by thermal chemical vapor deposition [J]. J. Magn. Magn. Mater.,2005,; 290:250~254
    [96]Elias A L, Rodriguez-Manzo J A, McCartney M R, et al. Single-crystal FeCo nanowires inside carbon nanotubes [J]. Nano Lett.,2005,5:467~469
    [97]Cao H Q, Zhu M F, Li Y G. Decoration of carbon nanotubes with iron oxide [J], Journal of Solid State Chemistry,2006,179:1208~1213
    [98]Qu S, Huang F, Chen G, et al. Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme [J], Electrochemistry Communications,2007,9:2812~2816
    [99]Fan X B, Tan F Y, Zhang G L, et al. A novel strategy to fabricate γ-Fe2O3-MWCNTs hybrids with selectively ferromagnetic or superparamagnetic properties [J]. Materials Science and Engineering A,2007,454-455:37~42
    [100]Korneva G, Ye H H, Gogotsi Y, et al. Carbon nanotubes loaded with magnetic particles [J]. Nano Letters,2005,5(5):879~884
    [101]Kong L, Lu X F, Zhang W J, Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes [J]. Journal of Solid State Chemistry,2008,181:628~636
    [102]Wang S, Bao H M, Yang P Y, et al. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion [J]. Analytica. Chimica. Acta,2008,612:182~189
    [103]Keller N, Pham-Huu C, Shiga T, et al. Mild synthesis of CoFe204 nanowires using carbon nanotube template:a high-coercivity material at room temperature [J]. J. Magn. Magn. Mater.2004,272:1642~1644
    [104]Pham-Huu C, Keller N, Estournes C, et al. Synthesis of CoFe2O4 nano wire in carbon nanotubes. A new use of the confinement effect [J]. Chem. Commun, 2002,17:1882~1883
    [105]Ersen O, Begin S, HoulleM, et al. Microstructural Investigation of Magnetic CoFe2O4 Nanowires inside Carbon Nanotubes by Electron Tomography [J]. Nano Lett,2008,8(4):10133~10140
    [106]Liu Y Q, Gao L, A study of the electrical properties of carbon nanotube-NiFe2O4 composites:Effect of the surface treatment of the carbon nanotubes [J]. Carbon,2005,43:47~52
    [107]Zhang K, Yuen M M F, Gao J H, et al. Fabrication of high thermal conductivity carbon nanotube arrays by self assembled Fe3O4 particles [J]. Annals of the CIRP,2007,56:245~248
    [108]Che R C, Zhi C Y, Liang C Y, et al. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite [J]. Applied Physics Letters, 2006,88:033105(1-3)
    [109]Liu Q F, Ren W C, Chen Z G, et al. Direct synthesis of carbon nanotubes decorated with size controllable Fe nanoparticles encapsulated by graphitic layers [J]. Carbon,2008,46:1417~1423
    [110]Choi J H, Nguyen F T, Barone P W, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/Iron oxide nanoparticle complexes [J]. Nano Lett.,2007,7(4):861~867
    [111]Cao H Q, Zhu M F, Li Y G, Decoration of carbon nanotubes with iron oxide [J]. Journal of Solid State Chemistry,2006,179:1208~1213
    [112]Fan X B, Tan F Y, Zhang G L, et al. A novel strategy to fabricate γ-Fe2O3-MWCNTs hybrids with selectively ferromagnetic or superparamagnetic properties [J]. Materials Science and Engineering A,2007,454-455:37~42
    [113]Wu H Q, Cao Y J, Yuan P S,et al. Controlled synthesis, structure and magnetic properties of Fe1-xNix alloy nanoparticles attached on carbon nanotubes [J]. Chemical Physics Letters,2005,406:148~153
    [114]陈小华,颜永红,张高明,等.Ni-Co合金包覆碳纳米管的研究[J].微细加工技术,1999,(2):17~22
    [115]陈慧敏,阂娜,李四年,等.碳纳米管表面化学镀Ni的研究[J].湖北工学院学报,2004,19(1):153~155
    [116]李四年,宋守志,余天庆,等.碳纳米管对镁基材料的强韧化作用[J].湖北工学院学报,2003,15(6):13~16
    [117]Georgakilas V, Tzitzios V, Gournis D, et al. Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives [J]. Chem. Mater.,2005,17(7):1613~1617
    [118]Correa-Duarte M A, Grzelczak M, Salgueirino-Maceira V, et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles [J]. J. Phys. Chem. B,2005,109(41):19060~19063
    [119]Byrappa K, Adschiri T, Hydrothermal technology for nanotechnology [J]. Progress in Crystal Growth and Characterization of Materials,2007,53: 117~166
    [120]Cao H Q, Zhu M F, Li Y G, et al. A highly coercive carbon nanotube coated with Ni0.5Zn0.5Fe2O4 nanocrystals synthesized by chemical precipitation-hydrothermal process [J]. Journal of Solid State Chemistry,2007,180: 3218~3223
    [121]Jia B P, Gao L, Fabrication of "tadpole"-like magnetite/multiwalled carbon nanotube heterojunctions and their self-assembly under external magnetic field [J]. J. Phys. Chem. B,2007,111:5337~5343
    [122]Wan J Q, Cai W, Feng J T, et al. In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols[J]. J. Mater. Chem.,2007,17:1188~1192
    [123]Garnett M C. Gene-delivery systems using cationic polymers [J]. Drug Carrier Systems,2004,16:147~207
    [124]Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery [J]. Acc. Chem. Res.,2008,41:60~68.
    [125]Pastorin G, Wu W, Wieckowski S, et al. Double functionalisation of carbon nanotubes for muhimodal drug delivery [J]. Chem. Commun.,2006,11: 1182~1184
    [125]Bianco A, Kostarelos K, Partidos C D, et al. Biomedical application of functionalised carbon nanotubes [J]. Chem. Commun.,2005,7(5):571~577
    [127]Kam N W, Liu Z, Dai H. Functionalization of carbon nanotube via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing [J]. J. Am. Chem. Soc.,2005,127(36):12492~12493.
    [128]Wu W, Wieckowski S, Pastorin G, et al. Targeted delivery of amphotericin B to cells using functionalized carbon nanotube [J]. Angew. Chem. Lnt. Ed. Engl., 2005,4 (39):6358~6362
    [129]Liu Z, Sun X M, Nakayama-Ratchford N, et al. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery [J]. ACS Nano., 2007,1:50~56
    [130]Storm G, Tenkate M T, Working P K, et al. Doxorubicin entrapped in sterically stabilized liposomes:Effects on bacterial blood clearance capacity of the mononuclear phagocyte system [J]. Clin. Cancer Res.,1998,4 (1):111~115
    [131]Seymour L W, Ulbrich K, Steyger P S, et al. Tumor tropism and anticancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma [J]. Br. J. Cancer 1994,70(4): 636~641
    [132]Huang S K, Mayhew E, Gilani S, et al. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon-carcinoma [J]. Cancer Res.,1992,52(24):6774~6781
    [133]Olek M, Busgen T, Hilgendorff M, et al. Quantum dot modified multiwall carbon nanotubes [J]. J. Phys. Chem. B,2006,110:12901~12904
    [134]Bottini M, Cerignoli F, Dawson I M, et al. Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes [J].Biomacromolecules,2006,7,2259~2263
    [135]Haremza M J, Hahn A M, Krauss D T. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes [J]. Nano Lett.,2002,2:1253~1258
    [136]Moncha I, Meye A, Leonhardt A, et al. Ferromagnetic filled carbon nanotubes and nanoparticles:synthesis and lipid-mediated delivery into human tumor cells [J]. J. Magn. Magn. Mater.,2005,290-291:276~278
    [137]Miyawaki J, Yudasaka M, Imai H, et al. In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles [J]. Adv. Mater.,2006,18:1010~1014
    [138]Gao C, Li W W, Morimoto H, et al. Magnetic carbon nanotubes:synthesis by electrostatic self-assembly approach and application in biomanipulations [J]. J. Phys. Chem. B,2006,110:7213~7220
    [139]Leonhardt A, Hampel S, Muller C, et al. Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes[J]. Chem. Vap. Deposition,2006,12: 380~387
    [140]Miyawaki J, Yudasaka M, Imai H, et al. In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles [J]. Adv. Mater.,2006,18:1010~1014
    [141]Che R C, Zhi C Y, Liang C Y, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J]. Adv. Mater.,2004,16:401~405
    [142]Nigrovski B, Zavyalova U, Scholz P,et al. Microwave-assisted catalytic oxidative dehydrogenation of ethylbenzene on iron oxide loaded carbon nanotubes [J]. Carbon,2008,46:1678~1686
    [143]Monch I, Meye A, Leonhardt A, et al. Ferromagnetic filled carbon nanotubes and nanoparticles and lipid-mediated delivery into human tumor cells [J]. J. Magn. Magn. Mater.,2005,290-291:276~278
    [144]Liu Z, Wang J, Xie D H, et al. Polyaniline-coated Fe3O4 nanoparticles-carbon-nanotube composite and its applicatioin in electochemical biosensing [J]. small,2008,4:462~466
    [145]Hong R Y, Li J H, Li H z, et al. Synthesis of Fe3O4 nanoparticles without inset gas protection used as precursors [J], J. Magn. Magn. Mater.,2008,320(9): 1605~1614
    [146]Caruso F, Spasova M, Susha A, et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach [J], Chem. Mater., 2001,13:109~116
    [147]Lin B L, Shen X D, Cui S. Application of nano-sized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties [J], Biomed. Mater.,2007,2:132~134
    [148]Zhang D E, Zhang X J, Ni X M, et al. Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route [J], Crystal Growth and Design,2007, 7(10):2117~2119
    [149]Zhu Y F, Zhao W R, Chen H R, et al. A simple one-pot self-assemblely route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetite property [J], Phys. Chem. C,2007,111(14):5281~5285
    [150]Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles [J]. Chem. Mater.,1996,8: 2209~2211.
    [151]Kirk K J. Nanomagnets for sensors and data storage [J]. Contemp. Phys.,2000, 41:61~78
    [152]Ulrich I T, Nadja C B, Michael G K, et al. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents [J]. Nano letters, 2007,7:2422~2427
    [153]Visalakski G, Venkateswaran G, Kulshreshtha S K, et al. Compositional characteristics of magnetite synthesized from aqueous solutions at high temperatures up to 523K [J]. Mater. Res. Bull.,1993,28:829-836
    [154]Chen D, Ni S, Chen Z H. Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill [J]. China Particuology,2007,5:357~358
    [155]Daou T J, Pourroy G, B6on C S, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles [J]. Chem. Mater.,2006,18(18):4399~4440
    [156]Zou G F, Xiong K, Jiang C L, et al. Fe3O4 nanocrystals with novel fractal [J]. Phys. Chem. B,2005,109(39):18356~18360
    [157]Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed.,2005,44:2782~2785
    [158]周振华.直接甲醇燃料电池:高分散高负载铂基电催化剂的制备规律研究[D].中国科学院大连化学物理研究所,2003
    [159]张李晶.碳纳米管的纯化及其复合粒子研究[D],南京:南京理工大学, 2006
    [160]刘建勋.新型碳纳米管基复合燃烧催化剂的制备及其在固体推进剂中的应用[D].南京:南京理工大学,2008
    [161]Kok C C, Ghee L C, Chee K P, et al. Large-scale synthesis of Fe3O4 nanosheets at low temperature [J]. J. Phys. Chem. C,2007,111(26):9136~9141
    [162]Missana T, Maffiotte C, Garcia-Gutierrez M. Surface reactions kinetics between nanocrystalline magnetite and uranyl [J]. J. Colloid. Interf. Sci.,2003,261: 154~160
    [163]乔俊娟,张晓宏,吴世康.聚苯乙烯磺酸钠与阳离子表面活性剂的相互作用和纳米聚集体的生成[J].高分子学报,2006,(1):76~81
    [164]Jia B P, Gao L, Fabrication of "tadpole"-like magnetite/multiwalled carbon nanotube heterojunctions and their self-assembly under external magnetic field, J. Phys. Chem. B,2007,111:5337~5343
    [165]Correa-Duarte M A, Sobal N, Liz-marzan L M, et al. Linear assemblies of silica-coated gold nanoparticales using carbon nanotubes as templates [J]. Adv. Mater.,2004,16:2179~2184
    [166]Yu R Q, Chen L W, Liu Q P, et al. Platinum deposition on carbon nanotubes via chemical modification [J]. Chem. Mater.,1998,10:718~722.
    [167]Liu Y Q, Gao L. A study of the electrical properties of carbon nanotube-NiFe2O4 composites:Effect of the surface treatment of the carbon nanotubes Carbon 2005,43:47~52
    [168]Wen X T, Yang J X, He B, et al. Preparation of monodisperse magnetite nanoparticles under mild conditions [J]. Appl. Phys.,2008,8:535~541
    [169]Wang J, Zhang K, Peng Z M, et al. Magnetic properties improvement in Fe3O4 nanoparticles [J]. Journal of Crystal Growth,2004, (266):500~504
    [170]王煦漫,张彩宁,古宏晨.包覆油酸的Fe304纳米粒子的制备[J].精细化工,2007,24(8):733~736
    [171]任欢鱼,庄虹,刘勇健.Fe304纳米颗粒的表面改性[J].化学研究,2003,14(1):11~13
    [172]Rana S, Gallo A, Srivastava R S, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery:functionalization, conjugation and drug release kinetics [J]. Acta Biometal.,2007,3:233~242
    [173]Rajan G S, Stromeyer S L, Mauritz K A, et al. Superparamagnetic nanocomposites based on poly(styrene-b-ethylene/butylene-b-styrene)/cobalt ferrite nanopositions [J]. J. Magn. Magn. Mater.,2006,299:211~218
    [174]Kim D K, Zhang Y, Kehr J, et al. Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain [J]. J. Magn. Magn. Mater.,2001,225:256~261
    [175]S. Roath. Biological and biomedical aspects of magnetic fluid technology [J]. J. Magn. Magn. Mater.,1993,122:329~334
    [176]Lee S W, Takemura S, Shim I B, et al. Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. J. Magn. Magn. Mater.,2007, 310:2868~2870
    [177]Feczko T, Muskotal A, Gal L, et al. Synthesis of Ni-Zn ferrite nanoparticles in radiofrequency thermal plasma reactor and their use for purification of histidine-tagged proteins [J]. Journal of Nanoparticle Research,2008,10: 227~232
    [178]Fievet F, Lagier J, Blin B. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles (part) [J]. Solid State Ionics,1989,32/33:198~205
    [179]Shen G Z, Chen D, Tang K B. General synthesis of metal sulfides nanocrystallines via a simple polyol route [J]. Journal of Solid State Chemistry, 2003,173:232~235
    [180]Orel Z C, Matijevic E, Goia D V. Conversion of uniform colloidal Cu2O spheres to copper in polyols [J]. Materials Research Society,2003, 18(4):1017~1022
    [181]Zhou Y, Jin S M, Qiu G Z, et al. Preparation of ultrafine nickel powder by polyol method and its oxidation product [J]. Materials Science and Engineering B,2005,122B:222~225
    [182]Shen G Z, Chen D, Tang K B. Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorod sthrough a rapid polyol process [J]. Chemical Physics Leters,2003,370:334~337
    [183]Viau G, Toneguzzo P, Pierrard A, et al. Heterogeneous nucleation and growth of metal nanoparticles in polyols [J]. Scripta Mater.,2001,44:2263~2267
    [184]Sun J H, Jing Y, Jia Y Z. Mechanism of preparing ultrafine copper powder by polyol process [J]. Materials Leters,2005,59:3933~3936
    [185]Meng Y D, Chen D R, Jiao X L. Synthesis and characterization of CoFe2O4 hollow spheres [J]. Eur. J. Inorg. Chem.2008,2008:4019~4023
    [186]张孝彬,甘波,杨杭生,等.纳米碳管的分叉结构[J].物理学报,1999,48(8):913~916
    [187]田晓霞,裴志斌,屈绍波,等.溶胶-凝胶法制备CoFe2O4/TiO2纳米复合薄膜及其磁性能研究[J].空军工程大学学报,2008,9(3):87~90
    [188]Lee D K, Kang Y S. Electron microscopic studies of Langmuir-Blodgett films of CoFe2O4 nanocrystallites [J]. Colloid. Surface A,2005,257-258:237-241
    [189]Cai W, Wan J Q, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols[J]. Journal of Colloid and Interface Science,2007,305: 366~370
    [190]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999:50~64
    [191]Yu R Q, Chen L W, Liu Q P, et al. Platinum deposition on carbon nanotubes via chemical modification [J]. Chem. Mater.,1998,10:718~722.
    [192]Liu Y Q, Gao L. A study of the electrical properties of carbon nanotube-NiFe2O4 composites:Effect of the surface treatment of the carbon nanotubes [J]. Carbon,2005,43:47~52.
    [193]Hamley I W. Nanotechnology with Soft Materials [J]. Angew. Chem. Int. Ed., 2003, (15):1692~1712
    [194]Willis A L, Turro N J, OBrien S. Spectroscopic characterization of the surface of Iron oxide nanocrystals [J]. Chem. Mater.,2005,17:5970~5971
    [195]Jun Y, Choi J, Cheon J S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging [J]. J. Am. Chem. Soc.,2005, (127):5732~5733
    [196]Song H T, Cheon J S. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling [J]. J. Am. Chem. Soc.,2005,127:9992~9993
    [197]Xu C J, Xu K M, Gu H W, et al. Nitrilotriaeetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins [J]. J. Am. Chem. Soc.,2004,126(11):3392~3393.
    [198]You C C, Chompoosor A, Rotello V M. The biomacromolecule-nanopartiele interface [J]. Nano Today,2007(2):34~43
    [199]Yu C J, Zhao J J, Guo Y Z, et al. A novel method to prepare water-dispersible magnetic nanoparticles and their biomedical applications:magnetic capture probe and specific cellular uptake [J]. Journal of Biomedical Materials Research Part A,2008,87:2364~2372
    [200]Laurent S, Forge D. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chem. Rev.,2008,108:2064~2110,
    [201]Nasongkl N, Bey E, Gao J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivcry systems [J]. Nano Letters, 2006,6:2427~2430
    [202]Stoeva S I, Huo F, Lee J S, et al. Three-layer composite magnetic nanopartiele probes for DNA [J]. J. Am. Chem. Soc.,2005,127:15362~15363
    [203]Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the uhrasensitive detection of proteins [J]. Science,2003,301:1884~1886.
    [204]Sen T, Sebastianelli A, Bruce I J. Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic Bioseparations [J]. J. Am. Chem. Soc., 2006,128:7130~7131
    [205]Hu S H, Liu D M, Tung W L, et al. Oxide/silica cure shell nanocarriers for highly sensitive, magnetically controlled drug release and uhrahigh cancer cell uptake efficiency [J]. Adv. Funct. Mater.,2008,18:2946~2955
    [206]Yi D K, Lee S S, Papaefthymiou G C, et al. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites [J]. Chem. Mater.,2006,18(3): 614~619
    [207]Mine E, Yamada A, Kobayashi Y, et al. Direct coating of gold nanoparticles with silica by a seeded polymerization technique [J]. Journal of Colloid and Interface Science,2003,264(2):385~390
    [208]Liu Q, Xu Z, Finch J A, et al. A novel two-step silica-coating process for engineering magnetic nanoeompesites [J]. Chem. Mater.,1998,10:3936~3940
    [209]Lu Y, Yin Y, Xia Y, et al. Modifying the surface properties of superpara-magnetic Iron oxide nanoparticles through a Sel-Gel approach [J]. Nano Lett., 2002,2(3):183~186
    [210]Deng Y H, Wang C C, Fu S K, et al. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach [J]. Colloids and Surfaces A,2005, 262:87~93
    [211]Lu Z Y, Wang G, Yang W S, et al. Effects of the concentration of tetramethyl-ammonium hydroxide peptizer on the synthesis of Fe3O4SiO2 core/shell nanoparticles [J], Colloids and Surfaces A,2006,278:140~143
    [212]Lou M Y, Wang D P, Huang W H, et al. Efect of silane-coupling agents on synthesis and character of core-shell SiO2 magnetic microspheres [J]. Journal of Magnetism and Magnetic Materials,2006,305:83~90
    [213]Im S H, Herricks T, Xia Y, et al. Synthesis and characterization of monndisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles [J]. Chemical Physics Letters,2005,401:19~23
    [214]Salgueirino-Maceira V, Correa-Duarte M A, Farle M, et al. Bifunctional gold-coated magnetic silica spheres [J]. Chem. Mater.,2006,18:2701~2706
    [215]Stober W, Fink A. Controlled growth of monedisperse silica spheres in the micron size range [J]. Colloid and Intersurface Science,1968,26:62~69
    [216]潘群雄,潘晖华,陈建华.溶胶-凝胶技术与纳米材料的制备[J].材料导报,2001.12:40~42
    [217]刘冰,王德平,黄文,等.溶胶-凝胶法制备核壳SiO2/Fe3O4复合纳米粒子的研究[J],无机材料学报,28(3):33~38
    [218]Nagao D, Satoh T, Konno M. A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate [J]. Journal of Colloid and Interrace Science,2000,232(1):102~110
    [219]Nagao D, Kon Y, Satoh T, et al. Electrostatic interactions in formation of particles from tetraethyl orthosilicate [J]. Journal of Chemical Engineering of Japan,2000,33(3):468~473
    [220]Blaaderen A V, Geest J V, Vrij A. Monodisperse colloidal sillica spheres from tetraalkoxysilanes-particles formation and growth-mechanism [J]. Journal Colloid and Interface Science,1992,154(2):481~501
    [221]Turner M R, Duguet LC. Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a range of mode mixities [J]. Acta Metallurgica et Materialia,1995.43(9):3453~3458
    [222]Chandy T, Sharma C P. Structural studies on bovine bioprosthetic tissues and their in vivo calcification:prevention via drug delivery [J]. Biomaterials, 2000,21(7):699~712
    [223]Rosi N L, Mirkin C A. Nanostructures in Biodiagnostics [J]. Chem. Rev.,2005, 105:1547~1562
    [224]Cestari A R, Vieim E F S, Nascimento A J P, et al. New factorial designs to evalume chemisorption of divalent metals on aminated silicas [J]. Journal of Colloid and Interface Science,2001,241:45~51
    [225]程凡亮,陈伶利,王卫.氨基仳二氧化硅颗粒固定木瓜蛋白酶研究[J].生物工程学报,2004,20(2):287~290
    [226]Bai Z W, Zhou Y K. A novel enzyme support derived from aminated silica gel and polysuccinimide:preparation and application for the immobilization of porcine pancreatic lipase [J]. Reactive & Functional Polymem,2004,59:93~98
    [227]黄桂华,殷霞,章伟光,等.功能化介孔磁性载体的制备及对铜离子的吸附[J].华南师范大学学报(自然科学版),2006,(4):82~87
    [228]Stephens F O. Systemic or regional chemotherapy:does it matter and should surgeons be involved [J]. J. R. Coll. Surg.,1998,43:80~81
    [229]Jain R K. Invited review:haenmodynamic and transport barriers to the treatment of solid tumors [J]. Int. J. Radiat. Biol,1991,60:85~100
    [230]Davis S S. Biomedical application of nanotechnology-implication for drug targeting and gene therapy [J]. Tibtech,1997,15:217~224
    [231]Moghimi S M, Rajabi-Siahboomi A R. Recent advances in cellular, sub-cellular and molecular [J]. Adv. Drug Deliv. Rev.,2000,41:129~133
    [232]Pettit D K, Gombotz W R. The development of site-specific drug-delivery systems for protein and peptide biopharmaceuticals [J]. Tibtech,1998,16: 334~339
    [233]Gneveckow U, Jordan A, Seholz R, et al. Description andcharacterization of the novel hyperthermia-and thermoablation-system MFHR 300F for clinical magnetic fluid hyperthermia [J]. Med. Phys.,2004,31(6):1444~1451
    [234]Gruttner C, Teller J, Schutt W, et al. Preparation and characterization of magnetic nanospheres for in vivo application [C]. In:Hafeli UO, Schiitt W, Teller J, Zborowsky M, eds. Scientific and clinical applications of magnetic carriers. New York/London, Plenum,1997:53~68
    [235]Antony A C. Folate receptors:reflections on a personal odyssey and a perspective on unfolding truth [J]. Adv. Drug Deliv. Rev.,2004,56:1059~1066
    [236]雷英杰,欧阳杰,史小凤.叶酸受体介导的肿瘤细胞靶向分子显像剂的研究进展[J].化学研究与应用,20(5):511~517
    [237]Antony A C. Folate receptors [J]. Ann. Rev. Nutr.,1996,16:501~521
    [238]Weitman S D, Lark R H, Coney L R et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissue [J]. Cancer Res.,1992,52: 3396~3401
    [239]Leamon C P, Low P S. Receptor-mediated drug delivery [J]. Drug Delivery: Principles and Applications,2005,167~187
    [240]Melani C, Figini M, Nicosia D et al. Targeting of interleukin 2 to human ovarian carcinoma by fusion with a single-chain Fv of antifolate receptor antibody [J]. Cancer Res.,1998,58:4146~4154
    [241]Sonvico F, Mornet S, Vasseur S, et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators:synthesis, physicochemical characterization, and in vitro experiments [J]. Bioconj. Chem.,2005,16:1181~1188
    [242]Zhang Y, Kohler N, Zhang M, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake [J]. Biomaterials,2002, 23:1553~1561
    [243]Sonvico F, Mornet S, Vasseur S, et al. Folate-conjugated Iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators:synthesis, physicochemical characterization, and in vitro experiments [J]. Bioconjugate Chem.2005,16:1181~1188
    [244]Zhang Y, Kohler N, Zhang M Q, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake [J]. Biomaterials,2002, 23:1553~1561
    [245]刘洪玲,李军.肿瘤靶向PEI包覆磁性纳米凝胶的光化学制备及表征[J].高等化学学报,2008,29(8):1703~1706
    [245]Yin D Z, Hu W Q, Cai X M, et al. A study on preparation of 188W-188Re generator [J]. Nuclear Technology,1998,21(1):51~55
    [245]Knapp F F J, Beets A L, Guhlke S. Availability of Rhenium~188 From the Alumina-based Tungsten-188/Rhenium-188 Generator for Preparation of Rhenium-188-labeled Radiopharmaceuticals for Cancer Treatment. Anticancer Research [J].1997,17:1783~1796
    [248]Salmain M, Gunn M, Gorfti A, et al. Labeling of proteins by organometallic complexes of Rhenium:synthesis and biological activity of the conjugates [J]. Bioconjugate Chemistry,1993,1003:425~433
    [249]Alberto R, Schibli R, Waibel R, et al. Basic aqueous chemistry of [M(OH2)3(CO)3] (M=Re, Tc) directed towards radiopharmaceutical application [J]. Coordination Chemistry Reviews,1999,190-192:901~919
    [250]Metzler-Nolte N. Labeling of biomolecules for medicinal applications: oioorganometallic chemistry at its best [J]. Angewandte Chemie International Edition,2001,40:1040~1043
    [251]Alberto R, Schibli R, Egli A. Method for the Preparation of Facial Metal Tricarbonyl Compounds and Their Use in the Labeling of Biologically Active Substrates[P]. UnitedStates Patent,6344178B1.2002~03~19
    [253]Alberto R, Egli A, Abrum U, et al. Synthesis and Reactivity of [NEt4]2[ReBr3(CO)3] Formation and Structural Characterization of the Clusters [NEt,] [Re3(μ3~OH)(μ~OH)3(CO)3] and [NEt4][Re2(μ~OH)3(CO)6] by Alkaline Titration[J]. Dalton Transactions,1994:2815~2820
    [253]夏姣云,汪勇先,于俊峰,等.三羰基铼[188Re]的放射化学合成.核化学与放射化学.2005,27(2):87~90