祁连山北缘冲断带构造特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲断带是目前国内外研究的一个热点。近十几年来,国内外地质学家对中国中西部的冲断带做了大量的工作,并取得了许多成果。但这些工作主要集中在库车等少数几个地区,祁连山北缘冲断带的研究还刚刚起步。本论文在结合大量野外地质调查、地球物理、钻井等资料的基础上,运用最新的构造分析理论,对祁连山北缘冲断带的平面展布、剖面结构及冲断作用对河西走廊盆地群的改造和控制等方面进行了详细研究。
     通过野外地质调查和地震资料的解释,将祁连山北缘冲断带在平面上划分为原地冲断系统、近距离冲断系统和远距离冲断系统,其中原地冲断系统又可划分为原地隐伏冲断系统和原地显露冲断系统。冲断带剖面结构自西向东划分为三段:酒泉盆地南缘、榆木山南缘—民乐盆地南缘西段、民乐盆地南缘东段—武威盆地南缘。酒泉盆地南缘的冲断带已被证实是个水平位移量较大的、沿着至上三个滑脱面由南而北产生收缩变形的薄皮冲断系统,冲断体系向NE方向的冲断推覆的位移距离超过50Km。榆木山南缘—民乐盆地南缘西段,冲断带自上而下只发育了两层,属于冲断带前锋的原地显露冲断系统其性质可能属于山前基底卷入式构造。民乐盆地南缘东段—武威盆地南缘发育宽度较大的原地显露冲断系统,由三叠系、石炭—二叠系、奥陶系、寒武系和岩体组成的冲断片相互叠置,形成冲断带宽广的“显露式”前锋。
     通过对生长地层的识别,并结合磁性地层学资料,认为冲断带的变形时间开始于约9Ma(中新世胳塘沟组末),冲断带表现为“前展式”变形。
     建立了7条横穿祁连山北缘冲断带的构造剖面,并进行了合理的平衡恢复。恢复以后了解到,祁连山北缘冲断带由于中新世以来的冲断作用南北向空间上缩短了40~60km,构造缩短率也在40~60%之间,自西向东缩短率呈现减小趋势。
     在综合地球物理、地层和地质资料的基础上,重点剖析了酒泉盆地南缘冲断带的结构。指出了冲断活动导致了酒泉盆地南缘冲断带三个不同层次的冲断变形体的产生。浅层为露头区古生界(包括志留系和奥陶系)组成的外来推覆体;中层由古生界和中生界构成,是一套完整的冲断片,目前识别出的构造窗基本上属于这一套冲断层序。深层冲断为一套双重冲断构造,这是冲断体系中规模最大,向北波及最远,对于冲断系统起着主要控制作用的冲断层序。因此,酒泉盆地南缘冲断体系是一个多层次的复杂的冲断系统。
     研究了祁连山北缘冲断带对河西走廊盆地群的改造和控制作用。认为中新世以来的冲断使早白垩世相互连通的昌马盆地、酒泉盆地、民乐盆地和武威盆地最终分割开来,同时酒泉盆地内部的石大凹陷和花海凹陷、营尔凹陷和金塔凹陷也由于上新世以来的冲断而最终隔裂开来的。强烈的冲断推覆还使冲断带之下掩盖了大量的中新生界,其中酒泉盆地南缘掩盖了15km左右的中生界,民乐和武威盆地南缘冲断带之下不存在中生界。中新世以来的强烈冲断,控制了其北侧前陆盆地的形成。受冲断规模、冲断带结构的影响,河西走廊自西往东前陆盆地越来越不发育,沉积厚度减薄,变形减弱。
Thrust belts' research is a hot aspect for geologists at present. Lots of effort has been carried out in the central and western China and some achievements have been gotten for the late decades. This effort concentrated in some areas as Kuqa. However, few work concentrated in the thrust belt in north margin of Qilian mountains. The author studied the planar distributing, section structures and the reconstructing and controlling of thrusting to Hexi Corridor basins group, based on the compound of field surveys, geophysical and drilling data.
     Based on the field surveys and geological interpretations of seismic data, thrust belt in north margin of Qilian mountains had been divided into three types as insitu, short- distance and long-distance thrusting systems. Insitu thrusting systems can be divided into two types as blind and exposed. Thrusting belt can be divided into three segments from west to east in the sections as south margin of Jiuquan Basin, south margin of Yumushan-west segment of south margin of Minle Basin, east segment of south margin of Minle Basin-south margin of Wuwei Basin. Thrust belt of south margin of Jiuquan Basin has been confirmed to be a thin-skinned thrusting system with large horizontal displacement and contracted deformation along three detachment levels at least from south to north. Displacement of the thrusting to NE reached more than 50km. In the south margin of Yumushan-west segment of south margin of Minle Basin, thrust belt just developed two levels from upper to lower, which belonged to exposed insitu thrusting system of thrusting front with properties of thick-skinned structures ahead the mountains. In the east segment of south margin of Minle Basin-south margin of Wuwei Basin, wide exposed insitu thrusting system developed, composed by thrusting sections of Triassic, Carboniferous- Permian, Ordovician, Cambrian and rock mass superposing each other. These formed exposed front of thrust belt.
     Based on the identification of growth strata, combined with the magnetostratigraphic data, the author deemed that the deformation of the thrust belts began at about 9Ma (Getanggou Formation, Miocene) and appeared to be break-forward.
     Seven sections has been built and balanced crossing the thrust belt of north margin of Qilian mountains. Through the balanced sections, the shortening reached to 40-60km and fraction shorting to 40-60% in S-N direction. Fraction shorting decreased from west to east.
     Compounded with the geophysical, stratigraphical and geological data, the author stressed on the analysis of the thrust belt in south margin of Jiuquan Basin. It was risen that the thrusting caused three levels of thrust deformable bodies in the south margin of Jiuquan Basin. The upper were the exposed Paleozoic allochthonous nappes (including Silurian and Ordovician). The middle were the intact Paleozoic and Mesozoic thrust fragments. Recognised tectonic windows mostly belonged to the thrust level so far. The lower were duplexes in deep level. These structures controlled the thrust systems, with the largest scale and most displacement to the north. It could be summarized that thrust systems in south margin of Jiuquan Basin were complicated and with several thrust levels.
     Controlling of thrust belt of north margin of Qilian mountains to Hexi Corridor basins group had also be studied here. It was deemed that Changma Basin, Jiuquan Basin, Minle Basin and Wuwei Basin divided each other caused by the thrusting from Miocene. These basins were connected in early Cretaceous. Shida Depression and Huahai Depression, Yinger Depression and Jinta Depression in Jiuquan Basin divided each other for the thrusting from Pliocene. Because of the thrusting, most of Mesozoic and Cenozoic strata were covered beneath the thrust belts, as about 15km Mesozoic were covered beneath south margin of Jiuquan Basin. But no Mesozoic existed beneath the south margin of Minle Basin and Wuwei Basin. Intense thrusting from Miocene controlled the formation of north foreland basins. Influenced by the scale and structures of thrust belts, from west to east, foreland basins did not develop gradually, sediments decreased and deformation weakened.
引文
1.陈兵,赵振才,祝意青.祁连山—海原断裂带跨断层形变近期异常特征研究及机理初探.内陆地震,1998,12(3):222-227
    2.陈发景,汪新文,张光亚,等.中国中新生代前陆盆地的构造特征与地球动力学[J].地球科学,1996,21(4):366-372
    3.陈杰,卢演俦,丁国瑜.祁连山西段及酒西盆地地区第三纪构造运动的阶段划分[J].第四纪研究,1995,15(3):263-271
    4.程晓敢,郑德文,杨树锋,等.酒泉盆地晚白垩世—古新世构造特征研究[J].石油与天然气地质,2006(待刊)
    5.方小敏,赵志军,李吉均,等.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J].中国科学(D辑),2004,34(2):97-106
    6.方世虎,郭召杰,张志诚,等.中新生代天山及其两侧盆地性质与演化[J].北京大学学报(自然科学版),2004,40(6):886-897
    7.樊计昌,李松林,张先康等.海原断裂在地壳深处的几何形态及其动力学意义[J].地震学报,2004,26(增刊):42-49
    8.冯益民.北祁连造山带西段的外来移置体[J].地质论评,1998,44(4):365-371
    9.傅开道,高军平,方小敏等.祁连山区中西段沉积物粒径和高原隆升关系模型[J].中国科学(D辑),2001,33(增刊):253-258
    10.甘肃省地质矿产局.甘肃省区域地质志.北京:地质出版社,1989
    11.高锐,成湘洲,丁谦.格尔木—额济纳旗地学断面地球动力学模型初探[J].地球物理学报,1995,38(增刊):3-14
    12.葛肖虹,段吉业,李才,等.阿尔金断裂与西北大地构造格局的新认识[A].肖庆辉,等.地球科学进展[C].北京:中国地质大学出版社,1992:39
    13.国家地震局地质研究所,国家地震局兰州地震研究所.祁连山—河西走廊活动断裂系[M].北京:地震出版社,1993
    14.国家地震局《阿尔金活动断裂带》课题组.阿尔金活动断裂带[M].北京:地震出版社,1992
    15.郭召杰,张志成,王建君.阿尔金北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义[J].科学通报,1998,43(18):1981-1984
    16.何登发,贾承造.冲断构造与油气聚集[J].石油勘探与开发,2005,32(2):55-62
    17.何登发,尹成,杜社宽,等.前陆冲断带构造分段特征—以准噶尔盆地西北缘断裂构造带为例[J].地学前缘,2004,11(3):91-101
    18.何光玉,陈汉林,肖安成,等.酒泉侏罗纪含煤盆地性质、原型及资源潜力[J].煤 炭学报,2004,29(31:313-317
    19.何文贵,刘百篪,袁道阳,等.冷龙岭活动断裂的滑动速率研究[J].西北地震学报,2000,22(1):90-97
    20.候康明,袁道阳.武威—天祝—庄浪河NNW向断裂分段及变形特征[J].地壳形变与地震,1999,19(3):55-63
    21.黄华芳,郑国东,方国庆,等.酒西盆地南缘推覆构造及其含油领域[J].石油与天然气地质,1993,14(3):181-190
    22.贾承造.中国中西部前陆冲断带构造特征与天然气富集规律[J].石油勘探与开发,2005,32(4):9-15
    23.贾承造,何登发,雷振宇,等.前陆冲断带油气勘探[M].北京:石油工业出版社,2000
    24.李奋其,王成善,朱利东,等.区域挤压体制下盆.山耦合关系探讨—以河西走廊和北祁连山为例[J].沉积与特提斯地质,2002,22(4):17-25
    25.李明杰,谢结来,潘良云.祁连山北缘冲断带西段构造特征[J].地学前缘,2005,12(4):438-444
    26.李相博,郭彦如,王新民,等.酒泉盆地南缘推覆构造特征及油气勘探方向[J].新疆石油地质,2002,23(4):299-301
    27.李有利,杨景春.河西走廊平原区全新世河流阶地对气候变化的响应[J].地理科学,1997,17(3):248-252
    28.刘和甫.前陆盆地类型及褶皱—冲断层样式[J].地学前缘,1995,2(3):59-68
    29.刘和甫,梁慧社,蔡立国,等.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报,1994,68(2):101-118
    30.刘永江,葛肖虹,叶慧文,等.晚中生代以来阿尔金断裂的走滑模式[J].地球学报,2001,22(1):23-28
    31.陆洁民,郭召杰,赵泽辉,等.新生代酒西盆地沉积特征及其与祁连山隆升关系的研究[J].高校地质学报,2004,10(1):50-61
    32.罗志立.龙门山造山带岩石圈演化的动力学模式.成都地质学院学报,1991,18(1):1-7
    33.罗志立,宋鸿彪,赵锡奎.C-俯冲带及对中国中西部造山带形成的作用[J].石油勘探与开发,1995,22(2):1-7
    34.潘宏勋,葛肖虹,刘俊来.对祁连山北缘榆木山隆起的质疑[J].长春科技大学学报,2000,30(1):9-13
    35.宋春晖,方小敏,李吉均,等.青藏高原北缘酒西盆地13Ma以来沉积演化与构造隆升[J].中国科学(D辑),2001,21(增刊):155-162
    36.宋春晖,孙淑荣,方小敏,等.酒西盆地晚新生代沉积物重矿物分析与高原北部隆升[J].沉积学报,2002,20(4):552-559
    37.孙肇才,叶德燎.前陆类盆地的风格和共性--以中国中西部中、新生代陆内前陆盆地为例[A].周玉琦.朱夏油气地质理论理论研讨文集[C].北京:地质出版社,2001.150-174
    38.万景林,王瑜,李齐,等.阿尔金山北段晚新生代山体抬升的裂变径迹证据[J].矿物岩石地球化学通报,2001,20(4):222-224
    39.王崇孝,马国福,周在华.酒泉盆地中、新生代构造演化及沉积充填特征[J].石油勘探与开发,2005,32(1):33-36
    40.王多杰,徐山卫.民乐盆地的新构造与地震[J].甘肃地质,1990,(11):24-25
    41.王洪潜.酒泉盆地构造特征及找油方向[J].石油勘探与开发,1993,20(增刊):15-19
    42.王平在,何登发,雷振宇,等.中国中西部前陆冲断带构造特征[J].石油学报,2002,23(3):11-17
    43.王胜利,卢华复,贾东,等.甘肃昌马盆地构造特征与成因[J].高校地质学报,2001,7(1):13-20
    44.魏国齐,贾承造,施央申,等.塔里木新生代复合再生前陆盆地构造特征与油气[J].地质学报,2000,74(2):123-133
    45.肖安成.塔里木盆地西南缘西昆仑前陆逆冲—褶皱带主滑脱面深度[J].江汉石油学院学报,1996,18(1):19-23
    46.肖安成,贾承造,杨树锋,等.中国南天山西部冲断褶皱系前缘区的运动学特征[J].沉积学报,2000,18(3):439-444
    47.肖安成,李启明.中国西北含油气盆地前陆冲断带的构造特征[J].江汉石油学院学报 1997,19(3):1-7,14
    48.肖文华,魏军.祁连山北缘逆掩推覆带构造及成藏特征[J].新疆石油地质,2003,24(6):533-535
    49.许志琴,徐惠芬,张建新,等.1994.北部连走廊南山加里东俯冲杂岩增生地体及其动力学[J].地质学报,68(1):1-15
    50.玉门油田石油地质志编写组.中国石油地质志,卷十三,玉门油田[M].北京:石油工业出版社,1989
    51.袁道阳,刘百篪,吕太乙,等.北祁连山东段活动断裂带古地震特征[J].华南地震,1997,17(2):24-31
    52.张波,张进江,杨武玲,等.我国中西部前陆盆地归属及其含油气性评述[J].高校地质学报,2005,11(1):126-136
    53.张光亚,薛良清.中国中西部前陆盆地油气分布与勘探方向[J].石油勘探与开发,2002,29(1):1-5
    54.张宏伟,张敬东,潘良云.酒东金佛寺逆掩推覆带构造特征与勘探前景分析[J].石油地球物理勘探,2005,40(11):74-77
    55.赵贤正,夏义平,潘良云,等.酒泉盆地南缘山前冲断带构造特征与油气勘探方向 [J].石油地球物理勘探,2004,39(2):222-227
    56.周进高,赵宗举,等.合肥盆地构造演化及含油气性分析[J].地质学报,1999,73(1):15-24
    57. Bartlett W L,Friedman M,Logan J M. Experimental folding and faulting of rocks under confining pressure [J]. Tectonophysics, 1981, 79: 255-277
    58. Butler R W H. The terminology in thrust zones[J]. Journal of Structural Geology, 1982, 4: 239-245
    59. Celal Sengon, Barka. Evolution of escape-related strike-slip system: Implication for disruption of collisional orogens[A]. 29th International geological Congress, Abstracts, V. 1992, 1: 232
    60. Couzens B. A. and Wiltschko D. V., The control of mechanical stratigraphy on the formation of triangle zones. Bulletin of Canadian Petroleun Geology, 1996, 44: 165-179
    61. Dahlstrom, C. D. A.. Balanced cross sections[J]. Canadian Journal of Earth Sciences, 1969, 6: 743-757
    62. Decelles Peter G, Giles Katherine A. Foreland basin systems[J]. Basin Res,1996,(8): 105-123
    63. Suppe J. 1983. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 283: 684-721
    64. Dickinson W R. Plate tectonics and sedimentation. In: Dickinson W R ed. Plate Tectonics and Sedimentation[J]. Spec. Publ. Soc. Econ. Plaoont. Miner, Tulsa, 1974, 22, 1-27
    65. Dickinson W R. Basingeodynamics[J]. BasinResearch,1993,(5): 195-196
    66. Graham S, Hendrix M, Wang Z, et al. Collisional successor basins of western China: Impact of tectonic inheritance on sand composition[J]. Geological Society of America Bulletin, 1993, 105(3): 323-344
    67. Hendrix M, Graham S, Carroll A, et al. Sedimentary record and climatic implication of recurrent deformation in the Tianshan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China[J]. Geological Society of America Bulletin, 1992, 104(1): 53-79
    68. Jamison W R. Geometric analyses of fold development in overthrust terranes[J]. Journal of Structural Geology, 1987, 9: 207-219
    69. Jones P B. Oil and gas beneath east-dipping underthrust faults in the Alberta foothills, Canada[J]. In: Powers, R B ,ed., Geologic studies of the Cordilleran thrust belt, 1
    70. Lu HuaFu, David G H, Jia Dong, et al. Rejuvenation of the Kuqa foreland basin, northern flank of the Tarim Basin, Northwest China[J]. International Geology Review, 1994. 36: 1151-1158
    71. Metivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins,China[J]. Tectonics, 1998, 17(6): 823-842
    72. Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effect of a continental collision [J]. Science, 1975, 189:419-426
    73. Morley C K. A classification of thrust fronts[J]. AAPG Bull, 1986, 70(1): 12-25
    74. Price,R A,and E W MOuntjoy. Geologic structure of the Canadian Rocky Mountains between Bow and Athabasca Rivers-a progress report[A], in J. O. Wheeler, ed. , Structrue of the Southern Canadian Corillera[C]: Geological Association of Cananda Special Paper 6, 1971, 7-26
    75. Shaw J, Hook S C, Suppe J. Structural trend analysis by axial surface mapping[J]. AAPG, 1996, 78(5): 700-721
    76. Shaw J, Suppe J. Active faulting and growth folding in the eastern Santa Barba Channel, California: Geol SocAmer Bull, 1994, 106:607-626
    77. Suppe J, Chou G T, Hook S C. Rates of folding and faulting determined from growth strata[A]. In: McKlay K R, ed. Thrust Tectonics[C]. London: Chapman Hall Publisher, 1992: 105-121
    78. Suppe J, Connors C D, Zhang Y. Shear fault-bend folding[A]. Thrust tectonics and hydrocarbon systems[C]. AAPG Memoir 82, 2003:1-21
    79. Suppe J, Medwedeff D. Geometry and kinematics of fault propagation folding [J]. Eelogae Geologicae Helvetiae, 1990, 83:409-454
    80. Tapponnier P, Mattauer M, Proust F, et al. Mesozoic philistines,suture and large-scale movement in Afghanistan[J]. Earth and Plantary Science Letters, 1981, 52:355-371
    81. Wang Erchie. Displacement and timing along the northern strand of the Altyn Tagh fault zone,Northern Tibet[J]. Earth and Planetary Science Letters, 1997, 150(1-2): 55-64
    82. Yue Yongjun, Liou Juhn G. Two-stage evolution model for the Altyn Tagh Fault, China[J]. Geology(Boulder), 1999,27(3): 227-230