TRIB3参与内质网应激诱导的胰岛β细胞凋亡机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高糖、高脂和细胞因子等刺激所导致的内质网应激,在2型糖尿病的胰岛素抵抗和胰岛p细胞功能衰竭中发挥了重要作用。胰岛p细胞对内质网应激极为敏感,由内质网应激导致的p细胞凋亡是2型糖尿病发病的重要环节。研究内质网应激诱导胰岛p细胞凋亡的分子机制对阐明2型糖尿病的发病机制以及糖尿病的防治都具有极其重要的意义。
     Tribble同源蛋白3(tribbles homolog3, TRIB3)是近年发现的一种重要的应激相关蛋白,可被多种刺激因素诱导,具有广泛的生物学功能。TRIB3在胰岛素靶组织中的上调表达,参与了胰岛素抵抗的发生及2型糖尿病的进展。内质网应激反应可通过转录激活因子4(Activating transcription factor4, ATF4)-C/EBP同源蛋白(C/EBP homology protein, CHOP)诱导TRIB3表达,但TRIB3在内质网应激诱导的胰岛β细胞凋亡中的作用及机制尚不清楚。
     目的:
     通过检测糖尿病动物模型胰岛组织,以及内质网应激条件下胰岛p细胞系(INS.1)中TRIB3和CHOP的表达情况,分析TRIB3在糖尿病胰岛β细胞功能衰竭中的作用;并通过上调或敲降TRIB3,研究其对内质网应激诱导的INS.1细胞凋亡的影响,阐明TRIB3在糖尿病胰岛β细胞功能衰竭中的作用及机制。
     方法:
     为明确TRIB3是否参与糖尿病状态下胰岛的内质网应激反应,采用免疫蛋白印迹(western blots)和实时荧光定量多聚酶链反应(real-time PCR)方法,分别检测发生糖尿病的GK大鼠胰岛和db/db小鼠胰腺中TRIB3和CHOP的表达水平;并利用毒胡萝卜素(Thapsigargin, Tg)于腹腔给予db/m小鼠在体内诱导胰岛p细胞内质网应激和细胞凋亡,检测p细胞caspase-3/7活性,western blots检测β细胞TRIB3和CHOP表达水平。
     为分析TRIB3在内质网应激诱导胰岛β细胞凋亡中的作用,利用Tet-on系统构建可诱导表达TRIB3的大鼠胰岛β细胞系(TRIB3细胞系),采用real-time PCR、 western blots和细胞免疫荧光等方法检验所构建的p细胞Trib3基因的可诱导性。然后利用Tg或衣霉素(Tunicamycin, Tm)诱导内质网应激反应,采用DNA ladder和脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(TUNEL)方法观察Tg或Tm诱导的INS-1细胞凋亡;在我们构建的可诱导表达TRIB3的β细胞系中,分析TRIB3过表达或敲降(RNA干扰)后对Tg、Tm诱导p细胞凋亡的影响。进一步,为分析TRIB3在体内对内质网应激诱导胰岛p细胞凋亡的影响,将TRIB3细胞系移植到经链脲霉素(streptozotocin,STZ)造模的糖尿病小鼠肾包膜下,分别于腹腔单独给予Dox诱导TRIB3过表达,或单独给予Tg诱导内质网应激反应,或两者联合应用,尾静脉监测动物空腹血糖水平和ELISA检测胰岛素分泌水平,并应用免疫组化染色检测移植瘤细胞TRIB3的表达和TUNEL染色检测移植瘤细胞的凋亡
     为研究TRIB3介导内质网应激诱导胰岛β细胞凋亡的机制,首先在体外对TRIB3细胞系给予Dox诱导TRIB3表达,另给予Tg诱导内质网应激。然后采用western blots检测核转录因子(NF-KB)的活性,real-time PCR检测诱导型一氧化氮合成酶(inducible nitric oxide synthase,iNOS)的表达,以及Griess法检测一氧化氮(nitric oxide, NO)的生成。并利用吡咯烷二硫代氨基甲酸盐(pyrrolidine dithiocarbamate, PDTC)来抑制NF-κB的活性,通过TUNEL染色检测PDTC的干预对Dox单独应用或Dox与Tg联合应用对β细胞凋亡的影响。
     最后进行体内实验来验证TRIB3的作用机制:免疫组化染色分别检测GK大鼠和db/db小鼠糖尿病发病前后胰岛p细胞NF-KB活性的改变,为体内研究提供实验依据。将TRIB3细胞系移植至STZ造模小鼠肾包膜下,在单独应用Dox或Dox与Tg联合应用的基础上,给予PDTC预处理2h进行干预,检测动物空腹血糖水平和胰岛素分泌水平。免疫组化染色观察PDTC干预对移植瘤细胞NF-κB活性的影响。TUNEL染色检测移植瘤细胞凋亡的情况。
     结果:
     TRIB3与糖尿病动物胰岛的内质网应激反应有关:糖尿病GK大鼠和db/db小鼠p细胞CHOP和TRIB3的表达明显上调。应用内质网应激药物诱导db/m小鼠体内胰岛p细胞凋亡,伴随有CHOP和TRIB3的表达明显上调,说明TRIB3与糖尿病状态下的内质网应激反应有关,并可能参与了胰岛β细胞凋亡
     TRIB3促进内质网应激诱导的胰岛p细胞凋亡:采用Tet-on系统,我们建立了Trib3基因可诱导表达的胰岛p细胞系。Dox对Trib3基因表达的诱导作用具有明显的时-效和量-效关系。利用该细胞系的分组研究发现,单独给予Dox组使TRIB3过表达以及单独给予Tg组诱导的内质网应激均可一定程度地诱导p细胞凋亡,两者联合组(Dox+Tg+)p细胞凋亡比单独给药组显著增加,组间统计学差异显著(P<0.001)。而敲降TRIB3的表达可显著减少内质网应激诱导的β细胞凋亡。说明TRIB3介导了内质网应激诱导的胰岛β细胞凋亡。体内验证实验发现,TRIB3细胞系在体内成瘤后,未给药组糖尿病动物空腹血糖下降急剧,单独给予Dox或Tg可减缓血糖下降幅度,但两者联合给药(Dox+Tg+)可使动物空腹血糖水平升高、胰岛素分泌水平降低。病理学检查发现其机制是在Tg诱导的内质网应激条件下,TRIB3过表达诱导了大量移植瘤细胞凋亡。
     TRIB3通过活化NF-KB促进内质网应激诱导的胰岛β细胞凋亡:Tg诱导内质网应激后,TRIB3过表达明显增强NF--κB活化,iNOS表达上调,NO和活性氧(Reactive oxygen species,ROS)生成增多,以及caspase-3活化。应用PDTC抑制NF-κB活化后,TRIB3过表达所诱导的细胞凋亡明显减少;而且在Tg诱导内质网应激条件下,TRIB3过表达所诱导的细胞凋亡减少得更明显。说明TRIB3通过激活NF-κB通路介导内质网应激诱导的胰岛p细胞凋亡。体内研究发现NF-κB在糖尿病GK大鼠和db/db小鼠胰岛内均活化的证据。进一步在我们以TRIB细胞系建立的移植瘤动物模型中,发现经PDTC干预后,在Tg诱导内质网应激条件下,TRIB3使NF-KB活化的作用明显受抑制。不仅如此,NF-κB活化受抑制后,在Tg诱导内质网应激条件下,TRIB3过表达不再使动物空腹血糖水平升高,反而出现了动物空腹血糖水平下降,血清胰岛素水平升高,p细胞凋亡减少的结果。这些结果进一步提示,TRIB3通过活化NF-KB通路发挥其促进内质网应激诱导胰岛p细胞凋亡的作用。
     结论:
     糖尿病状态下胰岛p细胞TRIB3表达上调,参与内质网应激诱导的胰岛β细胞凋亡,其机制是TRIB3使NF-κB通路活化并启动其下游的氧化应激和细胞凋亡途径促进β细胞凋亡
Endoplasmic reticulum (ER) stress induced by hyperglycemia, palmitate and pro-inflammatory cytokines, contributes to insulin resistance and pancreatic β cell dysfunction in type2diabetes. Pancreatic β-cells are vulnerable to ER stress. ER stress-mediated pancreatic β cell apoptosis plays a crucial role in the development of type2diabetes. Elucidating the molecular mechanisms underlying ER stress-induced β cell apoptosis would facilitate the understanding of the causes of diabetes mellitus, and open avenues for the development of new therapies.
     Tribbles homolog3(TRIB3) is an important stress-related protein. It is widely expressed in many tissue and organism with multiple biological functions and can be induced by various stimulis. TRIB3ovexpression has been observed in many insulin target tissues, shaping the risk of insulin resistance and type2diabete. TRIB3can be induced via ATF4-CHOP pathway under ER stress condition, however, whether TRIB3involved in ER stress-induced β cell apoptosis and its mechanism are unclear.
     Objectives:
     The TRIB3and CHOP expression in the diabetic animal pancreas, and the TRIB3and CHOP expression in INS-1cells under conditions of ER stress were studied, to analyse the potential influence of TRIB3on β cell dysfunction; upregulated or knockdown of TRIB3expression to investigate the behavior of TRIB3in ER stress induced β-cell apoptosis and it mechanism.
     Methods:
     To analyse whether TRIB3is involved in ER stressed islets in a diabetic environment, the expression of TRIB3and CHOP were detected by western blots and real-time PCR in diabetic animal islets;db/m mice were intraperitoneally injected with thapsigargin(Tg) to induce β cell apoptosis, caspase-3/7activity was studied, then TRIB3and CHOP expression were measured by western blots.
     The effect of TRIB3on ER stress induced β cell apoptosis were studied both in vitro and in vivo. By use of tetracycline tet-on system, the Dox inducible TRIB3stable cell line (named TRIB3cells) was established. The induction of TRIB3expression in β cell line was confirmed by real-time PCR and immunofluorescence staining. The time-response and dose-response relationship between Dox and TRIB3were analyzed by western blots. We used RNA interference to knockdown Trib3. Tg or Tunicamycin(Tm) was used to induce ER stress, and INS-1cell apoptosis was analyzed by DNA fragementation and TUNEL staining. The apoptosis of βcells with TRIB3overexpression or Trib3knockdown under ER stress condition was analyzed by TUNEL staining. To study the effect of TRIB3on ER stress induced β cell apoptosis in vivo, TRIB3cells were used for sub-renal capsule transplantation in streptozotocin (STZ)-diabetic mice. The mice were intraperitoneally injected once daily with Dox to induce TRIB3expression, and with Tg to induce ER stress. We studied the levels of blood glucose and insulin in mice. TRIB3expression in the xenografts was studied by western blots, insulin and C-peptide secreted in the xenografts were measured by immunohistochemical staining. The apoptosis of TRIB3cells with or without TRIB3overexpression, treated with Tg or not, were analyzed by TUNEL staining.
     To study the mechanism involved in TRIB3mediated ER stress-induced β cell apoptosis in vitro. TRIB3cells were treated with Dox to induce TRIB3expression and Tg to induce ER stress. NF-κB activation was analyzed by Western blots, inducible nitric oxide synthase (iNOS) expression was analyzed by real-time PCR, and inducible nitric oxide synthase (NO) production was analyzed by Griess method. We then used the pyrrolidine dithiocarbamate (PDTC) to inhibit NF-κB activity, and studied its effect on β cell apoptosis induced by single use of Dox or combined use of Dox with Tg.
     We further studied the mechanism in vivo.The activation of NF-κB was detected by immunohistochemical staining in the islets of diabetic GK rats and db/db mice.In order to investigate the role of NF-κB in β cell apoptosis, TRIB3cells were again used for sub-renal capsule transplantation in STZ-diabetic mice. The mice were pretreated with PDTC for2h, then treated with single use of Dox or combined use of Dox with Tg. We examined the levels of blood glucose and insulin in mice. We applied immunohistochemical staining to study the effect of PDTC on NF-κB activation influenced by TRIB3overexpression under ER stress condition. The apoptosis of TRIB3cells in the xenografts were analyzed by TUNEL staining.
     Results:
     TRIB3upregulation was correlated with ER stressed pancreatic islets. TRIB3and CHOP expression were upregulated in islets of diabetic GK rat and db/db mice.β cell apoptosis induced by thapsigargin(Tg) in db/m mice, was accompanied by upregulation of TRIB3and CHOP. These results indicated that TRIB3was involved in ER stress-induced β cell apoptosis.
     TRIB3overexpression enhanced ER stress induced β cell apoptosis. The Dox inducible TRIB3cell line was established, and TRIB3expression was induced by Dox in a dose-dependent and time-dependent manner. Treatment with Dox or Tg increased cell apoptosis in the inducible TRIB3cell line, while treatment with both Dox and Tg significantly increased cell apoptosis than the single use of Dox or Tg(P<0.001). Under conditions of ER stress, Trib3knockdown significantly inhibited β cell apoptosis. Studies in the sub-renal capsular transplantation animal model discovered that, after TRIB3cells formed xenografts in vivo, the levels of blood glucose decreased. However, the decreased blood glucose improved after administration of Dox or Tg. Besides, administration both of Dox and Tg increased blood glucose levels and decreased insulin levels. TUNEL studied in the xenografts uncovered that, TRIB3overexpression enhanced ER stress induced β cell apoptosis.
     TRIB3enhanced ER stress induced β cell apoptosis via NF-κB activation. Mechanism studied in vitro discovered that NF-κB pathway plays an important role in TRIB3-mediated β cell apoptosis. Under the condition of ER stress, NF-κB activation, iNOS mRNA upregulation, NO and Reactive oxygen species(ROS) overproduction, as well as caspase-3activation, were enhanced significantly after TRIB3induction; however, after exposed to PDTC for2h, TRIB3induction failed to increase apoptosis in β cells under the condition of ER stress. These results indicated that TRIB3mediated ER stress induced β cell apoptosis via NF-κB activation and the downstream target molecular of NF-κB. Studies in vivo discovered that, NF-κB activated in the islets of diabetic GK rats and db/db mice. Again in our established transplantation animal model, we discovered that, after treated with PDTC, NF-κB activation by TRIB3induction under ER stress was inhibited obviously. As NF-κB activation was inhibited, TRIB3induction failed to increase blood glucose, but to increase the levels of insulin and inhibit β cell apoptosis, under the condition of ER stress. These results indicated that TRIB3mediated ER stress induced β cell apoptosis via NF-κB pathway.
     Conclusions:
     TRIB3is upregulated in the ER stressed pancreatic islets in a diabetic environment. TRIB3overexpression enhanced ER stress induced β cell apoptosis and the mechanism is refered to NF-κB activation and the oxidative stress.
引文
[1]W. Yang, J. Lu, J. Weng, et al. Prevalence of diabetes among men and women in China. N Engl J Med,2010,362(12):1090-101.
    [2]S. Oyadomari, E. Araki and M. Mori. Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis,2002,7 (4):335-45.
    [3]S. Prudente, G. Sesti, A. Pandolfi, et al. The mammalian tribbles homolog TRIB3, glucose homeostasis, and cardiovascular diseases. Endocrine Reviews,2012,33 (4): 526-46.
    [4]U. Ozcan, Q. Cao, E. Yilmaz, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science,2004,306(5695):457-61.
    [5]T. Hartley, M. Siva, E. Lai, et al. Endoplasmic reticulum stress response in an INS-1 pancreatic beta-cell line with inducible expression of a folding-deficient proinsulin. BMC Cell Biol,2010,1159.
    [6]F. Moore, I. Santin, T. C. Nogueira, et al. The transcription factor C/EBP delta has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells. PLoS ONE,2012, 7 (2):e31062.
    [7]S. Negi, S. H. Park, A. Jetha, et al. Evidence of endoplasmic reticulum stress mediating cell death in transplanted human islets. Cell Transplant,2012,21 (5): 889-900.
    [8]S. H. Back, S. W. Kang, J. Han, et al. Endoplasmic reticulum stress in the beta-cell pathogenesis of type 2 diabetes. Exp Diabetes Res,2012,2012 618396.
    [9]F. Allagnat, M.Fukaya, T. C.Nogueira, et al.C/EBP homologous protein contributes to cytokine-induced pro-inflammatory responses and apoptosis in beta-cells. Cell Death Differ,2012,19(11):1836-46.
    [10]D. L. Eizirik, A. K. Cardozo and M. Cnop. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev,2008,29(1):42-61.
    [11]J. Mata, S. Curado, A. Ephrussi, et al. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis.cell,2000, 101(5):511-22.
    [12]J. Avery, S. Etzion, B. J. DeBosch, et al. TRB3 function in cardiac endoplasmic reticulum stress. Circ Res,2010,106(9):1516-23.
    [13]D. Ord and T. Ord. Characterization of human NIPK (TRB3, SKIP3) gene activation in stressful conditions. Biochemical and biophysical research communications,2005, 330(1):210-8.
    [14]N. Ohoka, S. Yoshii, T. Hattori, et al. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J,2005,24 (6):1243-55.
    [15]K. Du, S. Herzig, R. N. Kulkarni, et al. TRB3:a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science,2003,300 (5625):1574-7.
    [16]X. P. Bi, H. W. Tan, S. S. Xing, et al. Overexpression of TRB3 gene in adipose tissue of rats with high fructose-induced metabolic syndrome. Endocr J,2008,55 (4): 747-52.
    [17]Y. Y. Jang, N. K. Kim, M. K. Kim, et al. The Effect of Tribbles-Related Protein 3 on ER Stress-Suppressed Insulin Gene Expression in INS-1 Cells. Korean Diabetes J, 2010,34 (5):312-9.
    [18]X. Zhang, L. Fu, Q. Zhang, et al. Association of TRB3 Q84R polymorphism with polycystic ovary syndrome in Chinese women. Reprod Biol Endocrinol,2011,946
    [19]A. D. Cui, N. N. Gai, X. H. Zhang, et al. Decreased serum obestatin consequent upon TRIB3 Q84R polymorphism exacerbates carotid atherosclerosis in subjects with metabolic syndrome. Diabetol Metab Syndr,2012,4(1):52.
    [20]M. Salazar, A. Carracedo, I. J. Salanueva, et al. TRB3 links ER stress to autophagy in cannabinoid anti-tumoral action. Autophagy,2009,5(7):1048-9.
    [21]C. A. Corcoran, X. Luo, Q. He, et al. Genotoxic and endoplasmic reticulum stresses differentially regulate TRB3 expression. Cancer Biol Ther,2005,4(10):1063-7.
    [22]D. A. Cunha, M. Igoillo-Esteve, E. N. Gurzov, et al. Death Protein 5 and p53-Upregulated Modulator of Apoptosis Mediate the Endoplasmic Reticulum Stress-Mitochondrial Dialog Triggering Lipotoxic Rodent and Human beta-Cell Apoptosis. Diabetes,2012,61(11):2763-75.
    [23]Qian B, Wang H, Men X et al. TRIB3 is implicated in glucotoxicity-and oestrogen receptor-stress-induced β-cell apoptosis. J Endocrinol 2008;99:407-416.
    [24]E. Morse, J. Schroth, Y. H. You, et al. TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1. Am J Physiol Renal Physiol,2010,299(5):F965-72.
    [25]M. Li, L. Dou, J. Jiao, et al. NADPH oxidase 2-derived reactive oxygen species are involved in dysfunction and apoptosis of pancreatic beta-cells induced by low density lipoprotein. Cell Physiol Biochem,2012,30 (2):439-49.
    [26]D. Melloul. Role of NF-kappaB in beta-cell death. Biochem Soc Trans,2008,36 (Pt 3):334-9.
    [27]M. F. Tonnesen, L. G. Grunnet, J. Friberg, et al. Inhibition of nuclear factor-kappaB or Bax prevents endoplasmic reticulum stress-but not nitric oxide-mediated apoptosis in INS-1E cells. Endocrinology,2009,150(9):4094-103.
    [28]M. Wu, L. G. Xu, Z. Zhai, et al. SINK is a p65-interacting negative regulator of NF-kappaB-dependent transcription. J Biol Chem,2003,278(29):27072-9.
    [29]S. P. Duggan, F. M. Behan, M. Kirca, et al. An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels. Carcinogenesis,2010,31 (5):936-45.
    [30]J. Montane, L. Cadavez and A. Novials. Stress and the inflammatory process:a major cause of pancreatic cell death in type 2 diabetes. Diabetes Metab Syndr Obes, 2014,725-34.
    [31]E. Boslem, J. M. Weir, G. MacIntosh, et al. Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic beta-cells. J Biol Chem,2013,288(37): 26569-82.
    [32]Y. Y. Chen, L. Q. Sun, B. A. Wang, et al. Palmitate induces autophagy in pancreatic beta-cells via endoplasmic reticulum stress and its downstream JNK pathway. Int J MolMed,2013,32(6):1401-6.
    [33]Y. Ding, Z. Zhang, X. Dai, et al. Grape seed proanthocyanidins ameliorate pancreatic beta-cell dysfunction and death in low-dose streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats partially by regulating endoplasmic reticulum stress.Nutr Metab (Lond),2013,10(1):51.
    [34]H. C. Hsu, J. F. Chiou, Y. H. Wang, et al. Folate deficiency triggers an oxidative-nitrosative stress-mediated apoptotic cell death and impedes insulin biosynthesis in RINm5F pancreatic islet beta-cells:relevant to the pathogenesis of diabetes. PLoS ONE,2013,8(11):e77931.
    [35]J. A. Wali, D. Rondas, M. D. McKenzie, et al. The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity. Cell Death Dis, 2014,5 e1124.
    [36]S. Wakabayashi and H. Yoshida. The essential biology of the endoplasmic reticulum stress response for structural and computational biologists. Comput Struct Biotechnol J,2013,6e201303010.
    [37]D. Ord, K. Meerits and T. Ord. TRB3 protects cells against the growth inhibitory and cytotoxic effect of ATF4. Exp Cell Res,2007,313 (16):3556-67.
    [38]T. Ord, D. Ord, S. Kuuse, et al. Trib3 is regulated by IL-3 and affects bone marrow-derived mast cell survival and function. Cell Immunol,2012,280 (1):68-75
    [39]M. Anuppalle, S. Maddirevula, T. L. Huh, et al. Trb3 regulates LR axis formation in zebrafish embryos. Mol Cells,2013,36 (6):542-7.
    [40]J. Izrailit, H. K. Berman, A. Datti, et al. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFbeta pathways as fundamental Notch regulators in breast cancer. Proc Natl Acad Sci U S A,2013,110(5):1714-9.
    [41]H. Zhou, Y. Luo, J. H. Chen, et al. Knockdown of TRB3 induces apoptosis in human lung adenocarcinoma cells through regulation of Notch 1 expression. Mol Med Rep, 2013,8(1):47-52.
    [42]W. Yan, Y. Wang, Y. Xiao, et al. Palmitate Induces TRB3 Expression and Promotes Apoptosis in Human Liver Cells. Cell Physiol Biochem,2014,33 (3):823-834.
    [43]F. Beguinot. Tribbles homologue 3 (TRIB3) and the insulin-resistance genes in type 2 diabetes. Diabetologia,2010,53(9):1831-1834.
    [44]J. Liu, X. Wu, J. L. Franklin, et al. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle:role in glucose-induced insulin resistance. American journal of physiology. Endocrinology and metabolism,2010,298 (3):E565-76.
    [45]D. Weismann, D. M. Erion, I. Ignatova-Todorava, et al. Knockdown of the gene encoding Drosophila tribbles homologue 3 (Trib3) improves insulin sensitivity through peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activation in a rat model of insulin resistance. Diabetologia,2011,54 (4):935-44.
    [46]H. Okamoto, E. Latres, R. Liu, et al. Genetic deletion of Trb3, the mammalian Drosophila tribbles homolog, displays normal hepatic insulin signaling and glucose homeostasis. Diabetes,2007,56(5):1350-6.
    [47]H. J. Koh, T. Toyoda, M. M. Didesch, et al. Tribbles 3 mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Nat Commun,2013,4 1871.
    [48]S. Prudente, M. L. Hribal, E. Flex, et al. The functional Q84R polymorphism of mammalian Tribbles homolog TRB3 is associated with insulin resistance and related cardiovascular risk in Caucasians from Italy. Diabetes,2005,54(9):2807-11.
    [49]M. Skelin, M. Rupnik and A. Cencic. Pancreatic beta cell lines and their applications in diabetes mellitus research. ALTEX,2010,27(2):105-13.
    [50]M. Y. Donath and S. E. Shoelson. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol,2011,11(2):98-107.
    [51]T. J. Biden, E. Boslem, K. Y. Chu, et al. Lipotoxic endoplasmic reticulum stress, beta cell failure, and type 2 diabetes mellitus. Trends in endocrinology and metabolism:TEM,2014.
    [52]M. Karin and A. Lin. NF-kappaB at the crossroads of life and death. Nat Immunol, 2002,3(3):221-7.
    [53]S. Gerondakis, T. S. Fulford, N. L. Messina, et al. NF-kappaB control of T cell development. Nat Immunol,2014,15(1):15-25.
    [54]K. Oida, A. Matsuda, K. Jung, et al. Nuclear factor-kB plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells. Sci Rep,2014,44057.
    [55]V. Pistoia and L. Raffaghello. Unveiling the role of TNF-alpha in mesenchymal stromal cell-mediated immunosuppression. Eur J Immunol,2014,44 (2):352-6.
    [56]R. Rahal, M. Frick, R. Romero, et al. Pharmacological and genomic profiling identifies NF-kappaB-targeted treatment strategies for mantle cell lymphoma. Nature medicine,2014,20 (1):87-92.
    [57]Y. Fan, R. Mao and J. Yang. NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell,2013,4(3):176-85.
    [58]V. Nikoletopoulou, M. Markaki, K. Palikaras, et al. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta,2013,1833(12):3448-59.
    [59]J. Sun, K. Knickelbein, K. He, et al. Aurora kinase inhibition induces PUMA via NF-kB to kill colon cancer cells. Molecular cancer therapeutics,2014,
    [60]S. W. Son, H. G. Kim, J. M. Han, et al. Anti-melanoma activity of Cynanchi atrati Radix is mediated by regulation of NF-kappa B activity and pro-apoptotic proteins. J Ethnopharmacol,2014,153(1):250-7.
    [61]P. C. Ortiz-Lazareno,A. Bravo-Cuellar, J. M. Lerma-Diaz, et al. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss. Cancer Cell Int,2014,14(1):13.
    [62]Z. Ma, D. J. Vocadlo and K. Vosseller. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem, 2013,288(21):15121-30.
    [63]R. Eldor, R. Abel, D. Sever, et al. Inhibition of nuclear factor-kappaB activation in pancreatic beta-cells has a protective effect on allogeneic pancreatic islet graft survival. PLoS ONE,2013,8 (2):e56924.
    [64]Y. Wang, Y. Zhu, L. Gao, et al. Formononetin attenuates IL-1 beta-induced apoptosis and NF-kappaB activation in INS-1 cells. Molecules,2012,17 (9):10052-64.
    [65]D. Zhang, Q. Ma, Z. Wang, et al. beta2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFkappaB pathway. Mol Cancer,2011,10146.
    [66]M. C. Akerfeldt. cytokine-induced beta cell death is independent of endoplasmic reticulun stress signaling.2008,.
    [67]W. L. Suarez-Pinzon, J. G. Mabley, K. Strynadka, et al. An inhibitor of inducible nitric oxide synthase and scavenger of peroxynitrite prevents diabetes development in NOD mice. J Autoimmun,2001,16 (4):449-55.
    [68]J. P. Lopes, S. M. Oliveira and J. Soares Fortunato.[Oxidative stress and its effects on insulin resistance and pancreatic beta-cells dysfunction:relationship with type 2 diabetes mellitus complications]. Acta Med Port,2008,21(3):293-302.
    [69]K. A. Kim and M. S.Lee. Recent progress in research on beta-cell apoptosis by cytokines. Front Biosci (Landmark Ed),2009,14657-64.
    [70]Y. Zhao, B. Krishnamurthy, Z. U. Mollah, et al. NF-kappaB in type 1 diabetes. Inflamm Allergy Drug Targets,2011,10 (3):208-17.
    [71]C. Carbone and D. Melisi. NF-kappaB as a target for pancreatic cancer therapy. Expert Opin Ther Targets,2012,16 Suppl 2 S1-10.
    [72]W. C. Lin, Y. C. Chuang, Y. S. Chang, et al. Endoplasmic reticulum stress stimulates p53 expression through NF-kappaB activation. PLoS ONE,2012,7(7):e39120.
    [73]J. S. Rink, X. Chen, X. Zhang, et al. Conditional and specific inhibition of NF-kappaB in mouse pancreatic beta cells prevents cytokine-induced deleterious effects and improves islet survival posttransplant. Surgery,2012,151(2):330-9.
    [74]V. F. Shih, R. Tsui, A. Caldwell, et al. A single NFkappaB system for both canonical and non-canonical signaling. Cell Research,2011,21(1):86-102.
    [75]A. Oeckinghaus, M. S. Hay den and S. Ghosh. Crosstalk in NF-kappaB signaling pathways. Nat Immunol,2011,12(8):695-708.
    [76]S. C. Gupta, C. Sundaram, S. Reuter, et al. Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta,2010,1799(10-12): 775-87.
    [77]B. R. Zhou, J. A. Zhang, Q. Zhang, et al. Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-lbeta, and tumor necrosis factor-alpha via a NF-kappaB-dependent mechanism in HaCaT keratinocytes. Mediators of inflammation,2013,2013 530429.
    [78]Y. S. Kanwar. TRB3:an oxidant stress-induced pseudokinase with a potential to negatively modulate MCP-1 cytokine in diabetic nephropathy. Am J Physiol Renal Physiol,2010,299 (5):F963-4.
    [79]A. Besse-Patin and J. L. Estall. An Intimate Relationship between ROS and Insulin Signalling:Implications for Antioxidant Treatment of Fatty Liver Disease. Int J Cell Biol,2014,2014 519153.
    [80]L. Zhang, L. Dong, X. Liu, et al. alpha-Melanocyte-Stimulating Hormone Protects Retinal Vascular Endothelial Cells from Oxidative Stress and Apoptosis in a Rat Model of Diabetes. PLoS ONE,2014,9(4):e93433.
    [1]Shirasawa, S, S. Yoshie, et al. (2011). Pancreatic exocrine enzyme-producing cell differentiation via embryoid bodies from human embryonic stem cells. Biochem Biophys Res Commun 410(3):608-613.
    [2]Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 2002;32:128-134.
    [3]Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage:NGN31 cells are islet progenitors and are distinct from duct progenitors. Development 2002; 129:2447-2457.
    [4]Chiang MK, Melton DA. Single-cell transcript analysis of pancreas development. Dev Cell 2003;4:383-393.
    [5]Hebrok, M., Kim, S.K., St Jacques, B., McMahon, A.P., and Melton, D.A. Regulation of pancreas development by hedgehog signaling. Development 2000; 127: 4905-4913.
    [6]Pan, F.C., Chen, Y., Bayha, E., and Pieler, T. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms. Mech. Dev 2007;124:518-531.
    [7]Nikolova, G., Jabs, N., Konstantinova, I., Domogatskaya, A.,Tryggvason, K.,Sorokin, L., Fassler, R., Gu, G., Gerber, H.P.,Ferrara, N., et al. The vascular basement membrane:Aniche for insulin gene expression and β cell proliferation. Dev. Cell 2006;10:397-405.
    [8]Brissova M, Shostak A, Shiota M, Wiebe PO, Poffenberger G, Kantz J, Chen Z, Carr C, Jerome WG,Chen J, et al. Pancreatic islet production of vascular endothelial growth factor--a is essential for islet vascularization, revascularization, and function. Diabetes.2006;55:2974-85.
    [9]Li X, Zhang L, Meshinchi S, Dias-Leme C, Raffin D, Johnson JD, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 2006;55:2965-73.
    [10]Lammert, E.,Cleaver, O.,and Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 2001;294:564-567.
    [11]Dichmann, D.S., Miller, C.P., Jensen, J., Scott Heller, R., and Serup, P. Expression and misexpression of members of the FGF and TGF-(3 families of growth factors in the developing mouse pancreas. Dev. Dyn.2003;226:663-674.
    [12]Pulkkinen, M.A., Spencer-Dene, B., Dickson, C, and Otonkoski, T. The Ⅲb isoform of fibroblast growth factor receptor 2 is required for proper growth and branching of pancreatic ductal epithelium but not for differentiation of exocrine or endocrine cells. Mech. Dev.2003;120:167-175.
    [13]Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 1998;12:1705-1713.
    [14]Zertal-Zidani S, Bounacer A, Scharfmann R. Regulation of pancreatic endocrine cell differentiation bysulphated proteoglycans. Diabetologia.2007; 50:585-95.
    [15]Lammert, E., Brown, J., and Melton, D.A. Notch gene expression during pancreatic organogenesis. Mech. Dev.2000; 94:199-203.
    [16]Georgia, S., Soliz, R., Li, M., Zhang, P., and Bhushan, A. p57 and Hesl coordinate cell cycle exit with self-renewal of pancreatic progenitors. Dev. Biol.2006;298: 22-31.
    [17]Fujikura, J., Hosoda, K., Iwakura, H., Tomita, T., Noguchi, M., Masuzaki, H., Tanigaki, K., Yabe, D., Honjo, T., and Nakao,K. Notch/Rbp-j signaling prevents premature endocrine and ductal cell differentiation in the pancreas. Cell Metab. 2006;3:59-65.
    [18]Esni, F., Ghosh, B., Biankin, A.V., Lin, J.W., Albert, M.A., Yu, X., MacDonald, R.J., Civin, C.I., Real, F.X., Pack, M.A., et al. Notch inhibits Ptfl function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development 2004; 131:4213-4224.
    [19]Ghosh, B. and Leach, S.D. Interactions between hairy/enhancer of split-related proteins and the pancreatic transcription factor Ptfl-p48 modulate function of the PTF1 transcriptional complex. Biochem. J.2006;393:679-685.
    [20]Strom, A., Bonal, C., Ashery-Padan, R., Hashimoto, N., Campos, M.L., Trumpp, A., Noda, T., Kido, Y., Real, F.X., Thorel, F., et al. Unique mechanisms of growth regulation and tumor suppression upon Ape inactivation in the pancreas. Development 2007;134:2719-2725.
    [21]Wells, J.M., Esni, F., Boivin, G.P., Aronow, B.J., Stuart, W., Combs, C., Sklenka, A., Leach, S.D., and Lowy, A.M. Wnt/β-catenin signaling is required for development of the exocrine pancreas. BMC Dev. Biol.2007; 7:4. doi: 10.1186/1471-213X-7-4.
    [22]Rulifson, I.C., Karnik, S.K., Heiser, P.W., ten Berge, D., Chen, H., Gu, X., Taketo, M.M., Nusse, R., Hebrok, M., and Kim, S.K.. Wnt signaling regulates pancreatic β cell proliferation. Proc. Natl. Acad. Sci.2007; 104:6247-6252.
    [23]Heiser, P.W., Lau, J., Taketo, M.M., Herrera, P.L., and Hebrok, M. Stabilization of β-catenin impacts pancreas growth. Development 2006; 133:2023-2032.
    [24]Kim, S.K., Hebrok, M., Li, E., Oh, S.P., Schrewe, H., Harmon, E.B., Lee, J.S., and Melton, D.A. Activin receptor patterning of foregut organogenesis. Genes & Dev. 2000; 14:1866-1871.
    [25]Goto, Y., Nomura, M., Tanaka, K., Kondo, A., Morinaga, H., Okabe, T., Yanase, T., Nawata, H., Takayanagi, R., and Li, E. Genetic interactions between activin type IIB receptor and Smad2 genes in asymmetrical patterning of the thoracic organs and the development of pancreas islets. Dev. Dyn.2007; 236:2865-2874.
    [26]Smart, N.G., Apelqvist, A.A., Gu, X., Harmon, E.B., Topper, J.N., MacDonald, R.J., and Kim, S.K. Conditional expression of Smad7 in pancreatic β cells disrupts TGF-P signaling and induces reversible diabetes mellitus. PLoS Biol.2006;4:e39. doi:10.1371/journal.pbio.0040039.
    [27]Harmon, E.B., Apelqvist, A.A., Smart, N.G., Gu, X., Osborne, D.H., and Kim, S.K. GDF11 modulates NGN3+ islet progenitor cell number and promotes β-cell differentiation in pancreas development. Development 2004; 131:6163-6174.
    [28]Dichmann, D.S., Yassin, H., and Serup, P. Analysis of pancreatic endocrine development in GDF11-deficient mice.Dev. Dyn.2006; 235:3016-3025.
    [29]Jiang, F.X. and Harrison, L.C. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells. Exp. Cell Res.2005;308:114-122.
    [30]Hua, H., Zhang, Y.Q., Dabernat, S., Kritzik, M., Dietz, D., Sterling, L., and Sarvetnick, N. BMP4 regulates pancreatic progenitor cell expansion through Id2. J. Biol. Chem.2006; 281:13574-13580.
    [31]Zhou, Q., Law, A.C., Rajagopal, J., Anderson, W.J., Gray, P.A., and Melton, D.A. A multipotent progenitor domain guides pancreatic organogenesis. Dev. Cell 2007; 13: 103-114.
    [32]Liu, Y., MacDonald, R.J., and Swift, G.H. DNA binding and transcriptional activation by a PDX1.PBX1b.MEIS2b trimer and cooperation with a pancreas-specific basic helix-loop-helix complex. J. Biol. Chem.2001;276: 17985-17993.
    [33]melloul D, Marshak s, Cerasi e. Regulation of pdxl gene expression.Diabetes,2002, 51(3):320-326.
    [34]melloul D. Transcription factors in islet development and physiology:role of pdx-1 in beta-cell function. Ann N Y Acad Sci,2004,1014(1):28-37.
    [35]Burlison, J.S., Long, Q., Fujitani, Y., Wright, C.V., and Magnuson, M.A. Pdx-1 and Ptfla concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev. Biol.2008; 316:74-86.
    [36]Hale, M.A., Kagami, H., Shi, L., Holland, A.M., Elsasser, H.P., Hammer, R.E., and MacDonald, R.J. The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Dev. Biol.2005; 286: 225-237.
    [37]Holland, A.M.,Gonez, L.J.,Naselli, G., Macdonald, R.J, and Harrison, L.C. Conditional expression demonstrates the role of the homeodomain transcription factor Pdxl innmaintenance and regeneration of β-cells in the adult pancreas. Diabetes.2005;54:2586-2595.
    [38]Brissova, M., Blaha, M., Spear, C., Nicholson, W., Radhika, A., Shiota, M., Charron, M.J., Wright, C.V., and Powers, A.C. Reduced PDX-1 expression impairs islet response toinsulin resistance and worsens glucose homeostasis. Am. J.Physiol. Endocrinol. Metab.2005;288:E707-E714. doi:10.1152/ajpendo.00252.2004.
    [39]Lioubinski, O., Muller, M., Wegner, M., and Sander, M. Expression of Sox transcription factors in the developing mouse pancreas. Dev. Dyn.2003;227: 402-408.
    [40]Wilson, M.E., Yang, K.Y.,Kalousova, A., Lau, J., Kosaka, Y.,Lynn, F.C., Wang, J., Mrejen, C., Episkopou, V., Clevers, H.C., et al. The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas. Diabetes 2005;54: 3402-3409.
    [41]Goldsworthy, M., Hugill, A., Freeman, H., Horner, E., Shimomura, K., Bogani, D., Pieles, G., Mijat, V., Arkell, R., Bhattacharya, S., et al. The role of the transcription factor Sox4 in insulin secretion and impaired glucose tolerance. Diabetes.2008; doi: 10.2337/db07-0337.
    [42]Seymour, P.A., Freude, K.K., Tran, M.N., Mayes, E.E., Jensen, J., Kist, R.,Scherer, G., and Sander, M. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc.Natl. Acad. Sci.2007;104:1865-1870.
    [43]Seguin CA, Draper JS, Nagy A, Rossant J. Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell 2008.3:182-195.
    [44]Coffinier, C, Thepot, D., Babinet, C, Yaniv, M., and Barra, J.1999b. Essential role for the homeoprotein vHNF1/HNF1β in visceral endoderm differentiation. Development 126:4785-794.
    [45]Poll, A.V., Pierreux, C.E., Lokmane, L., Haumaitre, C., Achouri, Y., Jacquemin, P., Rousseau, G.G., Cereghini, S., and Lemaigre, F.P. A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes 2006;55:61-69.
    [46]Gu, G., Brown, J.R., and Melton, D. A.. Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech. Dev.2003;120:35-43
    [47]Apelqvist A, Li H, Sommer L, et al. Notch signalling controls pancreatic cell differentiation. Nature 1999; 400:877-881.
    [48]Jensen, J.N., Rosenberg, L.C., Hecksher-Sorensen, J., and Serup, P.2007. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med 356:1781-1782.
    [49]Wang, J., Cortina, G., Wu, S.V., Tran, R., Cho, J.H., Tsai, M.J., Bailey, T.J., Jamrich, M., Ament, M.E., Treem, W.R., et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea N. Engl. J. Med.2006;355:270-280.
    [50]Schwitzgebel, V.M., Scheel, D.W., Conners, J.R., Kalamaras, J., Lee, J.E., Anderson, D.J., Sussel, L., Johnson, J.D., and German, M.S. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000;127:3533-3542.
    [51]Desgraz R, Herrera PL. Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 2009;136:3567-3574.
    [52]Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB,Tsai MJ. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice.Genes Dev 1997;11:2323-2334.
    [53]Miyata T, Maeda T, Lee JE.NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 1999;13:1647-1652.
    [54]Sangeeta Dhawan et al.Formation and regeneration of the endocrine pancreas Curr Opin Cell Biol.2007 December; 19(6):634-645.doi:10.1016/j.ceb.2007.09.015.
    [55]Glick E, Leshkowitz D, Walker MD.Transcription factor BETA2 acts cooperatively with E2A and PDX1 to activate the insulin gene promoter. Biol Chem 2000;275: 2199-2204.
    [56]Naya FJ, Stellrecht CM, Tsai MJ.Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 1995;9:1009-1019.
    [57]Qiu Y, Guo M, Huang S, Stein R.Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol Cell Biol.2002;22:412-420.
    [58]Wang, J., Elghazi, L., Parker, S.E., Kizilocak, H., Asano, M., Sussel, L., and Sosa-Pineda, B. The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreaticβ-cell differentiation. Dev. Biol.2004;266:178-189.
    [59]Liew CG, Shah NN, Briston SJ, Shepherd RM, Khoo CP, Dunne MJ, Moore HD, Cosgrove KE, Andrews PW. PAX4 enhances beta-cell differentiation of human embryonic stem cells. PLoS ONE 2008.3:e1783.
    [60]SOSA-PINEDA B, CHOWDHURY K, TORRES M, OLIVER G, GRUSS P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 1997;386:399-402.
    [61]Prado, C.L., Pugh-Bernard, A.E., Elghazi, L., Sosa-Pineda, B., and Sussel, L. Ghrelin cells replace insulin-producing β cells in two mouse models of pancreas development. Proc.Natl. Acad. Sci.2004;101:2924-2929.
    [62]Greenwood, A.L., Li, S., Jones, K., and Melton, D.A. Notch signaling reveals developmental plasticity of Pax4+pancreatic endocrine progenitors and shunts them to a duct fate. Mech. Dev.2007;124:97-107.
    [63]Wang, Q., Elghazi, L., Martin, S., Martins, I., Srinivasan, R.S., Geng, X., Sleeman, M., Collombat, P., Houghton, J., and Sosa-Pineda, B. ghrelin is a novel target of Pax4 in endocrine progenitors of the pancreas and duodenum. Dev.Dyn.2008;237: 51-61.
    [64]Sussel, L., Kalamaras, J., Hartigan-O'Connor, D.J., Meneses, J. J., Pedersen, R.A., Rubenstein, J.L., and German, M.S.1998. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells. Development 125:2213-2221.
    [65]Doyle, M.J. and Sussel, L. Nkx2.2 regulates β-cell function in the mature islet. Diabetes.2007;56:1999-2007.
    [66]Doyle, M.J., Loomis, Z.L., and Sussel, L. Nkx2.2-repressor activity is sufficient to specify β-cells and a small number of β-cells in the pancreatic islet. Development. 2007;134:515-523.
    [67]Sander, M., Sussel, L., Conners, J., Scheel, D., Kalamaras, J.,Dela Cruz, F., Schwitzgebel, V., Hayes-Jordan, A., and German, M. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in the pancreas.Development 2000;127:5533-5540.
    [68]Schisler, J.C., Jensen, P.B., Taylor, D.G., Becker, T.C., Knop, F. K., Takekawa, S., German, M., Weir, G.C., Lu, D.,Mirmira, R.G., et al. The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet (3 cells. Proc. Natl. Acad. Sci.2005;102: 7297-7302.
    [69]Gauthier, B.R., Gosmain, Y., Mamin, A., and Philippe, J. The β-cell specific transcription factor Nkx6.1 inhibits glucagon gene transcription by interfering with Pax6. Biochem.J.2007;403:593-601.
    [70]Nelson, S.B., Schaffer, A.E., and Sander, M. The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting β-cell fate specification in Pdxl+ pancreatic progenitor cells. Development.2007; 134:2491-2500.
    [71]Henseleit, K.D., Nelson, S.B., Kuhlbrodt, K., Hennings, J.C., Ericson, J., and Sander, M. NKX6 transcription factor activity is required for α-and β-cell development in the pancreas. Development.2005; 132:3139-3149.
    [72]Alanentalo, T., Chatonnet, F., Karlen, M., Sulniute, R., Ericson, J., Andersson, E., and Ahlgren, U. Cloning and analysis of Nkx6.3 during CNS and gastrointestinal development. Brain Res. Gene Expr. Patterns.2007;6:162-170.
    [73]Aramata, S., Han, S.I., Yasuda, K., and Kataoka, K.2005. Synergistic activation of the insulin gene promoter by the β-cell enriched transcription factors MafA, Beta2, and Pdxl. Biochim.Biophys. Acta 1730:41-46.
    [74]Zhao, L., Guo, M., Matsuoka, T.A., Hagman, D.K., Parazzoli, S.D., Poitout, V., and Stein, R. The islet_ cell-enriched MafA activator is a key regulator of insulin gene transcription. J. Biol. Chem.2005;280:11887-11894.
    [75]Kaneto H et. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function.Endocrine Journal 2008, 55(2),235-252.
    [76]Matsuoka, T.A., Artner, I., Henderson, E., Means, A., Sander, M., and Stein, R. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc. Natl. Acad. Sci.2004;101:2930-2933.
    [77]Zhang, C, Moriguchi, T., Kajihara, M., Esaki, R., Harada, A., Shimohata, H., Oishi, H., Hamada, M., Morito, N., Hasegawa, K., et al. MafA is a key regulator of glucosestimulated insulin secretion. Mol. Cell. Biol.2005;25:4969-4976.
    [78]Artner, I., Le Lay, J., Hang, Y., Elghazi, L., Schisler, J.C., Henderson, E., Sosa-Pineda, B., and Stein, R. MafB:An activator of the glucagon gene expressed in developing islet β-and β-cells. Diabetes.2006;55:297-304.
    [79]Artner, I., Blanchi, B., Raum, J.C., Guo, M., Kaneko, T., Cordes, S., Sieweke, M., and Stein, R. MafB is required for islet_ cell maturation. Proc. Natl. Acad. Sci. 2007; 104:3853-3858.
    [80]Nishimura W, Kondo T, Salameh T, et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol 2006; 293:526-539.
    [81]Lee, C.S., Sund, N.J., Behr, R., Herrera, P.L., and Kaestner, K.H.2005b. Foxa2 is required for the differentiation of pancreatic β-cells. Dev. Biol.278:484-495.
    [82]Lantz, K.A., Vatamaniuk, M.Z., Brestelli, J.E., Friedman, J.R., Matschinsky, F.M., and Kaestner, K.H. Foxa2 regulates multiple pathways of insulin secretion. J. Clin. Invest.2004; 114:512-520.
    [83]Gao, N., White, P., Doliba, N., Golson, M.L., Matschinsky, F.M., and Kaestner, K.H. Foxa2 controls vesicle docking and insulin secretion in mature β cells. Cell Metab. 2007; 6:267-279.
    [84]Ang,S.L.,Wierda,A.,Wong,D.,Stevens,K.A.,Cascio,S.,Rossant,and Zaret,K.S.The formation and maintenance of the definitive endoderm lineage in the mouse: Involvement of HNF3/forkhead proteins. Development 1993; 19:1301-1315.
    [85]Kaestner, K.H., Hiemisch, H., and Schutz, G. Targeted disruption of the gene encoding hepatocyte nuclear factor 3y results in reduced transcription of hepatocyte-specific genes. Mol. Cell. Biol.1998;18:4245-4251.
    [86]Kaestner, K.H., Katz, J., Liu, Y., Drucker, D.J., and Schutz, G. Inactivation of the winged helix transcription factorbHNF3α affects glucose homeostasis and islet glucagon gene expression in vivo. Genes & Dev.1999;13:495-504.
    [87]Vatamaniuk, M.Z., Gupta, R.K., Lantz, K.A., Doliba, N.M., Matschinsky, F.M., and Kaestner, K.H. Foxal-deficient mice exhibit impaired insulin secretion due to uncoupled oxidative phosphorylation. Diabetes 2006;55:2730-2736.
    [88]Nammo, T., Yamagata, K., Tanaka, T., Kodama, T., Sladek,F.M., Fukui, K., Katsube, F., Sato, Y., Miyagawa, J., and Shimomura,I. Expression of HNF-4alpha (MODY1), HNF-lbeta(MODY5), and HNF-lalpha (MODY3) proteins in the developingmouse pancreas. Brain Res. Gene Expr. Patterns 2008;8:96-106.
    [89]Gupta, R.K., Gao, N., Gorski, R.K., White, P., Hardy, O.T., Rafiq, K., Brestelli, J.E., Chen, G., Stoeckert Jr., C.J., and Kaestner, K.H. Expansion of adult β-cell mass in response to increased metabolic demand is dependent on HNF-4α. Genes & Dev. 2007; 21:756-769.
    [90]Shuibing Chen, Malgorzata Borowiak, Julia L Fox et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature chemical biology 2009; 5(4):258-265.
    [91]Donghui Zhang, Wei Jiang, Meng Liul et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Research (2009) 19:429-438.
    [92]Shim JH, Kim SE, Woo D H et al. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 2007; 50:1228-1238.
    [93]E. E. Baetge.Production of β-cells from human embryonic stem cells. Diabetes, Obesity and Metabolism,10 (Suppl.4),2008,186-194.
    [94]Gabriella K.C. Brole'n,1 Nico Heins,2 Josefina Edsbagge,et.al Signals From the Embryonic Mouse Pancreas Induce Differentiation of Human Embryonic Stem Cells Into Insulin-Producing β-Cell-Like Cells. DIABETES,2005;54,2867-2874.
    [95]Martina Johannesson, Anders Sta°hlberg, Jacqueline Ameri,et.al FGF4 and Retinoic Acid Direct Differentiation of hESCs into PDX1-Expressing Foregut Endoderm in a Time-and Concentration-Dependent Manner. PLoS ONE 4(3):e4794. doi:10.1371/journal.pone.0004794.
    [96]Jensen J. Gene regulatory factors in pancreatic development. Dev Dyn 2004; 229: 176-200.
    [97]Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, et al. Fgf10 is essential maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development Dec; 2001 128(24):5109-17.
    [98]Elghazi L, Cras-Meneur C, Czernichow P, Scharfmann, R. Role for FGFR2IIIb-mediated signals in controlling pancreatic endocrine progenitor cell proliferation. Proc.Natl Acad Sci USA 2002; 99:3884-3889.
    [99]Pulkkinen MA, Spencer-Dene B, Dickson C, Otonkoski.T. The Ⅲb isoform of fibroblast growth factor receptor 2 is required for proper growth and branching of pancreatic ductal epithelium but not for differentiation of exocrine or endocrine cells. Mech Dev 2003;120:167-175.
    [100]Herrera PL. Adult insulin-and glucagon-producing cells differentiate from two independent cell lineages. Development 2000;127:2317-2322.
    [101]Wang S, Jensen JN, Seymour PA,et.al. Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci U S A.2009 Jun 16;106(24):9715-20.
    [102]Hori Y, Rulifson IC, Tsai BC et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 2002; 99:16105-16110.
    [103]Suheir Assady,l Gila Maor,l Michal Amit,et.al. Insulin Production by Human Embryonic Stem Cells. DIABETES, VOL.50, AUGUST 2001.1691-1697
    [104]Wei Jiang, Yan Shil, Dongxin Zhao,et.al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Research (2007) 17: 333-344.