超声微泡促进骨髓间质细胞跨血脑屏障迁移的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性中风是致死、致残的主要病因之一。脑损伤很容易遗留永久性神经功能缺失,其原因体现在脑组织对自身的损伤修复能力不强,同时采用药物治疗效果不佳。研究学者通过动物实验以及临床实验证明:移植胚胎神经细胞和多能干细胞可促进损伤脑组织的修复,改善神经功能缺失症状,提示细胞移植方法是治疗缺血脑损伤的很有希望的途径。大量实验研究表明,骨髓间质细胞(bone marrow stromal cells, BMSC)是最有潜力的一种修复细胞,其在脑内移植后,能够存活下来,并不断迁移和分化,而后在一定程度上修复脑梗死后神经功能的障碍。移植细胞促进脑损伤修复的机制包括替代坏死细胞功能、抑制局部瘢痕形成和促进损伤局部神经再生等,而移植细胞向脑损伤局部的迁移是促进脑损伤修复的前提。因此,探讨促进移植细胞向脑损伤局部迁移的措施有非常重要的实际意义。
     血脑屏障影响经静脉移植细胞向脑损伤局部的迁移,降低移植治疗效果。近年研究发现,超声联合微泡技术可安全、有效地暂时性开放血脑屏障,促进治疗药物通过血脑屏障,提高脑实质内药物浓度,达到提高治疗效果的目的。但目前尚未见到超声联合微泡技术对移植细胞向脑内迁移影响的研究报道。因此,深入探讨超声联合微泡技术促进经静脉移植骨髓间质细胞向脑内迁移的可能性及其机制,有望为缺血性中风带来新的治疗途径。
     研究内容:(1)评价大鼠前脑缺血/再灌注模型血脑屏障完整性:光镜和电镜下观察模型动物血脑屏障完整性:包括脑血管内皮细胞紧密连接、基底膜和星形胶质细胞伪足完整性;观察血脑屏障结构蛋白表达:包括脑血管内皮细胞;闭合蛋白claudin-5基底膜;IV胶原、层连蛋白星型胶质细胞突起;S100B蛋白等;评价血脑屏障功能:光镜观察伊文思蓝渗出量,电镜下观察硝酸镧染色。(2)观察超声联合微泡技术对前脑缺血/再灌注大鼠血脑屏障通透性的影响:(3)观察超声联合微泡技术能否影响经静脉移植的骨髓间质细胞向缺血性脑损伤区迁移的活动:观察体外扩增和鉴定骨髓间质细胞;观察经静脉注射移植骨髓间质细胞;不比较骨髓间质细胞向脑缺血损伤区迁移的数量和距离;观察AchE阳性纤维密度。(4)观察超声联合微泡技术对经静脉移植的骨髓间质细胞对大鼠神经功能的影响:水迷宫试验观察空间学习、记忆能力。
     研究结果:(1)缺血再灌注模型可以在一定程度上增加血脑屏障通透性。(2)超声微泡可以开放脑缺血/再灌注血脑屏障。(3)超声微泡可以有效开放BBB,并促进MSCS向脑内迁移和AchE阳性纤维增多。(4)超声微泡联合MSCs移植可以促进前脑缺血大鼠空间学习和记忆能力。
     研究结论:超声微泡可以显著促进骨髓间充质细胞向脑内的迁移,进而促进前脑缺血大鼠行为能力的显著提高,MSCs颅内移植可以改善前脑缺血大鼠的空间学习能力,对记忆能力影响小。MSCs取材简单,扩增迅速,来源丰富,MSCs移植治疗脑缺血具有广阔的临床应用前景。但超声微泡开放血脑屏障的机制和MSCs颅内移植移植促进神经功能改善的机制尚需要进一步的探索。
Ischemic stroke is one of the main causes of death and disability. Because the braintissue has the limited self-repair ability, drug treatment can not get ideal effect. Therefore,the people often left permanent neurological function deficiency.
     Animal experiment and clinical study found that transplantation of embryonic neuralcells and pluripotent stem cells could promote the repair of damaged brain tissue, andimprove neurological deficit symptoms, which suggested that cell transplantation for thetreatment of ischemic cerebral injury is a very promising way. Lots of experiments showthat the bone marrow stromal cells (bone marrow stromal cells, BMSC) transplantationcould migrate, differentiate, and survive in the host brain, which could promote therecovery of neural function after cerebral infarction. The mechanism of transplanted cellspromoted brain damage repair including alternative function of necrotic cells, inhibitingscar and promote local damage nerve regeneration. The local migration of transplanted cellsto the brain damage is a prerequisite for promoting the repair of brain injury. Therefore, themethod to promote local migration of transplanted cells into the brain injury is veryimportant.
     The blood brain barrier after vein transplantation to brain injury local migration reducethe treatment effect of transplantation. In recent years, the study found that ultrasoundcombined with microbubble technology could temporary open the blood brain barrier safelyand effectively. The technology could promote the drug through the blood brain barrier andimprove brain drug concentration to improve the treatment effect. But ultrasound combinedwith microbubble on the migration of transplanted cells in the brain has not been studied.Therefore, the study of ultrasound combined with microbubble technology transplantationof intravenous bone marrow stromal cells into brain migration is expected to bring a newway for treatment of ischemic stroke.
     Methods:(1) The evaluation of forebrain ischemia/reperfusion rat model BBBintegrity. Observation of animal model of blood brain barrier integrity in the lightmicroscope and electron microscope, including brain vascular endothelial cell tight junction,basement membrane and glial cell pseudopodia integrity. Observation of the blood brainbarrier structure protein expression, including brain vascular endothelial cells, closedprotein claudin-5basement membrane, collagen IV, laminin astrocyte processes, S100Bprotein. Evaluating blood-brain barrier function of Evans blue extravasation. Observationof light microscope, electron microscope observation of lanthanum nitrate staining.(2)Observing the effects of ultrasound combined with microbubble technology on forebrainischemia/reperfusion blood-brain barrier permeability in rats.(3) Observing the effect ofultrasound combined with microbubble technology on intravenous transplantation of bonemarrow stromal cells into ischemic brain damage zone migration. in vitro amplification andidentification of bone marrow stromal cells; intravenous transplantation of bone marrowstromal cells; bone marrow stromal cells do not compare to cerebral ischemia area to movethe number and distance shift; observation the density of AchE positive fibers.(4)Observing the ultrasound combined with microbubble technology on intravenoustransplantation of bone marrow stromal cells on neural function in rats with water maze testof spatial learning and memory ability.
     Results:(1) Ischemia reperfusion model can increase the permeability of blood brainbarrier in some degree.(2)The ultrasound microbubble can open cerebral ischemia/reperfusion blood-brain barrier.(3)The ultrasound microbubble can open BBB, andpromote MSCS migration to the brain and increase AchE positive fibers.(4)The ultrasonicmicrobubbles combined with MSCs transplantation can promote the learning and memoryability of forebrain ischemia rats.
     Conclusion: The blood of ultrasound microbubbles could promote bone marrowmesenchymal cells to intracranial migration, and improve the behavior of forebrainischemia rat ability, MSCs intracranial transplantation could improve cerebral ischemia ratspatial learning ability, but could not improve memory ability. MSCs could be easy get andrapid amplificated, MSCs transplantation for treatment of cerebral ischemia have broadprospects in clinical application. The mechanism of MSCs intracranial transplantation ofultrasound microbubble opening blood brain barrier to promote nerve function improvement still needs be further studied.
引文
1Tu JV, Wang H, Bowyer B, Green L, Fang J, Kucey D. Risk factors for death or stroke after carotid endarterectomy:observations from the Ontario Carotid Endarterectomy Registry. Stroke2003;34(11):2568-73.
    2Kiyohara Y, Kubo M, Kato I, et al. Ten-year prognosis of stroke and risk factors for death in a Japanese community: theHisayama study. Stroke2003;34(10):2343-7.
    3Engstad T, Viitanen M, Arnesen E. Predictors of death among long-term stroke survivors. Stroke2003;34(12):2876-80.
    4Park YK, Yi HJ, Lee YJ, Cho H, Chun HJ, Oh SJ. The relationship between metabolic syndrome (MetS) andspontaneous intracerebral hemorrhage (ICH). Neurol Sci2013;34(9):1523-8.
    5Chitsaz A, Mousavi SA, Yousef Y, Mostafa V. Comparison of changes in serum fibrinogen level in primary intracranialhemorrhage (ICH) and ischemic stroke. ARYA Atheroscler2012;7(4):142-5.
    6Chen Z, Xi G, Mao Y, Keep RF, Hua Y. Effects of progesterone and testosterone on ICH-induced brain injury in rats.Acta Neurochir Suppl2011;111:289-93.
    7Ciancarelli I, Di Massimo C, De Amicis D, Carolei A, Tozzi Ciancarelli MG. Evidence of redox unbalance in post-acuteischemic stroke patients. Curr Neurovasc Res2012;9(2):85-90.
    8Hazarbasanov D, Velchev V, Finkov B, et al. Tailoring clopidogrel dose according to multiple electrode aggregometrydecreases the rate of ischemic complications after percutaneous coronary intervention. J Thromb Thrombolysis2012;34(1):85-90.
    9Mansour AA, Wanoose HL. Acute Phase Hyperglycemia among Patients Hospitalized with Acute Coronary Syndrome:Prevalence and Prognostic Significance. Oman Med J2011;26(2):85-90.
    10Fann DY, Lee SY, Manzanero S, et al. Intravenous immunoglobulin suppresses NLRP1and NLRP3inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis2013;4: e790.
    11Huang SS, Lu YJ, Huang JP, Wu YT, Day YJ, Hung LM. The essential role of endothelial nitric oxide synthaseactivation in insulin-mediated neuroprotection against ischemic stroke in diabetes. J Vasc Surg2014;59(2):483-91.
    Rhim T, Lee DY, Lee M. Drug delivery systems for the treatment of ischemic stroke. Pharm Res2013;30(10):2429-44.
    13Wang L, Li Z, Zhang X, et al. Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4,p-p38MAPK, NF-kappaB, TNF-alpha and MMP-9expression, up-regulated claudin-5expression, ameliorated BBBpermeability. Neurochem Res2014;39(1):97-106.
    14Dong L, Qiao H, Zhang X, et al. Parthenolide is neuroprotective in rat experimental stroke model: downregulatingNF-kappaB, phospho-p38MAPK, and caspase-1and ameliorating BBB permeability. Mediators Inflamm2013;2013:370804.
    Batra A, Latour LL, Ruetzler CA, et al. Increased plasma and tissue MMP levels are associated with BCSFB and BBBdisruption evident on post-contrast FLAIR after experimental stroke. J Cereb Blood Flow Metab2010;30(6):1188-99.
    1Nagaraja TN, Nagesh V, Ewing JR, Whitton PA, Fenstermacher JD, Knight RA. Step-down infusions of Gd-DTPAyield greater contrast-enhanced magnetic resonance images of BBB damage in acute stroke than bolus injections. MagnReson Imaging2007;25(3):311-8.
    Ding G, Jiang Q, Li L, et al. Detection of BBB disruption and hemorrhage by Gd-DTPA enhanced MRI after embolicstroke in rat. Brain Res2006;1114(1):195-203.
    Jiang Q, Ewing JR, Ding GL, et al. Quantitative evaluation of BBB permeability after embolic stroke in rat using MRI.J Cereb Blood Flow Metab2005;25(5):583-92.
    Shaltiel-Karyo R, Frenkel-Pinter M, Rockenstein E, et al. A blood-brain barrier (BBB) disrupter is also a potentalpha-synuclein (alpha-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinsondisease (PD). J Biol Chem2013;288(24):17579-88.
    Hsuchou H, Mishra PK, Kastin AJ, et al. Saturable leptin transport across the BBB persists in EAE mice. J MolNeurosci2013;51(2):364-70.
    On NH, Mitchell R, Savant SD, Bachmeier CJ, Hatch GM, Miller DW. Examination of blood-brain barrier (BBB)integrity in a mouse brain tumor model. J Neurooncol2013;111(2):133-43.
    de Lange EC. The physiological characteristics and transcytosis mechanisms of the blood-brain barrier (BBB). CurrPharm Biotechnol2012;13(12):2319-27.
    Zhang X, Wang C, Li Y, et al. Neuroprotection of early and short-time applying berberine in the acute phase of cerebralischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-kappaB expression, ameliorated BBB permeability.Brain Res2012;1459:61-70.
    Hu X, Li JH, Lan L, et al. In vitro study of the effects of Angiostrongylus cantonensis larvae extracts on apoptosis anddysfunction in the blood-brain barrier (BBB). PLoS One2012;7(2): e32161.
    Chern CM, Wang YH, Liou KT, Hou YC, Chen CC, Shen YC.2-Methoxystypandrone ameliorates brain functionthrough preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke. Biochem Pharmacol2014;87(3):502-14.
    Chung YC, Kim YS, Bok E, Yune TY, Maeng S, Jin BK. MMP-3contributes to nigrostriatal dopaminergic neuronalloss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson's disease. Mediators Inflamm2013;2013:370526.
    Hsuchou H, Kastin AJ, Mishra PK, Pan W. C-reactive protein increases BBB permeability: implications for obesityand neuroinflammation. Cell Physiol Biochem2012;30(5):1109-19.
    Watzlawik J, Warrington AE, Rodriguez M. Importance of oligodendrocyte protection, BBB breakdown andinflammation for remyelination. Expert Rev Neurother2010;10(3):441-57.
    Kuang Y, Lackay SN, Zhao L, Fu ZF. Role of chemokines in the enhancement of BBB permeability and inflammatoryinfiltration after rabies virus infection. Virus Res2009;144(1-2):18-26.
    Yu C, Argyropoulos G, Zhang Y, Kastin AJ, Hsuchou H, Pan W. Neuroinflammation activates Mdr1b efflux transportthrough NFkappaB: promoter analysis in BBB endothelia. Cell Physiol Biochem2008;22(5-6):745-56.
    Willis CL, Brooks TA, Davis TP. Chronic inflammatory pain and the neurovascular unit: a central role for glia inmaintaining BBB integrity? Curr Pharm Des2008;14(16):1625-43.
    Brooks TA, Ocheltree SM, Seelbach MJ, et al. Biphasic cytoarchitecture and functional changes in the BBB inducedby chronic inflammatory pain. Brain Res2006;1120(1):172-82.
    1Chern CM, Wang YH, Liou KT, Hou YC, Chen CC, Shen YC.2-Methoxystypandrone ameliorates brain function through preservingBBB integrity and promoting neurogenesis in mice with acute ischemic stroke. Biochem Pharmacol2014;87(3):502-14.
    2Zhang X, Wang C, Li Y, et al. Neuroprotection of early and short-time applying berberine in the acute phase of cerebralischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-kappaB expression, ameliorated BBB permeability.Brain Res2012;1459:61-70.
    3Kuang Y, Lackay SN, Zhao L, Fu ZF. Role of chemokines in the enhancement of BBB permeability and inflammatoryinfiltration after rabies virus infection. Virus Res2009;144(1-2):18-26.
    Liu DZ, Sharp FR. Excitatory and Mitogenic Signaling in Cell Death, Blood-brain Barrier Breakdown, and BBBRepair after Intracerebral Hemorrhage. Transl Stroke Res2012;3(Suppl1):62-9.
    1Batra A, Latour LL, Ruetzler CA, et al. Increased plasma and tissue MMP levels are associated with BCSFB and BBBdisruption evident on post-contrast FLAIR after experimental stroke. J Cereb Blood Flow Metab2010;30(6):1188-99.
    2Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-time applying atorvastatin in the acute phase ofcerebral ischemia: down-regulated12/15-LOX, p38MAPK and cPLA2expression, ameliorated BBB permeability. BrainRes2010;1325:164-73.
    3Spatz M. Past and recent BBB studies with particular emphasis on changes in ischemic brain edema: dedicated to thememory of Dr. Igor Klatzo. Acta Neurochir Suppl2010;106:21-7.
    4Vajtr D, Benada O, Kukacka J, et al. Correlation of ultrastructural changes of endothelial cells and astrocytes occurringduring blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage andinflammatory response. Physiol Res2009;58(2):263-8.
    5Wang L, Li Z, Zhang X, et al. Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4,p-p38MAPK, NF-kappaB, TNF-alpha and MMP-9expression, up-regulated claudin-5expression, ameliorated BBBpermeability. Neurochem Res2014;39(1):97-106.
    6Iizasa H, Bae SH, Asashima T, et al. Augmented expression of the tight junction protein occludin in brain endothelialcell line TR-BBB by rat angiopoietin-1expressed in baculovirus-infected Sf plus insect cells. Pharm Res2002;19(11):1757-60.
    7Jia W, Lu R, Martin TA, Jiang WG. The role of claudin-5in blood-brain barrier (BBB) and brain metastases (review).Mol Med Rep2014;9(3):779-85.
    Mahajan SD, Aalinkeel R, Reynolds JL, et al. Suppression of MMP-9expression in brain microvascular endothelialcells (BMVEC) using a gold nanorod (GNR)-siRNA nanoplex. Immunol Invest2012;41(4):337-55.
    9Walsh TG, Murphy RP, Fitzpatrick P, et al. Stabilization of brain microvascular endothelial barrier function by shearstress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol2011;226(11):3053-63.
    10Persidsky Y, Heilman D, Haorah J, et al. Rho-mediated regulation of tight junctions during monocyte migration acrossthe blood-brain barrier in HIV-1encephalitis (HIVE). Blood2006;107(12):4770-80.
    11Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L. HIV-1Tat protein increases the permeability of brain endothelial cells byboth inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res2012;1436:13-9.
    12ElAli A, Doeppner TR, Zechariah A, Hermann DM. Increased blood-brain barrier permeability and brain edema afterfocal cerebral ischemia induced by hyperlipidemia: role of lipid peroxidation and calpain-1/2, matrixmetalloproteinase-2/9, and RhoA overactivation. Stroke2011;42(11):3238-44.
    13Park M, Kim HJ, Lim B, Wylegala A, Toborek M. Methamphetamine-induced occludin endocytosis is mediated by theArp2/3complex-regulated actin rearrangement. J Biol Chem2013;288(46):33324-34.
    14Xia YP, He QW, Li YN, et al. Recombinant human sonic hedgehog protein regulates the expression of ZO-1andoccludin by activating angiopoietin-1in stroke damage. PLoS One2013;8(7): e68891.
    Zhang Y, Zhang P, Shen X, et al. Early Exercise Protects the Blood-Brain Barrier from Ischemic Brain Injury via theRegulation of MMP-9and Occludin in Rats. Int J Mol Sci2013;14(6):11096-112.
    1Shin JA, Kim YA, Jeong SI, Lee KE, Kim HS, Park EM. Extracellular signal-regulated kinase1/2-dependent changes intight junctions after ischemic preconditioning contributes to tolerance induction after ischemic stroke. Brain Struct Funct2013.
    Rosas-Hernandez H, Cuevas E, Lantz-McPeak SM, Ali SF, Gonzalez C. Prolactin protects against themethamphetamine-induced cerebral vascular toxicity. Curr Neurovasc Res2013;10(4):346-55.
    3Rosas-Hernandez H, Cuevas E, Lantz SM, et al. Prolactin and blood-brain barrier permeability. Curr Neurovasc Res2013;10(4):278-86.
    4Li HJ, Guo LM, Yang LL, et al. Electromagnetic-pulse-induced activation of p38MAPK pathway and disruption ofblood-retinal barrier. Toxicol Lett2013;220(1):35-43.
    5Paul D, Cowan AE, Ge S, Pachter JS. Novel3D analysis of Claudin-5reveals significant endothelial heterogeneityamong CNS microvessels. Microvasc Res2013;86:1-10.
    Liu K, Sun T, Wang P, Liu YH, Zhang LW, Xue YX. Effects of erythropoietin on blood-brain barrier tight junctions inischemia-reperfusion rats. J Mol Neurosci2013;49(2):369-79.
    1Rosas-Hernandez H, Cuevas E, Lantz SM, et al. Prolactin and blood-brain barrier permeability. Curr Neurovasc Res2013;10(4):278-86.
    2Ersahin M, Ozsavci D, Sener A, et al. Obestatin alleviates subarachnoid haemorrhage-induced oxidative injury in ratsvia its anti-apoptotic and antioxidant effects. Brain Inj2013;27(10):1181-9.
    3Stavale LM, Soares ES, Mendonca MC, Irazusta SP, da Cruz Hofling MA. Temporal relationship between aquaporin-4and glial fibrillary acidic protein in cerebellum of neonate and adult rats administered a BBB disrupting spider venom.Toxicon2013;66:37-46.
    4Shaltiel-Karyo R, Frenkel-Pinter M, Rockenstein E, et al. A blood-brain barrier (BBB) disrupter is also a potentalpha-synuclein (alpha-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinsondisease (PD). J Biol Chem2013;288(24):17579-88.
    5Alonso A, Reinz E, Leuchs B, et al. Focal Delivery of AAV2/1-transgenes Into the Rat Brain by LocalizedUltrasound-induced BBB Opening. Mol Ther Nucleic Acids2013;2: e73.
    6Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach to study the factors, parameters andapproaches for prediction of permeability of drugs across BBB. Expert Opin Drug Deliv2013;10(7):927-55.
    On NH, Mitchell R, Savant SD, Bachmeier CJ, Hatch GM, Miller DW. Examination of blood-brain barrier (BBB)integrity in a mouse brain tumor model. J Neurooncol2013;111(2):133-43.
    8Lopez Correa T, Vara Miranda A, Garzon Sanchez JC, Muriel Villoria C.[Repair of a laryngeal fissure in a patient withOpitz G/BBB syndrome]. Rev Esp Anestesiol Reanim2013;60(3):178-9.
    9Wang L, Wu G, Sheng F, Wang F, Feng A. Minimally invasive procedures reduce perihematomal endothelin-1levelsand the permeability of the BBB in a rabbit model of intracerebral hematoma. Neurol Sci2013;34(1):41-9.
    10Sehgal CM, Wood AK. Re "Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential newphysical therapy of anti-angiogenesis". Ultrasound Med Biol2014;40(2):455-6.Gao S, Liu Z, Xie F. Reply to the Letter to the Editor re "Disruption of Tumor Neovasculature by MicrobubbleEnhanced Ultrasound: A Potential New Physical Therapy of Anti-angiogenesis". Ultrasound Med Biol2014;40(2):456.
    12Kwok SJ, El Kaffas A, Lai P, et al. Ultrasound-mediated microbubble enhancement of radiation therapy studied usingthree-dimensional high-frequency power Doppler ultrasound. Ultrasound Med Biol2013;39(11):1983-90.
    13Okita K, Sugiyama K, Takagi S, Matsumto Y. Microbubble behavior in an ultrasound field for high intensity focusedultrasound therapy enhancement. J Acoust Soc Am2013;134(2):1576-85.
    14Chen ZY, Yang F, Lin Y, et al. New development and application of ultrasound targeted microbubble destruction ingene therapy and drug delivery. Curr Gene Ther2013;13(4):250-74.
    Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment.Drug Des Devel Ther2013;7:375-88.
    1Zha Z, Wang S, Zhang S, et al. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubbledestruction for efficient photothermal therapy. Nanoscale2013;5(8):3216-9.
    2Sorace AG, Saini R, Rosenthal E, Warram JM, Zinn KR, Hoyt K. Optical fluorescent imaging to monitor temporaleffects of microbubble-mediated ultrasound therapy. IEEE Trans Ultrason Ferroelectr Freq Control2013;60(2):281-9.
    Nofiele JT, Karshafian R, Furukawa M, et al. Ultrasound-activated microbubble cancer therapy: ceramide productionleading to enhanced radiation effect in vitro. Technol Cancer Res Treat2013;12(1):53-60.
    1Nofiele JT, Karshafian R, Furukawa M, et al. Ultrasound-activated microbubble cancer therapy: ceramide productionleading to enhanced radiation effect in vitro. Technol Cancer Res Treat2013;12(1):53-60.
    2Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics2012;2(12):1208-22.
    3Carson AR, McTiernan CF, Lavery L, et al. Ultrasound-targeted microbubble destruction to deliver siRNA cancertherapy. Cancer Res2012;72(23):6191-9.
    4Porter TR, Xie F. Can transcranial ultrasound and microbubble therapy ever enter the mainstream in acute stroketherapy? Expert Rev Cardiovasc Ther2012;10(5):549-51.
    5Nomikou N, McHale AP. Microbubble-enhanced ultrasound-mediated gene transfer--towards the development oftargeted gene therapy for cancer. Int J Hyperthermia2012;28(4):300-10.
    6Zheng Y, Zhang Y, Ao M, et al. Hematoporphyrin encapsulated PLGA microbubble for contrast enhanced ultrasoundimaging and sonodynamic therapy. J Microencapsul2012;29(5):437-44.
    Liu Z, Gao S, Zhao Y, et al. Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential newphysical therapy of anti-angiogenesis. Ultrasound Med Biol2012;38(2):253-61.
    8Carson AR, McTiernan CF, Lavery L, et al. Gene therapy of carcinoma using ultrasound-targeted microbubbledestruction. Ultrasound Med Biol2011;37(3):393-402.
    9Yuan JY, Zhang JH, Tang C, Zhu H, Xie H, Gao SJ. Application of ultrasound microbubble contrast technology inophthalmic targeted therapy: literature analysis. Int J Ophthalmol2011;4(5):537-42.
    10He Y, Bi Y, Hua Y, et al. Ultrasound microbubble-mediated delivery of the siRNAs targeting MDR1reduces drugresistance of yolk sac carcinoma L2cells. J Exp Clin Cancer Res2011;30:104.
    Qiu L, Zhang L, Wang L, et al. Ultrasound-targeted microbubble destruction enhances naked plasmid DNAtransfection in rabbit Achilles tendons in vivo. Gene Ther2012;19(7):703-10.
    12Ren ST, Zhang H, Wang YW, et al. The preparation of a new self-made microbubble-loading urokinase and itsthrombolysis combined with low-frequency ultrasound in vitro. Ultrasound Med Biol2011;37(11):1828-37.
    13Delalande A, Bouakaz A, Renault G, et al. Ultrasound and microbubble-assisted gene delivery in Achilles tendons:long lasting gene expression and restoration of fibromodulin KO phenotype. J Control Release2011;156(2):223-30.
    14Chen ZY, Liang K, Qiu RX, Luo LP. Ultrasound-and liposome microbubble-mediated targeted gene transfer tocardiomyocytes in vivo accompanied by polyethylenimine. J Ultrasound Med2011;30(9):1247-58.
    Browning RJ, Mulvana H, Tang M, Hajnal JV, Wells DJ, Eckersley RJ. Influence of needle gauge on in vivoultrasound and microbubble-mediated gene transfection. Ultrasound Med Biol2011;37(9):1531-7.
    1Carson AR, McTiernan CF, Lavery L, et al. Gene therapy of carcinoma using ultrasound-targeted microbubble
    2destruction. Ultrasound Med Biol2011;37(3):393-402.Yuan JY, Zhang JH, Tang C, Zhu H, Xie H, Gao SJ. Application of ultrasound microbubble contrast technology in
    3ophthalmic targeted therapy: literature analysis. Int J Ophthalmol2011;4(5):537-42.Song S, Shen Z, Chen L, Brayman AA, Miao CH. Explorations of high-intensity therapeutic ultrasound and
    4microbubble-mediated gene delivery in mouse liver. Gene Ther2011;18(10):1006-14.Fujii H, Li SH, Wu J, et al. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via
    5ultrasound targeted microbubble destruction enhances cardiac repair. Eur Heart J2011;32(16):2075-84.Zhou S, Li S, Liu Z, et al. Ultrasound-targeted microbubble destruction mediated herpes simplex virus-thymidine
    6kinase gene treats hepatoma in mice. J Exp Clin Cancer Res2010;29:170.Chen ZY, Liang K, Qiu RX. Targeted gene delivery in tumor xenografts by the combination of ultrasound-targetedmicrobubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis. J Exp Clin
    7Cancer Res2010;29:152.Zhou J, Wang Y, Xiong Y, Wang H, Feng Y, Chen J. Delivery of TFPI-2using ultrasound with a microbubble agent
    (SonoVue) inhibits intimal hyperplasia after balloon injury in a rabbit carotid artery model. Ultrasound Med Biol2010;36(11):1876-83.
    Luo J, Zhou X, Diao L, Wang Z. Experimental research on wild-type p53plasmid transfected into retinoblastoma cells
    9and tissues using an ultrasound microbubble intensifier. J Int Med Res2010;38(3):1005-15.
    Kutty S, Xie F, Gao S, et al. Sonothrombolysis of intra-catheter aged venous thrombi using microbubble enhancementand guided three-dimensional ultrasound pulses. J Am Soc Echocardiogr2010;23(9):1001-6.
    Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT. Ultrasound-triggered release of materials entrapped inmicrobubble-liposome constructs: a tool for targeted drug delivery. J Control Release2010;148(1):13-7.
    Suzuki J, Ogawa M, Takayama K, et al. Ultrasound-microbubble-mediated intercellular adhesion molecule-1smallinterfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice. J Am Coll Cardiol2010;55(9):904-13.
    Kang J, Wu X, Wang Z, et al. Antitumor effect of docetaxel-loaded lipid microbubbles combined withultrasound-targeted microbubble activation on VX2rabbit liver tumors. J Ultrasound Med2010;29(1):61-70.
    Li T, Liu Z. Ablation of benign prostatic hyperplasia using microbubble-mediated ultrasound cavitation. MedHypotheses2010;74(4):679-80.
    Hernot S, Cosyns B, Droogmans S, et al. Effect of high-intensity ultrasound-targeted microbubble destruction onperfusion and function of the rat heart assessed by pinhole-gated SPECT. Ultrasound Med Biol2010;36(1):158-65.
    Choi JJ, Feshitan JA, Baseri B, et al. Microbubble-size dependence of focused ultrasound-induced blood-brain barrieropening in mice in vivo. IEEE Trans Biomed Eng2010;57(1):145-54.
    Xu YL, Gao YH, Liu Z, et al. Myocardium-targeted transplantation of mesenchymal stem cells by diagnosticultrasound-mediated microbubble destruction improves cardiac function in myocardial infarction of New Zealand rabbits.Int J Cardiol2010;138(2):182-95.
    1Zhou J, Wang Y, Xiong Y, Wang H, Feng Y, Chen J. Delivery of TFPI-2using ultrasound with a microbubble agent(SonoVue) inhibits intimal hyperplasia after balloon injury in a rabbit carotid artery model. Ultrasound Med Biol2010;36(11):1876-83.
    2Anderson CR, Rychak JJ, Backer M, Backer J, Ley K, Klibanov AL. scVEGF microbubble ultrasound contrast agents:a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol2010;45(10):579-85.
    Sirsi S, Feshitan J, Kwan J, Homma S, Borden M. Effect of microbubble size on fundamental mode high frequencyultrasound imaging in mice. Ultrasound Med Biol2010;36(6):935-48.
    4Suzuki J, Ogawa M, Takayama K, et al. Ultrasound-microbubble-mediated intercellular adhesion molecule-1smallinterfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice. J Am Coll Cardiol2010;55(9):904-13.
    5Li T, Liu Z. Ablation of benign prostatic hyperplasia using microbubble-mediated ultrasound cavitation. MedHypotheses2010;74(4):679-80.
    6Xu YL, Gao YH, Liu Z, et al. Myocardium-targeted transplantation of mesenchymal stem cells by diagnosticultrasound-mediated microbubble destruction improves cardiac function in myocardial infarction of New Zealand rabbits.Int J Cardiol2010;138(2):182-95.
    1Meamar R, Dehghani L, Ghasemi M, Khorvash F, Shaygannejad V. Stem cell therapy in stroke: a review literature. Int JPrev Med2013;4(Suppl2): S139-46.
    2von Scheele B, Fernandez M, Hogue SL, Kwong WJ. Review of economics and cost-effectiveness analyses ofanticoagulant therapy for stroke prevention in atrial fibrillation in the US. Ann Pharmacother2013;47(5):671-85.
    3Lee M, Saver JL, Hong KS, Rao NM, Wu YL, Ovbiagele B. Risk-benefit profile of long-term dual-versussingle-antiplatelet therapy among patients with ischemic stroke: a systematic review and meta-analysis. Ann Intern Med2013;159(7):463-70.
    4Rosado-de-Castro PH, Pimentel-Coelho PM, da Fonseca LM, de Freitas GR, Mendez-Otero R. The rise of cell therapytrials for stroke: review of published and registered studies. Stem Cells Dev2013;22(15):2095-111.
    5Cherry MG, Greenhalgh J, Osipenko L, et al. The clinical effectiveness and cost-effectiveness of primary stroke prevention inchildren with sickle cell disease: a systematic review and economic evaluation. Health Technol Assess2012;16(43):1-129.
    6Lees JS, Sena ES, Egan KJ, et al. Stem cell-based therapy for experimental stroke: a systematic review andmeta-analysis. Int J Stroke2012;7(7):582-8.
    7Yu CH, Mathiowetz V. Systematic review of occupational therapy-related interventions for people with multiplesclerosis: part1. Activity and participation. Am J Occup Ther2014;68(1):27-32.
    8Madjd Z, Gheytanchi E, Erfani E, Asadi-Lari M. Application of stem cells in targeted therapy of breast cancer: asystematic review. Asian Pac J Cancer Prev2013;14(5):2789-800.
    9Griffin MD, Elliman SJ, Cahill E, English K, Ceredig R, Ritter T. Concise review: adult mesenchymal stromal celltherapy for inflammatory diseases: how well are we joining the dots? Stem Cells2013;31(10):2033-41.
    10Sun H, Benardais K, Stanslowsky N, et al. Therapeutic potential of mesenchymal stromal cells and MSC conditionedmedium in Amyotrophic Lateral Sclerosis (ALS)--in vitro evidence from primary motor neuron cultures, NSC-34cells,astrocytes and microglia. PLoS One2013;8(9): e72926.
    11Russell KC, Tucker HA, Bunnell BA, et al. Cell-surface expression of neuron-glial antigen2(NG2) and melanomacell adhesion molecule (CD146) in heterogeneous cultures of marrow-derived mesenchymal stem cells. Tissue Eng Part A2013;19(19-20):2253-66.
    12Xu Y, Gu Z, Shen B, et al. Roles of Wnt/beta-catenin signaling in retinal neuron-like differentiation of bone marrowmesenchymal stem cells from nonobese diabetic mice. J Mol Neurosci2013;49(2):250-61.
    13Frattini F, Lopes FR, Almeida FM, et al. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerveregeneration and sensory neuron survival after nerve injury. Tissue Eng Part A2012;18(19-20):2030-9.
    14Gupta N, Stopfer M. Olfactory coding: giant inhibitory neuron governs sparse odor codes. Curr Biol2011;21(13): R504-6.
    1Fields RD. Advances in understanding neuron-glia interactions. Neuron Glia Biol2006;2(1):23-6.
    2Iwata NK.[Objective markers for upper motor neuron involvement in amyotrophic lateral sclerosis]. Brain Nerve2007;59(10):1053-64.
    Huang T, He D, Kleiner G, Kuluz J. Neuron-like differentiation of adipose-derived stem cells from infant piglets invitro. J Spinal Cord Med2007;30Suppl1: S35-40.
    1Meamar R, Dehghani L, Ghasemi M, Khorvash F, Shaygannejad V. Stem cell therapy in stroke: a review literature. Int JPrev Med2013;4(Suppl2): S139-46.
    2Onteniente B. The multiple aspects of stroke and stem cell therapy. Curr Mol Med2013;13(5):821-31.3Cross DJ, Minoshima S. Perspectives on assessment of stem cell therapy in stroke by18F-FDG PET. J Nucl Med2013;54(5):668-9.
    4Balami JS, Fricker RA, Chen R. Stem cell therapy for ischaemic stroke: translation from preclinical studies to clinicaltreatment. CNS Neurol Disord Drug Targets2013;12(2):209-19.
    5Mir O, Savitz SI. Stem cell therapy in stroke treatment: is it a viable option? Expert Rev Neurother2013;13(2):119-21.
    Sinden JD, Vishnubhatla I, Muir KW. Prospects for stem cell-derived therapy in stroke. Prog Brain Res2012;201:119-67.
    7Betancourt AM. New Cell-Based Therapy Paradigm: Induction of Bone Marrow-Derived Multipotent MesenchymalStromal Cells into Pro-Inflammatory MSC1and Anti-inflammatory MSC2Phenotypes. Adv Biochem Eng Biotechnol2013;130:163-97.
    8Kniazev OV, Ruchkina IN, Parfenov AI, Konopliannikov AG, Sagynbaeva VE.[Complete elimination ofcytomegalovirus without antiviral therapy after systemic transplantation of mesenchymal bone marrow stromal cells in apatient with ulcerative colitis]. Eksp Klin Gastroenterol2012;(3):118-23.
    Forte A, Rinaldi B, Sodano L, et al. Stem cell therapy for arterial restenosis: potential parameters contributing to thesuccess of bone marrow-derived mesenchymal stromal cells. Cardiovasc Drugs Ther2012;26(1):9-21.
    1Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA. Effects on proliferation and differentiation of multipotent bonemarrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells2011;29(11):1727-37.
    2Tesfai Y, Ford J, Carter KW, et al. Interactions between acute lymphoblastic leukemia and bone marrow stromal cellsinfluence response to therapy. Leuk Res2012;36(3):299-306.
    3Suda S, Shimazaki K, Ueda M, et al. Combination therapy with bone marrow stromal cells and FK506enhancedamelioration of ischemic brain damage in rats. Life Sci2011;89(1-2):50-6.
    4Dai J, Wang X, Shen G. Cotransplantation of autologous bone marrow stromal cells and chondrocytes as a noveltherapy for reconstruction of condylar cartilage. Med Hypotheses2011;77(1):132-3.
    5Vaquero J, Zurita M. Functional recovery after severe CNS trauma: current perspectives for cell therapy with bonemarrow stromal cells. Prog Neurobiol2011;93(3):341-9.
    6Zurita M, Otero L, Aguayo C, et al. Cell therapy for spinal cord repair: optimization of biologic scaffolds for survivaland neural differentiation of human bone marrow stromal cells. Cytotherapy2010;12(4):522-37.
    7Chen NK, Tan SY, Udolph G, Kon OL. Insulin expressed from endogenously active glucose-responsive EGR1promoterin bone marrow mesenchymal stromal cells as diabetes therapy. Gene Ther2010;17(5):592-605.
    8Kinkaid HY, Huang XP, Li RK, Weisel RD. What's new in cardiac cell therapy? Allogeneic bone marrow stromal cellsas "universal donor cells". J Card Surg2010;25(3):359-66.
    Koppula PR, Chelluri LK, Polisetti N, Vemuganti GK. Histocompatibility testing of cultivated human bone marrowstromal cells-a promising step towards pre-clinical screening for allogeneic stem cell therapy. Cell Immunol2009;259(1):61-5.
    10Montzka K, Lassonczyk N, Tschoke B, et al. Neural differentiation potential of human bone marrow-derivedmesenchymal stromal cells: misleading marker gene expression. BMC Neurosci2009;10:16.
    11Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM. Human bone marrow mesenchymal stromal cellsexpress the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood2007;109(10):4245-8.
    12Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M. Bone marrow stromal cell antigen2is aspecific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFNstimulation. J Immunol2006;177(5):3260-5.
    13Hagmann S, Moradi B, Frank S, et al. Different culture media affect growth characteristics, surface markerdistribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. BMCMusculoskelet Disord2013;14:223.
    14Hagmann S, Moradi B, Frank S, et al. FGF-2addition during expansion of human bone marrow-derived stromal cellsalters MSC surface marker distribution and chondrogenic differentiation potential. Cell Prolif2013;46(4):396-407.
    15Abbaszadeh HA, Tiraihi T, Delshad AR, Saghedi Zadeh M, Taheri T. Bone marrow stromal cell transdifferentiationinto oligodendrocyte-like cells using triiodothyronine as a inducer with expression of platelet-derived growth factor alphaas a maturity marker. Iran Biomed J2013;17(2):62-70.
    1Gress DR. The problem with asymptomatic cerebral embolic complications in vascular procedures: what if they are notasymptomatic? J Am Coll Cardiol2012;60(17):1614-6.
    2Borlongan CV. Recent preclinical evidence advancing cell therapy for Alzheimer's disease. Exp Neurol2012;237(1):142-6.
    3Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder:microanatomy, neurochemistry and behavior. J Neurol Sci2012;322(1-2):241-9.
    4Meck WH, Church RM, Matell MS. Hippocampus, time, and memory--a retrospective analysis. Behav Neurosci2013;127(5):642-54.
    5Preston AR, Eichenbaum H. Interplay of hippocampus and prefrontal cortex in memory. Curr Biol2013;23(17):R764-73.
    6Albouy G, King BR, Maquet P, Doyon J. Hippocampus and striatum: dynamics and interaction during acquisition andsleep-related motor sequence memory consolidation. Hippocampus2013;23(11):985-1004.
    7Rajan KE, Singh HK, Parkavi A, Charles PD. Attenuation of1-(m-chlorophenyl)-biguanide inducedhippocampus-dependent memory impairment by a standardised extract of Bacopa monniera (BESEB CDRI-08).Neurochem Res2011;36(11):2136-44.
    8Dere E, Zlomuzica A, Viggiano D, et al. Episodic-like and procedural memory impairments in histamine H1Receptorknockout mice coincide with changes in acetylcholine esterase activity in the hippocampus and dopamine turnover in thecerebellum. Neuroscience2008;157(3):532-41.
    9Chang Q, Gold PE. Age-related changes in memory and in acetylcholine functions in the hippocampus in the Ts65Dnmouse, a model of Down syndrome. Neurobiol Learn Mem2008;89(2):167-77.
    10Transplantation: Autologous MSCs in living-related renal transplantation. Nat Rev Nephrol2012.
    11Li H, Gao F, Ma L, et al. Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in ratfoetuses with spina bifida aperta. J Cell Mol Med2012;16(7):1606-17.
    12Horwitz EM, Maziarz RT, Kebriaei P. MSCs in hematopoietic cell transplantation. Biol Blood Marrow Transplant2011;17(1Suppl): S21-9.
    13Tang T, Wu M, Yang J. Transplantation of MSCs transfected with SHH gene ameliorates cardiac dysfunction afterchronic myocardial infarction. Int J Cardiol2013;168(5):4997-9.
    14Cheng K, Rai P, Plagov A, et al. Transplantation of bone marrow-derived MSCs improves cisplatinum-induced renalinjury through paracrine mechanisms. Exp Mol Pathol2013;94(3):466-73.
    15Lee SH, Lee MW, Yoo KH, et al. Co-transplantation of third-party umbilical cord blood-derived MSCs promotesengraftment in children undergoing unrelated umbilical cord blood transplantation. Bone Marrow Transplant2013;48(8):1040-5.
    1Xiong F, Xu Y, Zheng H, et al. Microdystrophin delivery in dystrophin-deficient (mdx) mice by genetically-correctedsyngeneic MSCs transplantation. Transplant Proc2010;42(7):2731-9.
    2Bernardo ME, Ball LM, Cometa AM, et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threateningacute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord bloodtransplantation. Bone Marrow Transplant2011;46(2):200-7.
    Li Q, Yao D, Ma J, et al. Transplantation of MSCs in combination with netrin-1improves neoangiogenesis in a ratmodel of hind limb ischemia. J Surg Res2011;166(1):162-9.
    1Oh SH, Kim HN, Park HJ, Shin JY, Lee PH. Mesenchymal stem cells increase hippocampal neurogenesis and neuronaldifferentiation by enhancing the Wnt signaling pathway in Alzheimer's disease model. Cell Transplant2014.
    2Wang SP, Wang ZH, Peng DY, Li SM, Wang H, Wang XH. Therapeutic effect of mesenchymal stem cells in rats withintracerebral hemorrhage: reduced apoptosis and enhanced neuroprotection. Mol Med Rep2012;6(4):848-54.
    3Khalili MA, Anvari M, Hekmati-Moghadam SH, Sadeghian-Nodoushan F, Fesahat F, Miresmaeili SM. Therapeuticbenefit of intravenous transplantation of mesenchymal stem cells after experimental subarachnoid hemorrhage in rats. JStroke Cerebrovasc Dis2012;21(6):445-51.
    4Sadan O, Melamed E, Offen D. Intrastriatal transplantation of neurotrophic factor-secreting human mesenchymal stemcells improves motor function and extends survival in R6/2transgenic mouse model for Huntington's disease. PLoS Curr2012;4: e4f7f6dc013d4e.
    5Sadan O, Shemesh N, Barzilay R, et al. Mesenchymal stem cells induced to secrete neurotrophic factors attenuatequinolinic acid toxicity: a potential therapy for Huntington's disease. Exp Neurol2012;234(2):417-27.
    6Dadon-Nachum M, Sadan O, Srugo I, Melamed E, Offen D. Differentiated mesenchymal stem cells for sciatic nerveinjury. Stem Cell Rev2011;7(3):664-71.
    7Kaengkan P, Baek SE, Kim JY, et al. Administration of mesenchymal stem cells and ziprasidone enhancedamelioration of ischemic brain damage in rats. Mol Cells2013;36(6):534-41.
    8Cui X, Chen L, Ren Y, et al. Genetic modification of mesenchymal stem cells in spinal cord injury repair strategies.Biosci Trends2013;7(5):202-8.
    9Forostyak S, Jendelova P, Sykova E. The role of mesenchymal stromal cells in spinal cord injury, regenerativemedicine and possible clinical applications. Biochimie2013;95(12):2257-70.
    10Dao M, Tate CC, McGrogan M, Case CC. Comparing the angiogenic potency of naive marrow stromal cells andNotch-transfected marrow stromal cells. J Transl Med2013;11:81.
    11Jiang Q, Song P, Wang E, Li J, Hu S, Zhang H. Remote ischemic postconditioning enhances cell retention in themyocardium after intravenous administration of bone marrow mesenchymal stromal cells. J Mol Cell Cardiol2013;56:1-7.
    Guo F, Lv S, Lou Y, et al. Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke:involvement of notch signalling. Cell Biol Int2012;36(11):997-1004.
    1Raymond Gramiak, Pravin M. Shah, et al. Ultrasound Cardiography: Contrast Studies in Anatomy andFunction.Radiology.1969;92(5):939-948.
    2Raffi Bekeredjian, Shuyuan Chen,et al. Ultrasound-Targeted Microbubble Destruction Can Repeatedly Direct HighlySpecific Plasmid Expression to the Heart. Circulation.2003;108:1022-1026.
    Chen CY, Ding JH, et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destructiontechnology. PNAS.2006;103(22):8469-8474.
    1Ali H Mesiwala, Lindi Farrell, H.Jurgen Wenzel, et al. High-intensity focused ultrasound selectively disrupts theblood-brain barrier in vivo. Ultrasound in Medicine&Biology.2002;28(3):389-400.
    2杨延庆,程远等.MRI引导聚焦超声联合微泡开放血脑屏障的时效关系.中国医学杂志.2008;24(9):773-778.
    3S. Kubo1, H. Kinoshita, K. Preoperative Localization of Hepatomas by Sonographywith Microbubbles of Carbon Dioxide. AJR.1994;163:1405-1406.
    1Martin J K Blomley, Jennifer C Cooke, et al. Microbubble contrast agents: a new era in ultrasound. BMJ.2001;322(7296):1222–1225.
    1Ralph V. Shohet,Shuyuan Chen. Echocardiographic Destruction of Albumin Microbubbles Directs Gene Delivery tothe Myocardium.Circulation.2000;101:2554-2556.
    2V P Zharov, R R Letfullin, E N Galitovskaya. Microbubbles-overlapping mode for laser killing
    3Folkman J, Watson K, Ingber D. Induction of angiogenesis during the transition from hyperplasia to neoplasia[J].Nature.1989;339:58-61.
    Alexander L. Klibanov. Ligand-Carrying Gas-Filled Microbubbles: Ultrasound Contrast Agents for TargetedMolecular Imaging. Bioconjugate Chem.2005;6(1):9-17.
    1T. S. Reese,Morris J. Karnovsky. Fine structural localization of a blood-brain barrier to exogenous peroxidase.JCB.1967;34(1):207-217.
    1Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. JCell Biol.1999;147:185–194.
    2Mikio Furuse, Masaki Hata, Shoichiro Tsukita, et al. Claudin-based tight junctions are crucial for the mammalianepidermal barrier. JCB.2002;156(6):1099-1111.
    Matthias Rothermundt1, Marion Peters1,et al. S100B in brain damage and neurodegeneration. Microscopy Researchand Technique.2003;60(6):614-632.
    1Hynynen K, McDannold N, Vykhodt seva N, et al. Noninvasive MR imaging-guided focal opening of theblood-brainbarrier in rabbits. Radiology.2001;220(101):64026461.
    1J ames J, mathieu P, Scott A, et al. noninvasive t ranscranial and localized opening of the blood-brain barrierusing focused ultrasound in mice.Ult rasound in Med&Biol.2007;33(1):95-104.
    2Liu P, Gao YH, Tan KB, et al. Effect of different power ultrasound on t he blood-brain barrier permeability incerebral ultrasound imaging. Chinese Ult rasound Med.2005;21(7):481-483.
    3Chen Y, Yu R, Song Y, et al. Preliminary study of low-f requency ultrasound associated with microbubbles to open theblood brain barrier through the skull. Chin Med Imaging Technol.2006;22(1):42-44.
    Kinoshita M, McDannold N, Jolesz FA, et al. Targeted delivery of antibodies through the blood-brain barrier byMRI-guided focused ultrasound. Biochem Biophys Res Commun.2006;34(4):1085-1090.
    1Kopen GC, Prockop DJ, PhinneyDG. Marrow stromal cells migrate throughout forebrain and cerebellum and theydifferentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA.1999;96:10711-10716.
    2Brazelton TR, Rossi FM, Keshet GI, et al. From marrow to brain:exp ression of neuronal phenotypes in adult mice.Science.2000;290:1775-1779.
    Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells aftercerebral ischemia in rats. Stroke.2001;32:1005-1011.
    [1] Tu JV, Wang H, Bowyer B, Green L, Fang J, Kucey D. Risk factors for death or strokeafter carotid endarterectomy: observations from the Ontario Carotid EndarterectomyRegistry. Stroke2003;34(11):2568-73.
    [2] Kiyohara Y, Kubo M, Kato I, et al. Ten-year prognosis of stroke and risk factors fordeath in a Japanese community: the Hisayama study. Stroke2003;34(10):2343-7.
    [3] Engstad T, Viitanen M, Arnesen E. Predictors of death among long-term strokesurvivors. Stroke2003;34(12):2876-80.
    [4] Park YK, Yi HJ, Lee YJ, Cho H, Chun HJ, Oh SJ. The relationship between metabolicsyndrome (MetS) and spontaneous intracerebral hemorrhage (ICH). Neurol Sci2013;34(9):1523-8.
    [5] Chitsaz A, Mousavi SA, Yousef Y, Mostafa V. Comparison of changes in serumfibrinogen level in primary intracranial hemorrhage (ICH) and ischemic stroke. ARYAAtheroscler2012;7(4):142-5.
    [6] Chen Z, Xi G, Mao Y, Keep RF, Hua Y. Effects of progesterone and testosterone onICH-induced brain injury in rats. Acta Neurochir Suppl2011;111:289-93.
    [7] Ciancarelli I, Di Massimo C, De Amicis D, Carolei A, Tozzi Ciancarelli MG.Evidence of redox unbalance in post-acute ischemic stroke patients. Curr NeurovascRes2012;9(2):85-90.
    [8] Hazarbasanov D, Velchev V, Finkov B, et al. Tailoring clopidogrel dose according tomultiple electrode aggregometry decreases the rate of ischemic complications afterpercutaneous coronary intervention. J Thromb Thrombolysis2012;34(1):85-90.
    [9] Mansour AA, Wanoose HL. Acute Phase Hyperglycemia among Patients Hospitalizedwith Acute Coronary Syndrome: Prevalence and Prognostic Significance. Oman MedJ2011;26(2):85-90.
    [10] Fann DY, Lee SY, Manzanero S, et al. Intravenous immunoglobulin suppressesNLRP1and NLRP3inflammasome-mediated neuronal death in ischemic stroke. CellDeath Dis2013;4: e790.
    [11] Huang SS, Lu YJ, Huang JP, Wu YT, Day YJ, Hung LM. The essential role ofendothelial nitric oxide synthase activation in insulin-mediated neuroprotectionagainst ischemic stroke in diabetes. J Vasc Surg2014;59(2):483-91.
    [12] Rhim T, Lee DY, Lee M. Drug delivery systems for the treatment of ischemic stroke.Pharm Res2013;30(10):2429-44.
    [13] Wang L, Li Z, Zhang X, et al. Protective effect of shikonin in experimental ischemicstroke: attenuated TLR4, p-p38MAPK, NF-kappaB, TNF-alpha and MMP-9expression, up-regulated claudin-5expression, ameliorated BBB permeability.Neurochem Res2014;39(1):97-106.
    [14] Dong L, Qiao H, Zhang X, et al. Parthenolide is neuroprotective in rat experimentalstroke model: downregulating NF-kappaB, phospho-p38MAPK, and caspase-1andameliorating BBB permeability. Mediators Inflamm2013;2013:370804.
    [15] Batra A, Latour LL, Ruetzler CA, et al. Increased plasma and tissue MMP levels areassociated with BCSFB and BBB disruption evident on post-contrast FLAIR afterexperimental stroke. J Cereb Blood Flow Metab2010;30(6):1188-99.
    [16] Nagaraja TN, Nagesh V, Ewing JR, Whitton PA, Fenstermacher JD, Knight RA.Step-down infusions of Gd-DTPA yield greater contrast-enhanced magnetic resonanceimages of BBB damage in acute stroke than bolus injections. Magn Reson Imaging2007;25(3):311-8.
    [17] Ding G, Jiang Q, Li L, et al. Detection of BBB disruption and hemorrhage byGd-DTPA enhanced MRI after embolic stroke in rat. Brain Res2006;1114(1):195-203.
    [18] Jiang Q, Ewing JR, Ding GL, et al. Quantitative evaluation of BBB permeability afterembolic stroke in rat using MRI. J Cereb Blood Flow Metab2005;25(5):583-92.
    [19] Shaltiel-Karyo R, Frenkel-Pinter M, Rockenstein E, et al. A blood-brain barrier (BBB)disrupter is also a potent alpha-synuclein (alpha-syn) aggregation inhibitor: a noveldual mechanism of mannitol for the treatment of Parkinson disease (PD). J Biol Chem2013;288(24):17579-88.
    [20] Hsuchou H, Mishra PK, Kastin AJ, et al. Saturable leptin transport across the BBBpersists in EAE mice. J Mol Neurosci2013;51(2):364-70.
    [21] On NH, Mitchell R, Savant SD, Bachmeier CJ, Hatch GM, Miller DW. Examinationof blood-brain barrier (BBB) integrity in a mouse brain tumor model. J Neurooncol2013;111(2):133-43.
    [22] de Lange EC. The physiological characteristics and transcytosis mechanisms of theblood-brain barrier (BBB). Curr Pharm Biotechnol2012;13(12):2319-27.
    [23] Zhang X, Wang C, Li Y, et al. Neuroprotection of early and short-time applyingberberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK andpCREB, down-regulated NF-kappaB expression, ameliorated BBB permeability.Brain Res2012;1459:61-70.
    [24] Hu X, Li JH, Lan L, et al. In vitro study of the effects of Angiostrongylus cantonensislarvae extracts on apoptosis and dysfunction in the blood-brain barrier (BBB). PLoSOne2012;7(2): e32161.
    [25] Chern CM, Wang YH, Liou KT, Hou YC, Chen CC, Shen YC.2-Methoxystypandroneameliorates brain function through preserving BBB integrity and promotingneurogenesis in mice with acute ischemic stroke. Biochem Pharmacol2014;87(3):502-14.
    [26] Chung YC, Kim YS, Bok E, Yune TY, Maeng S, Jin BK. MMP-3contributes tonigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in anMPTP mouse model of Parkinson's disease. Mediators Inflamm2013;2013:370526.
    [27] Hsuchou H, Kastin AJ, Mishra PK, Pan W. C-reactive protein increases BBBpermeability: implications for obesity and neuroinflammation. Cell Physiol Biochem2012;30(5):1109-19.
    [28] Watzlawik J, Warrington AE, Rodriguez M. Importance of oligodendrocyte protection,BBB breakdown and inflammation for remyelination. Expert Rev Neurother2010;10(3):441-57.
    [29] Kuang Y, Lackay SN, Zhao L, Fu ZF. Role of chemokines in the enhancement of BBBpermeability and inflammatory infiltration after rabies virus infection. Virus Res2009;144(1-2):18-26.
    [30] Yu C, Argyropoulos G, Zhang Y, Kastin AJ, Hsuchou H, Pan W. Neuroinflammationactivates Mdr1b efflux transport through NFkappaB: promoter analysis in BBBendothelia. Cell Physiol Biochem2008;22(5-6):745-56.
    [31] Willis CL, Brooks TA, Davis TP. Chronic inflammatory pain and the neurovascularunit: a central role for glia in maintaining BBB integrity? Curr Pharm Des2008;14(16):1625-43.
    [32] Brooks TA, Ocheltree SM, Seelbach MJ, et al. Biphasic cytoarchitecture andfunctional changes in the BBB induced by chronic inflammatory pain. Brain Res2006;1120(1):172-82.
    [33] Liu DZ, Sharp FR. Excitatory and Mitogenic Signaling in Cell Death, Blood-brainBarrier Breakdown, and BBB Repair after Intracerebral Hemorrhage. Transl StrokeRes2012;3(Suppl1):62-9.
    [34] Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-time applyingatorvastatin in the acute phase of cerebral ischemia: down-regulated12/15-LOX,p38MAPK and cPLA2expression, ameliorated BBB permeability. Brain Res2010;1325:164-73.
    [35] Spatz M. Past and recent BBB studies with particular emphasis on changes inischemic brain edema: dedicated to the memory of Dr. Igor Klatzo. Acta NeurochirSuppl2010;106:21-7.
    [36] Vajtr D, Benada O, Kukacka J, et al. Correlation of ultrastructural changes ofendothelial cells and astrocytes occurring during blood brain barrier damage aftertraumatic brain injury with biochemical markers of BBB leakage and inflammatoryresponse. Physiol Res2009;58(2):263-8.
    [37] Iizasa H, Bae SH, Asashima T, et al. Augmented expression of the tight junctionprotein occludin in brain endothelial cell line TR-BBB by rat angiopoietin-1expressed in baculovirus-infected Sf plus insect cells. Pharm Res2002;19(11):1757-60.
    [38] Jia W, Lu R, Martin TA, Jiang WG. The role of claudin-5in blood-brain barrier (BBB)and brain metastases (review). Mol Med Rep2014;9(3):779-85.
    [39] Mahajan SD, Aalinkeel R, Reynolds JL, et al. Suppression of MMP-9expression inbrain microvascular endothelial cells (BMVEC) using a gold nanorod (GNR)-siRNAnanoplex. Immunol Invest2012;41(4):337-55.
    [40] Walsh TG, Murphy RP, Fitzpatrick P, et al. Stabilization of brain microvascularendothelial barrier function by shear stress involves VE-cadherin signaling leading tomodulation of pTyr-occludin levels. J Cell Physiol2011;226(11):3053-63.
    [41] Persidsky Y, Heilman D, Haorah J, et al. Rho-mediated regulation of tight junctionsduring monocyte migration across the blood-brain barrier in HIV-1encephalitis(HIVE). Blood2006;107(12):4770-80.
    [42] Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L. HIV-1Tat protein increases thepermeability of brain endothelial cells by both inhibiting occludin expression andcleaving occludin via matrix metalloproteinase-9. Brain Res2012;1436:13-9.
    [43] ElAli A, Doeppner TR, Zechariah A, Hermann DM. Increased blood-brain barrierpermeability and brain edema after focal cerebral ischemia induced by hyperlipidemia:role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and RhoAoveractivation. Stroke2011;42(11):3238-44.
    [44] Park M, Kim HJ, Lim B, Wylegala A, Toborek M. Methamphetamine-inducedoccludin endocytosis is mediated by the Arp2/3complex-regulated actinrearrangement. J Biol Chem2013;288(46):33324-34.
    [45] Xia YP, He QW, Li YN, et al. Recombinant human sonic hedgehog protein regulatesthe expression of ZO-1and occludin by activating angiopoietin-1in stroke damage.PLoS One2013;8(7): e68891.
    [46] Zhang Y, Zhang P, Shen X, et al. Early Exercise Protects the Blood-Brain Barrierfrom Ischemic Brain Injury via the Regulation of MMP-9and Occludin in Rats. Int JMol Sci2013;14(6):11096-112.
    [47] Shin JA, Kim YA, Jeong SI, Lee KE, Kim HS, Park EM. Extracellularsignal-regulated kinase1/2-dependent changes in tight junctions after ischemicpreconditioning contributes to tolerance induction after ischemic stroke. Brain StructFunct2013.
    [48] Rosas-Hernandez H, Cuevas E, Lantz-McPeak SM, Ali SF, Gonzalez C. Prolactinprotects against the methamphetamine-induced cerebral vascular toxicity. CurrNeurovasc Res2013;10(4):346-55.
    [49] Rosas-Hernandez H, Cuevas E, Lantz SM, et al. Prolactin and blood-brain barrierpermeability. Curr Neurovasc Res2013;10(4):278-86.
    [50] Li HJ, Guo LM, Yang LL, et al. Electromagnetic-pulse-induced activation of p38MAPK pathway and disruption of blood-retinal barrier. Toxicol Lett2013;220(1):35-43.
    [51] Paul D, Cowan AE, Ge S, Pachter JS. Novel3D analysis of Claudin-5revealssignificant endothelial heterogeneity among CNS microvessels. Microvasc Res2013;86:1-10.
    [52] Liu K, Sun T, Wang P, Liu YH, Zhang LW, Xue YX. Effects of erythropoietin onblood-brain barrier tight junctions in ischemia-reperfusion rats. J Mol Neurosci2013;49(2):369-79.
    [53] Ersahin M, Ozsavci D, Sener A, et al. Obestatin alleviates subarachnoidhaemorrhage-induced oxidative injury in rats via its anti-apoptotic and antioxidanteffects. Brain Inj2013;27(10):1181-9.
    [54] Stavale LM, Soares ES, Mendonca MC, Irazusta SP, da Cruz Hofling MA. Temporalrelationship between aquaporin-4and glial fibrillary acidic protein in cerebellum ofneonate and adult rats administered a BBB disrupting spider venom. Toxicon2013;66:37-46.
    [55] Alonso A, Reinz E, Leuchs B, et al. Focal Delivery of AAV2/1-transgenes Into theRat Brain by Localized Ultrasound-induced BBB Opening. Mol Ther Nucleic Acids2013;2: e73.
    [56] Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach tostudy the factors, parameters and approaches for prediction of permeability of drugsacross BBB. Expert Opin Drug Deliv2013;10(7):927-55.
    [57] Lopez Correa T, Vara Miranda A, Garzon Sanchez JC, Muriel Villoria C.[Repair of alaryngeal fissure in a patient with Opitz G/BBB syndrome]. Rev Esp AnestesiolReanim2013;60(3):178-9.
    [58] Wang L, Wu G, Sheng F, Wang F, Feng A. Minimally invasive procedures reduceperihematomal endothelin-1levels and the permeability of the BBB in a rabbit modelof intracerebral hematoma. Neurol Sci2013;34(1):41-9.
    [59] Sehgal CM, Wood AK. Re "Disruption of tumor neovasculature by microbubbleenhanced ultrasound: a potential new physical therapy of anti-angiogenesis".Ultrasound Med Biol2014;40(2):455-6.
    [60] Gao S, Liu Z, Xie F. Reply to the Letter to the Editor re "Disruption of TumorNeovasculature by Microbubble Enhanced Ultrasound: A Potential New PhysicalTherapy of Anti-angiogenesis". Ultrasound Med Biol2014;40(2):456.
    [61] Kwok SJ, El Kaffas A, Lai P, et al. Ultrasound-mediated microbubble enhancement ofradiation therapy studied using three-dimensional high-frequency power Dopplerultrasound. Ultrasound Med Biol2013;39(11):1983-90.
    [62] Okita K, Sugiyama K, Takagi S, Matsumto Y. Microbubble behavior in an ultrasoundfield for high intensity focused ultrasound therapy enhancement. J Acoust Soc Am2013;134(2):1576-85.
    [63] Chen ZY, Yang F, Lin Y, et al. New development and application of ultrasoundtargeted microbubble destruction in gene therapy and drug delivery. Curr Gene Ther2013;13(4):250-74.
    [64] Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review ofits potential in cancer treatment. Drug Des Devel Ther2013;7:375-88.
    [65] Zha Z, Wang S, Zhang S, et al. Targeted delivery of CuS nanoparticles throughultrasound image-guided microbubble destruction for efficient photothermal therapy.Nanoscale2013;5(8):3216-9.
    [66] Sorace AG, Saini R, Rosenthal E, Warram JM, Zinn KR, Hoyt K. Optical fluorescentimaging to monitor temporal effects of microbubble-mediated ultrasound therapy.IEEE Trans Ultrason Ferroelectr Freq Control2013;60(2):281-9.
    [67] Nofiele JT, Karshafian R, Furukawa M, et al. Ultrasound-activated microbubblecancer therapy: ceramide production leading to enhanced radiation effect in vitro.Technol Cancer Res Treat2013;12(1):53-60.
    [68] Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy usingmicrobubble contrast agents. Theranostics2012;2(12):1208-22.
    [69] Carson AR, McTiernan CF, Lavery L, et al. Ultrasound-targeted microbubbledestruction to deliver siRNA cancer therapy. Cancer Res2012;72(23):6191-9.
    [70] Porter TR, Xie F. Can transcranial ultrasound and microbubble therapy ever enter themainstream in acute stroke therapy? Expert Rev Cardiovasc Ther2012;10(5):549-51.
    [71] Nomikou N, McHale AP. Microbubble-enhanced ultrasound-mediated genetransfer--towards the development of targeted gene therapy for cancer. Int JHyperthermia2012;28(4):300-10.
    [72] Zheng Y, Zhang Y, Ao M, et al. Hematoporphyrin encapsulated PLGA microbubblefor contrast enhanced ultrasound imaging and sonodynamic therapy. J Microencapsul2012;29(5):437-44.
    [73] Liu Z, Gao S, Zhao Y, et al. Disruption of tumor neovasculature by microbubbleenhanced ultrasound: a potential new physical therapy of anti-angiogenesis.Ultrasound Med Biol2012;38(2):253-61.
    [74] Carson AR, McTiernan CF, Lavery L, et al. Gene therapy of carcinoma usingultrasound-targeted microbubble destruction. Ultrasound Med Biol2011;37(3):393-402.
    [75] Yuan JY, Zhang JH, Tang C, Zhu H, Xie H, Gao SJ. Application of ultrasoundmicrobubble contrast technology in ophthalmic targeted therapy: literature analysis.Int J Ophthalmol2011;4(5):537-42.
    [76] He Y, Bi Y, Hua Y, et al. Ultrasound microbubble-mediated delivery of the siRNAstargeting MDR1reduces drug resistance of yolk sac carcinoma L2cells. J Exp ClinCancer Res2011;30:104.
    [77] Qiu L, Zhang L, Wang L, et al. Ultrasound-targeted microbubble destruction enhancesnaked plasmid DNA transfection in rabbit Achilles tendons in vivo. Gene Ther2012;19(7):703-10.
    [78] Ren ST, Zhang H, Wang YW, et al. The preparation of a new self-mademicrobubble-loading urokinase and its thrombolysis combined with low-frequencyultrasound in vitro. Ultrasound Med Biol2011;37(11):1828-37.
    [79] Delalande A, Bouakaz A, Renault G, et al. Ultrasound and microbubble-assisted genedelivery in Achilles tendons: long lasting gene expression and restoration offibromodulin KO phenotype. J Control Release2011;156(2):223-30.
    [80] Chen ZY, Liang K, Qiu RX, Luo LP. Ultrasound-and liposome microbubble-mediatedtargeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. JUltrasound Med2011;30(9):1247-58.
    [81] Browning RJ, Mulvana H, Tang M, Hajnal JV, Wells DJ, Eckersley RJ. Influence ofneedle gauge on in vivo ultrasound and microbubble-mediated gene transfection.Ultrasound Med Biol2011;37(9):1531-7.
    [82] Song S, Shen Z, Chen L, Brayman AA, Miao CH. Explorations of high-intensitytherapeutic ultrasound and microbubble-mediated gene delivery in mouse liver. GeneTher2011;18(10):1006-14.
    [83] Fujii H, Li SH, Wu J, et al. Repeated and targeted transfer of angiogenic plasmids intothe infarcted rat heart via ultrasound targeted microbubble destruction enhancescardiac repair. Eur Heart J2011;32(16):2075-84.
    [84] Zhou S, Li S, Liu Z, et al. Ultrasound-targeted microbubble destruction mediatedherpes simplex virus-thymidine kinase gene treats hepatoma in mice. J Exp ClinCancer Res2010;29:170.
    [85] Chen ZY, Liang K, Qiu RX. Targeted gene delivery in tumor xenografts by thecombination of ultrasound-targeted microbubble destruction and polyethylenimine toinhibit survivin gene expression and induce apoptosis. J Exp Clin Cancer Res2010;29:152.
    [86] Zhou J, Wang Y, Xiong Y, Wang H, Feng Y, Chen J. Delivery of TFPI-2usingultrasound with a microbubble agent (SonoVue) inhibits intimal hyperplasia afterballoon injury in a rabbit carotid artery model. Ultrasound Med Biol2010;36(11):1876-83.
    [87] Luo J, Zhou X, Diao L, Wang Z. Experimental research on wild-type p53plasmidtransfected into retinoblastoma cells and tissues using an ultrasound microbubbleintensifier. J Int Med Res2010;38(3):1005-15.
    [88] Kutty S, Xie F, Gao S, et al. Sonothrombolysis of intra-catheter aged venous thrombiusing microbubble enhancement and guided three-dimensional ultrasound pulses. JAm Soc Echocardiogr2010;23(9):1001-6.
    [89] Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT. Ultrasound-triggered releaseof materials entrapped in microbubble-liposome constructs: a tool for targeted drugdelivery. J Control Release2010;148(1):13-7.
    [90] Suzuki J, Ogawa M, Takayama K, et al. Ultrasound-microbubble-mediatedintercellular adhesion molecule-1small interfering ribonucleic acid transfectionattenuates neointimal formation after arterial injury in mice. J Am Coll Cardiol2010;55(9):904-13.
    [91] Kang J, Wu X, Wang Z, et al. Antitumor effect of docetaxel-loaded lipidmicrobubbles combined with ultrasound-targeted microbubble activation on VX2rabbit liver tumors. J Ultrasound Med2010;29(1):61-70.
    [92] Li T, Liu Z. Ablation of benign prostatic hyperplasia using microbubble-mediatedultrasound cavitation. Med Hypotheses2010;74(4):679-80.
    [93] Hernot S, Cosyns B, Droogmans S, et al. Effect of high-intensity ultrasound-targetedmicrobubble destruction on perfusion and function of the rat heart assessed bypinhole-gated SPECT. Ultrasound Med Biol2010;36(1):158-65.
    [94] Choi JJ, Feshitan JA, Baseri B, et al. Microbubble-size dependence of focusedultrasound-induced blood-brain barrier opening in mice in vivo. IEEE Trans BiomedEng2010;57(1):145-54.
    [95] Xu YL, Gao YH, Liu Z, et al. Myocardium-targeted transplantation of mesenchymalstem cells by diagnostic ultrasound-mediated microbubble destruction improvescardiac function in myocardial infarction of New Zealand rabbits. Int J Cardiol2010;138(2):182-95.
    [96] Anderson CR, Rychak JJ, Backer M, Backer J, Ley K, Klibanov AL. scVEGFmicrobubble ultrasound contrast agents: a novel probe for ultrasound molecularimaging of tumor angiogenesis. Invest Radiol2010;45(10):579-85.
    [97] Sirsi S, Feshitan J, Kwan J, Homma S, Borden M. Effect of microbubble size onfundamental mode high frequency ultrasound imaging in mice. Ultrasound Med Biol2010;36(6):935-48.
    [98] Meamar R, Dehghani L, Ghasemi M, Khorvash F, Shaygannejad V. Stem cell therapyin stroke: a review literature. Int J Prev Med2013;4(Suppl2): S139-46.
    [99] von Scheele B, Fernandez M, Hogue SL, Kwong WJ. Review of economics andcost-effectiveness analyses of anticoagulant therapy for stroke prevention in atrialfibrillation in the US. Ann Pharmacother2013;47(5):671-85.
    [100] Lee M, Saver JL, Hong KS, Rao NM, Wu YL, Ovbiagele B. Risk-benefit profile oflong-term dual-versus single-antiplatelet therapy among patients with ischemic stroke:a systematic review and meta-analysis. Ann Intern Med2013;159(7):463-70.
    [101] Rosado-de-Castro PH, Pimentel-Coelho PM, da Fonseca LM, de Freitas GR,Mendez-Otero R. The rise of cell therapy trials for stroke: review of published andregistered studies. Stem Cells Dev2013;22(15):2095-111.
    [102] Cherry MG, Greenhalgh J, Osipenko L, et al. The clinical effectiveness andcost-effectiveness of primary stroke prevention in children with sickle cell disease: asystematic review and economic evaluation. Health Technol Assess2012;16(43):1-129.
    [103] Lees JS, Sena ES, Egan KJ, et al. Stem cell-based therapy for experimental stroke: asystematic review and meta-analysis. Int J Stroke2012;7(7):582-8.
    [104] Yu CH, Mathiowetz V. Systematic review of occupational therapy-relatedinterventions for people with multiple sclerosis: part1. Activity and participation. AmJ Occup Ther2014;68(1):27-32.
    [105] Madjd Z, Gheytanchi E, Erfani E, Asadi-Lari M. Application of stem cells in targetedtherapy of breast cancer: a systematic review. Asian Pac J Cancer Prev2013;14(5):2789-800.
    [106] Griffin MD, Elliman SJ, Cahill E, English K, Ceredig R, Ritter T. Concise review:adult mesenchymal stromal cell therapy for inflammatory diseases: how well are wejoining the dots? Stem Cells2013;31(10):2033-41.
    [107] Sun H, Benardais K, Stanslowsky N, et al. Therapeutic potential of mesenchymalstromal cells and MSC conditioned medium in Amyotrophic Lateral Sclerosis(ALS)--in vitro evidence from primary motor neuron cultures, NSC-34cells,astrocytes and microglia. PLoS One2013;8(9): e72926.
    [108] Russell KC, Tucker HA, Bunnell BA, et al. Cell-surface expression of neuron-glialantigen2(NG2) and melanoma cell adhesion molecule (CD146) in heterogeneouscultures of marrow-derived mesenchymal stem cells. Tissue Eng Part A2013;19(19-20):2253-66.
    [109] Xu Y, Gu Z, Shen B, et al. Roles of Wnt/beta-catenin signaling in retinal neuron-likedifferentiation of bone marrow mesenchymal stem cells from nonobese diabetic mice.J Mol Neurosci2013;49(2):250-61.
    [110] Frattini F, Lopes FR, Almeida FM, et al. Mesenchymal stem cells in apolycaprolactone conduit promote sciatic nerve regeneration and sensory neuronsurvival after nerve injury. Tissue Eng Part A2012;18(19-20):2030-9.
    [111] Gupta N, Stopfer M. Olfactory coding: giant inhibitory neuron governs sparse odorcodes. Curr Biol2011;21(13): R504-6.
    [112] Fields RD. Advances in understanding neuron-glia interactions. Neuron Glia Biol2006;2(1):23-6.
    [113] Iwata NK.[Objective markers for upper motor neuron involvement in amyotrophiclateral sclerosis]. Brain Nerve2007;59(10):1053-64.
    [114] Huang T, He D, Kleiner G, Kuluz J. Neuron-like differentiation of adipose-derivedstem cells from infant piglets in vitro. J Spinal Cord Med2007;30Suppl1: S35-40.
    [115] Onteniente B. The multiple aspects of stroke and stem cell therapy. Curr Mol Med2013;13(5):821-31.
    [116] Cross DJ, Minoshima S. Perspectives on assessment of stem cell therapy in stroke by18F-FDG PET. J Nucl Med2013;54(5):668-9.
    [117] Balami JS, Fricker RA, Chen R. Stem cell therapy for ischaemic stroke: translationfrom preclinical studies to clinical treatment. CNS Neurol Disord Drug Targets2013;12(2):209-19.
    [118] Mir O, Savitz SI. Stem cell therapy in stroke treatment: is it a viable option? ExpertRev Neurother2013;13(2):119-21.
    [119] Sinden JD, Vishnubhatla I, Muir KW. Prospects for stem cell-derived therapy instroke. Prog Brain Res2012;201:119-67.
    [120] Betancourt AM. New Cell-Based Therapy Paradigm: Induction of BoneMarrow-Derived Multipotent Mesenchymal Stromal Cells into Pro-InflammatoryMSC1and Anti-inflammatory MSC2Phenotypes. Adv Biochem Eng Biotechnol2013;130:163-97.
    [121] Kniazev OV, Ruchkina IN, Parfenov AI, Konopliannikov AG, Sagynbaeva VE.[Complete elimination of cytomegalovirus without antiviral therapy after systemictransplantation of mesenchymal bone marrow stromal cells in a patient with ulcerativecolitis]. Eksp Klin Gastroenterol2012;(3):118-23.
    [122] Forte A, Rinaldi B, Sodano L, et al. Stem cell therapy for arterial restenosis: potentialparameters contributing to the success of bone marrow-derived mesenchymal stromalcells. Cardiovasc Drugs Ther2012;26(1):9-21.
    [123] Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA. Effects on proliferation anddifferentiation of multipotent bone marrow stromal cells engineered to express growthfactors for combined cell and gene therapy. Stem Cells2011;29(11):1727-37.
    [124] Tesfai Y, Ford J, Carter KW, et al. Interactions between acute lymphoblastic leukemiaand bone marrow stromal cells influence response to therapy. Leuk Res2012;36(3):299-306.
    [125] Suda S, Shimazaki K, Ueda M, et al. Combination therapy with bone marrow stromalcells and FK506enhanced amelioration of ischemic brain damage in rats. Life Sci2011;89(1-2):50-6.
    [126] Dai J, Wang X, Shen G. Cotransplantation of autologous bone marrow stromal cellsand chondrocytes as a novel therapy for reconstruction of condylar cartilage. MedHypotheses2011;77(1):132-3.
    [127] Vaquero J, Zurita M. Functional recovery after severe CNS trauma: currentperspectives for cell therapy with bone marrow stromal cells. Prog Neurobiol2011;93(3):341-9.
    [128] Zurita M, Otero L, Aguayo C, et al. Cell therapy for spinal cord repair: optimizationof biologic scaffolds for survival and neural differentiation of human bone marrowstromal cells. Cytotherapy2010;12(4):522-37.
    [129] Chen NK, Tan SY, Udolph G, Kon OL. Insulin expressed from endogenously activeglucose-responsive EGR1promoter in bone marrow mesenchymal stromal cells asdiabetes therapy. Gene Ther2010;17(5):592-605.
    [130] Kinkaid HY, Huang XP, Li RK, Weisel RD. What's new in cardiac cell therapy?Allogeneic bone marrow stromal cells as "universal donor cells". J Card Surg2010;25(3):359-66.
    [131] Koppula PR, Chelluri LK, Polisetti N, Vemuganti GK. Histocompatibility testing ofcultivated human bone marrow stromal cells-a promising step towards pre-clinicalscreening for allogeneic stem cell therapy. Cell Immunol2009;259(1):61-5.
    [132] Montzka K, Lassonczyk N, Tschoke B, et al. Neural differentiation potential ofhuman bone marrow-derived mesenchymal stromal cells: misleading marker geneexpression. BMC Neurosci2009;10:16.
    [133] Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM. Human bone marrowmesenchymal stromal cells express the neural ganglioside GD2: a novel surfacemarker for the identification of MSCs. Blood2007;109(10):4245-8.
    [134] Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M. Bone marrowstromal cell antigen2is a specific marker of type I IFN-producing cells in the naivemouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol2006;177(5):3260-5.
    [135] Hagmann S, Moradi B, Frank S, et al. Different culture media affect growthcharacteristics, surface marker distribution and chondrogenic differentiation of humanbone marrow-derived mesenchymal stromal cells. BMC Musculoskelet Disord2013;14:223.
    [136] Hagmann S, Moradi B, Frank S, et al. FGF-2addition during expansion of humanbone marrow-derived stromal cells alters MSC surface marker distribution andchondrogenic differentiation potential. Cell Prolif2013;46(4):396-407.
    [137] Abbaszadeh HA, Tiraihi T, Delshad AR, Saghedi Zadeh M, Taheri T. Bone marrowstromal cell transdifferentiation into oligodendrocyte-like cells using triiodothyronineas a inducer with expression of platelet-derived growth factor alpha as a maturitymarker. Iran Biomed J2013;17(2):62-70.
    [138] Gress DR. The problem with asymptomatic cerebral embolic complications invascular procedures: what if they are not asymptomatic? J Am Coll Cardiol2012;60(17):1614-6.
    [139] Borlongan CV. Recent preclinical evidence advancing cell therapy for Alzheimer'sdisease. Exp Neurol2012;237(1):142-6.
    [140] Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model ofvascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci2012;322(1-2):241-9.
    [141] Meck WH, Church RM, Matell MS. Hippocampus, time, and memory--a retrospectiveanalysis. Behav Neurosci2013;127(5):642-54.
    [142] Preston AR, Eichenbaum H. Interplay of hippocampus and prefrontal cortex inmemory. Curr Biol2013;23(17): R764-73.
    [143] Albouy G, King BR, Maquet P, Doyon J. Hippocampus and striatum: dynamics andinteraction during acquisition and sleep-related motor sequence memory consolidation.Hippocampus2013;23(11):985-1004.
    [144] Rajan KE, Singh HK, Parkavi A, Charles PD. Attenuation of1-(m-chlorophenyl)-biguanide induced hippocampus-dependent memory impairmentby a standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem Res2011;36(11):2136-44.
    [145] Dere E, Zlomuzica A, Viggiano D, et al. Episodic-like and procedural memoryimpairments in histamine H1Receptor knockout mice coincide with changes inacetylcholine esterase activity in the hippocampus and dopamine turnover in thecerebellum. Neuroscience2008;157(3):532-41.
    [146] Chang Q, Gold PE. Age-related changes in memory and in acetylcholine functions inthe hippocampus in the Ts65Dn mouse, a model of Down syndrome. Neurobiol LearnMem2008;89(2):167-77.
    [147] Transplantation: Autologous MSCs in living-related renal transplantation. Nat RevNephrol2012.
    [148] Li H, Gao F, Ma L, et al. Therapeutic potential of in utero mesenchymal stem cell(MSCs) transplantation in rat foetuses with spina bifida aperta. J Cell Mol Med2012;16(7):1606-17.
    [149] Horwitz EM, Maziarz RT, Kebriaei P. MSCs in hematopoietic cell transplantation.Biol Blood Marrow Transplant2011;17(1Suppl): S21-9.
    [150] Tang T, Wu M, Yang J. Transplantation of MSCs transfected with SHH geneameliorates cardiac dysfunction after chronic myocardial infarction. Int J Cardiol2013;168(5):4997-9.
    [151] Cheng K, Rai P, Plagov A, et al. Transplantation of bone marrow-derived MSCsimproves cisplatinum-induced renal injury through paracrine mechanisms. Exp MolPathol2013;94(3):466-73.
    [152] Lee SH, Lee MW, Yoo KH, et al. Co-transplantation of third-party umbilical cordblood-derived MSCs promotes engraftment in children undergoing unrelatedumbilical cord blood transplantation. Bone Marrow Transplant2013;48(8):1040-5.
    [153]Xiong F, Xu Y, Zheng H, et al. Microdystrophin delivery in dystrophin-deficient (mdx)mice by genetically-corrected syngeneic MSCs transplantation. Transplant Proc2010;42(7):2731-9.
    [154] Bernardo ME, Ball LM, Cometa AM, et al. Co-infusion of ex vivo-expanded, parentalMSCs prevents life-threatening acute GVHD, but does not reduce the risk of graftfailure in pediatric patients undergoing allogeneic umbilical cord bloodtransplantation. Bone Marrow Transplant2011;46(2):200-7.
    [155] Li Q, Yao D, Ma J, et al. Transplantation of MSCs in combination with netrin-1improves neoangiogenesis in a rat model of hind limb ischemia. J Surg Res2011;166(1):162-9.
    [156] Liu T, Wang Y, Tai G, Zhang S. Could co-transplantation of iPS cells derivedhepatocytes and MSCs cure end-stage liver disease? Cell Biol Int2009;33(11):1180-3.
    [157] Masuda S, Ageyama N, Shibata H, et al. Cotransplantation with MSCs improvesengraftment of HSCs after autologous intra-bone marrow transplantation in nonhumanprimates. Exp Hematol2009;37(10):1250-57e1.
    [158] Oh SH, Kim HN, Park HJ, Shin JY, Lee PH. Mesenchymal stem cells increasehippocampal neurogenesis and neuronal differentiation by enhancing the Wntsignaling pathway in Alzheimer's disease model. Cell Transplant2014.
    [159] Wang SP, Wang ZH, Peng DY, Li SM, Wang H, Wang XH. Therapeutic effect ofmesenchymal stem cells in rats with intracerebral hemorrhage: reduced apoptosis andenhanced neuroprotection. Mol Med Rep2012;6(4):848-54.
    [160] Khalili MA, Anvari M, Hekmati-Moghadam SH, Sadeghian-Nodoushan F, Fesahat F,Miresmaeili SM. Therapeutic benefit of intravenous transplantation of mesenchymalstem cells after experimental subarachnoid hemorrhage in rats. J Stroke CerebrovascDis2012;21(6):445-51.
    [161] Sadan O, Melamed E, Offen D. Intrastriatal transplantation of neurotrophicfactor-secreting human mesenchymal stem cells improves motor function and extendssurvival in R6/2transgenic mouse model for Huntington's disease. PLoS Curr2012;4:e4f7f6dc013d4e.
    [162] Sadan O, Shemesh N, Barzilay R, et al. Mesenchymal stem cells induced to secreteneurotrophic factors attenuate quinolinic acid toxicity: a potential therapy forHuntington's disease. Exp Neurol2012;234(2):417-27.
    [163] Dadon-Nachum M, Sadan O, Srugo I, Melamed E, Offen D. Differentiatedmesenchymal stem cells for sciatic nerve injury. Stem Cell Rev2011;7(3):664-71.
    [164] Kaengkan P, Baek SE, Kim JY, et al. Administration of mesenchymal stem cells andziprasidone enhanced amelioration of ischemic brain damage in rats. Mol Cells2013;36(6):534-41.
    [165] Cui X, Chen L, Ren Y, et al. Genetic modification of mesenchymal stem cells inspinal cord injury repair strategies. Biosci Trends2013;7(5):202-8.
    [166] Forostyak S, Jendelova P, Sykova E. The role of mesenchymal stromal cells in spinalcord injury, regenerative medicine and possible clinical applications. Biochimie2013;95(12):2257-70.
    [167] Dao M, Tate CC, McGrogan M, Case CC. Comparing the angiogenic potency of naivemarrow stromal cells and Notch-transfected marrow stromal cells. J Transl Med2013;11:81.
    [168] Jiang Q, Song P, Wang E, Li J, Hu S, Zhang H. Remote ischemic postconditioningenhances cell retention in the myocardium after intravenous administration of bonemarrow mesenchymal stromal cells. J Mol Cell Cardiol2013;56:1-7.
    [169] Guo F, Lv S, Lou Y, et al. Bone marrow stromal cells enhance the angiogenesis inischaemic cortex after stroke: involvement of notch signalling. Cell Biol Int2012;36(11):997-1004.
    [170] Sindberg GM, Lindborg BA, Wang Q, Clarkson C, Graham M, Donahue R, et al.Comparisons of phenotype and immunomodulatory capacity among rhesusbone-marrow-derived mesenchymal stem/stromal cells, multipotent adult progenitorcells, and dermal fibroblasts. Journal of medical primatology.2014.
    [171] Sinha P, Aarnisalo P, Chubb R, Ono N, Fulzele K, Selig M, et al. Loss of G alphaEarly in the Osteoblast Lineage Favors Adipogenic Differentiation of MesenchymalProgenitors and Committed Osteoblast Precursors. Journal of bone and mineralresearch: the official journal of the American Society for Bone and Mineral Research.2014.
    [172] Skarn M, Noordhuis P, Wang MY, Veuger M, Henrichson Kresse S, Egeland EV, et al.Generation and Characterization of an Immortalized Human Mesenchymal StromalCell Line. Stem cells and development.2014.
    [173] Skog M, Muhonen V, Nystedt J, Narcisi R, Kontturi LS, Urtti A, et al. Xeno-freechondrogenesis of bone marrow mesenchymal stromal cells: towards clinical-gradechondrocyte production. Cytotechnology.2014.
    [174] Sparta AM, Bressanin D, Chiarini F, Lonetti A, Cappellini A, Evangelisti C, et al.Therapeutic targeting of Polo-like kinase-1and Aurora kinases in T-cell acutelymphoblastic leukemia. Cell cycle.2014;13.
    [175] Sugawara K, Hamatani T, Yamada M, Ogawa S, Kamijo S, Kuji N, et al. Derivationof human decidua-like cells from amnion and menstrual blood. Scientific reports.2014;4:4599.
    [176] Sun C, Liu H.[Periodontal tissue in a bio-implant by periodontal ligament cells sheetand bone marrow stromal cells sheet]. Zhonghua kou qiang yi xue za zhi=Zhonghuakouqiang yixue zazhi=Chinese journal of stomatology.2014;49:84-8.
    [177] Syed-Picard FN, Shah GA, Costello BJ, Sfeir C. Regeneration of periosteum byhuman bone marrow stromal cell sheets. Journal of oral and maxillofacial surgery:official journal of the American Association of Oral and Maxillofacial Surgeons.2014;72:1078-83.
    [178] Takeshita S, Fumoto T, Naoe Y, Ikeda K. Age-related marrow adipogenesis is linkedto increased expression of RANKL. The Journal of biological chemistry.2014.
    [179] Tan G, Tan Y, Ni G, Lan G, Zhou L, Yu P, et al. Controlled oxidative nanopatterning ofmicrorough titanium surfaces for improving osteogenic activity. Journal of materialsscience Materials in medicine.2014.
    [180] Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function,isolation and applications in regenerative medicine. Journal of tissue engineering andregenerative medicine.2014.
    [181] Tratwal J, Follin B, Ekblond A, Kastrup J, Haack-Sorensen M. Identification of acommon reference gene pair for qPCR in human mesenchymal stromal cells fromdifferent tissue sources treated with VEGF. BMC molecular biology.2014;15:11.
    [182] Uzan B, Poglio S, Gerby B, Wu CL, Gross J, Armstrong F, et al. Interleukin-18produced by bone marrow-derived stromal cells supports T-cell acute leukaemiaprogression. EMBO molecular medicine.2014;6:821-34.
    [183] Vega LJ, Lee MK, Jeong JH, Smith CE, Lee KY, Chung HJ, et al. Recapitulatingcell-cell adhesion using N-Cadherin biologically tethered to substrates.Biomacromolecules.2014.
    [184] Wang S, Ma N, Kawanishi S, Hiraku Y, Oikawa S, Xie Y, et al. Relationships ofAlpha-SMA-Positive Fibroblasts and SDF-1-Positive Tumor Cells withNeoangiogenesis in Nasopharyngeal Carcinoma. BioMed research international.2014;2014:507353.
    [185] Wang Y, Bi X, Zhou H, Deng Y, Sun J, Xiao C, et al. Repair of orbital bone defects incanines using grafts of enriched autologous bone marrow stromal cells. Journal oftranslational medicine.2014;12:123.
    [186] Wang Y, Yang J, Chen L, Wang J, Wang Y, Luo J, et al. Artesunate induces apoptosisthrough caspase-dependent and-independent mitochondrial pathways in humanmyelodysplastic syndrome SKM-1cells. Chemico-biological interactions.2014.
    [187] Wobus M, List C, Dittrich T, Dhawan A, Duryagina R, Arabanian LS, et al. Breastcarcinoma cells modulate the chemoattractive activity of human bone marrow-derivedmesenchymal stromal cells by interfering with CXCL12. International journal ofcancer Journal international du cancer.2014.
    [188] Woltmann B, Torger B, Muller M, Hempel U. Interaction between immobilizedpolyelectrolyte complex nanoparticles and human mesenchymal stromal cells.International journal of nanomedicine.2014;9:2205-15.
    [189] Won YW, Patel AN, Bull DA. Cell surface engineering to enhance mesenchymal stemcell migration toward an SDF-1gradient. Biomaterials.2014;35:5627-35.
    [190] Wu Y, Tu Q, Valverde P, Zhang J, Murray D, Dong LQ, et al. Central AdiponectinAdministration Reveals New Regulatory Mechanisms of Bone Metabolism in Mice.American journal of physiology Endocrinology and metabolism.2014.
    [191] Wuchter P, Bieback K, Schrezenmeier H, Bornhauser M, Muller LP, Bonig H, et al.Standardization of Good Manufacturing Practice-compliant production of bonemarrow-derived human mesenchymal stromal cells for immunotherapeuticapplications. Cytotherapy.2014.
    [192] Xie CM, Lu X, Wang KF, Meng FZ, Jiang O, Zhang HP, et al. Silver Nanoparticlesand Growth Factors Incorporated Hydroxyapatite Coatings on Metallic ImplantSurfaces for Enhancement of Osteoinductivity and Antibacterial Properties. ACSapplied materials&interfaces.2014.
    [193] Xu QC, Hao PJ, Yu XB, Chen SL, Yu MJ, Zhang J, et al. Hyperlipidemiacompromises homing efficiency of systemically transplanted BMSCs and inhibitsbone regeneration. International journal of clinical and experimental pathology.2014;7:1580-7.
    [194] Yang Z, Zhu L, Li F, Wang J, Wan H, Pan Y. Bone marrow stromal cells as atherapeutic treatment for ischemic stroke. Neuroscience bulletin.2014;30:524-34.
    [195] Ying X, Chen X, Feng Y, Xu HZ, Chen H, Yu K, et al. Myricetin enhances osteogenicdifferentiation through the activation of canonical Wnt/beta-catenin signaling inhuman bone marrow stromal cells. European journal of pharmacology.2014.
    [196] Yoon DS, Kim YH, Lee S, Lee KM, Park KH, Jang Y, et al. Interleukin-6induces thelineage commitment of bone marrow-derived mesenchymal multipotent cells throughdown-regulation of Sox2by osteogenic transcription factors. FASEB journal: officialpublication of the Federation of American Societies for Experimental Biology.2014.
    [197] Yuan L, Chan GC, Fung KL, Chim CS. RANKL expression in myeloma cells isregulated by a network involving RANKL promoter methylation, DNMT1,microRNA and TNFalpha in the microenvironment. Biochimica et biophysica acta.2014.
    [198] Yuan SF, Jiang T, Sun LH, Zheng RJ, Cao GQ, Ahat NZ, et al. Use of bonemesenchymal stem cells to treat rats with acute liver failure. Genetics and molecularresearch: GMR.2014;13.
    [199] Zahoor M, Cha PH, Choi KY. Indirubin-3'-oxime, an activator of Wnt/beta-cateninsignaling, enhances osteogenic commitment of ST2cells and restores bone loss inhigh-fat diet-induced obese male mice. Bone.2014;65C:60-8.
    [200] Zehentmeier S, Roth K, Cseresnyes Z, Sercan O, Horn K, Niesner RA, et al. Staticand dynamic components synergize to form a stable survival niche for bone marrowplasma cells. European journal of immunology.2014.
    [201] Zhang LX, Yin YM, Zhang ZQ, Deng LX. Grafted Bone Marrow Stromal Cells: AContributor to Glial Repair after Spinal Cord Injury. The Neuroscientist: a reviewjournal bringing neurobiology, neurology and psychiatry.2014.
    [202] Zhang Q, Nakamoto T, Chen S, Kawazoe N, Lin K, Chang J, et al.Collagen/Wollastonite nanowire hybrid scaffolds promoting osteogenic differentiationand angiogenic factor expression of mesenchymal stem cells. Journal of nanoscienceand nanotechnology.2014;14:3221-7.
    [203] Zhang Y, Hu K, Hu Y, Liu L, Wang B, Huang H. Bone marrow mesenchymal stromalcells affect the cell cycle arrest effect of genotoxic agents on acute lymphocyticleukemia cells via p21down-regulation. Annals of hematology.2014.
    [204] Zhao J, Zeiai S, Ekblad A, Nordenskjold A, Hilborn J, Gotherstrom C, et al.Transdifferentiation of autologous bone marrow cells on acollagen-poly(epsilon-caprolactone) scaffold for tissue engineering in complete lackof native urothelium. Journal of the Royal Society, Interface/the Royal Society.2014;11:20140233.
    [205] Zhao RC, Wang L, Han Q, Chen H, Shan GL, Yang YJ, et al. Allogeneic BoneMarrow Mesenchymal Stem Cell Transplantation in Patients with UDCA-ResistantPrimary Biliary Cirrhosis. Stem cells and development.2014.
    [206] Zurbach KA, Moghbeli T, Snyder CM. Resolving the titer of murine cytomegalovirusby plaque assay using the M2-10B4cell line and a low viscosity overlay. Virologyjournal.2014;11:71.
    [207] Yan T, Ye X, Chopp M, Zacharek A, Ning R, Venkat P, et al. Niaspan attenuates theadverse effects of bone marrow stromal cell treatment of stroke in type one diabeticrats. PloS one.2013;8:e81199.
    [208] Nessler J, Benardais K, Gudi V, Hoffmann A, Salinas Tejedor L, Janssen S, et al.Effects of murine and human bone marrow-derived mesenchymal stem cells oncuprizone induced demyelination. PloS one.2013;8:e69795.
    [209] Ryu CH, Park KY, Hou Y, Jeong CH, Kim SM, Jeun SS. Gene therapy of multiplesclerosis using interferon beta-secreting human bone marrow mesenchymal stem cells.BioMed research international.2013;2013:696738.
    [210] Lin MN, Shang DS, Sun W, Li B, Xu X, Fang WG, et al. Involvement of PI3K andROCK signaling pathways in migration of bone marrow-derived mesenchymal stemcells through human brain microvascular endothelial cell monolayers. Brain research.2013;1513:1-8.
    [211] Huang W, Mo X, Qin C, Zheng J, Liang Z, Zhang C. Transplantation of differentiatedbone marrow stromal cells promotes motor functional recovery in rats with stroke.Neurological research.2013;35:320-8.
    [212] Flynn KM, Michaud M, Madri JA. CD44deficiency contributes to enhancedexperimental autoimmune encephalomyelitis: a role in immune cells and vascularcells of the blood-brain barrier. The American journal of pathology.2013;182:1322-36.
    [213] Li WY, Jin RL, Hu XY.[Migration of PKH26-labeled mesenchymal stem cells in ratswith Alzheimer's disease]. Zhejiang da xue xue bao Yi xue ban=Journal of ZhejiangUniversity Medical sciences.2012;41:659-64.
    [214] Li L, Chopp M, Ding GL, Qu CS, Li QJ, Lu M, et al. MRI measurement ofangiogenesis and the therapeutic effect of acute marrow stromal cell administration ontraumatic brain injury. Journal of cerebral blood flow and metabolism: officialjournal of the International Society of Cerebral Blood Flow and Metabolism.2012;32:2023-32.
    [215] Johnson HL, Chen Y, Suidan GL, McDole JR, Lohrey AK, Hanson LM, et al. Ahematopoietic contribution to microhemorrhage formation during antiviral CD8Tcell-initiated blood-brain barrier disruption. Journal of neuroinflammation.2012;9:60.
    [216] Chen J, Ye X, Yan T, Zhang C, Yang XP, Cui X, et al. Adverse effects of bone marrowstromal cell treatment of stroke in diabetic rats. Stroke; a journal of cerebralcirculation.2011;42:3551-8.
    [217] Matsushita T, Kibayashi T, Katayama T, Yamashita Y, Suzuki S, Kawamata J, et al.Mesenchymal stem cells transmigrate across brain microvascular endothelial cellmonolayers through transiently formed inter-endothelial gaps. Neuroscience letters.2011;502:41-5.
    [218] Pastor D, Viso-Leon MC, Jones J, Jaramillo-Merchan J, Toledo-Aral JJ, Moraleda JM,et al. Comparative effects between bone marrow and mesenchymal stem celltransplantation in GDNF expression and motor function recovery in a motorneurondegenerative mouse model. Stem cell reviews.2012;8:445-58.
    [219] Dai M, Yang Y, Omelchenko I, Nuttall AL, Kachelmeier A, Xiu R, et al. Bonemarrow cell recruitment mediated by inducible nitric oxide synthase/stromalcell-derived factor-1alpha signaling repairs the acoustically damaged cochlearblood-labyrinth barrier. The American journal of pathology.2010;177:3089-99.
    [220] Kobayashi N, Niwa M, Hao Y, Yoshida T. Nucleolar localization signals of LIMkinase2function as a cell-penetrating peptide. Protein and peptide letters.2010;17:1480-8.
    [221] Komatsu K, Honmou O, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutictime window of mesenchymal stem cells derived from bone marrow after cerebralischemia. Brain research.2010;1334:84-92.
    [222] Zhang C, Zhou C, Teng JJ, Zhao RL, Song YQ, Zhang C. Multiple administrations ofhuman marrow stromal cells through cerebrospinal fluid prolong survival in atransgenic mouse model of amyotrophic lateral sclerosis. Cytotherapy.2009;11:299-306.
    [223] Kim KN, Oh SH, Lee KH, Yoon DH. Effect of human mesenchymal stem celltransplantation combined with growth factor infusion in the repair of injured spinalcord. Acta neurochirurgica Supplement.2006;99:133-6.
    [224] Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, et al. Angiopoietin1/Tie2andVEGF/Flk1induced by MSC treatment amplifies angiogenesis and vascularstabilization after stroke. Journal of cerebral blood flow and metabolism: officialjournal of the International Society of Cerebral Blood Flow and Metabolism.2007;27:1684-91.
    [225] Guan XQ, Yu JL, Li LQ, Liu GX.[Study on mesenchymal stem cells entering thebrain through the blood-brain barrier]. Zhonghua er ke za zhi Chinese journal ofpediatrics.2004;42:920-3.
    [226] Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, et al. Bonemarrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brainresearch.2004;1010:108-16.
    [227] Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, et al.Intracerebral xenografts of mouse bone marrow cells in adult rats facilitate restorationof cerebral blood flow and blood-brain barrier. Brain research.2004;1009:26-33.
    [228] Noble ML, Kuhr CS, Graves SS, Loeb KR, Sun SS, Keilman GW, et al.Ultrasound-targeted microbubble destruction-mediated gene delivery into caninelivers. Molecular therapy: the journal of the American Society of Gene Therapy.2013;21:1687-94.
    [229] Quaia E. Contrast-enhanced ultrasound of the small bowel in Crohn's disease.Abdominal imaging.2013;38:1005-13.
    [230] Park K. A new look at ultrasound-mediated extravasation. Journal of controlledrelease: official journal of the Controlled Release Society.2013;168:341.
    [231] Chen ZY, Yang F, Lin Y, Zhang JS, Qiu RX, Jiang L, et al. New development andapplication of ultrasound targeted microbubble destruction in gene therapy and drugdelivery. Current gene therapy.2013;13:250-74.
    [232] Shen ZY, Shen E, Zhang JZ, Bai WK, Wang Y, Yang SL, et al. Effects oflow-frequency ultrasound and microbubbles on angiogenesis-associated proteins insubcutaneous tumors of nude mice. Oncology reports.2013;30:842-50.
    [233] Kiessling F. Science to Practice: exploring new indications for molecular US imaging.Radiology.2013;267:661-2.
    [234] Achmad A, Taketomi-Takahashi A, Tsushima Y. Current developments and clinicalapplications of bubble technology in Japan: a report from85th Annual ScientificMeeting of The Japan Society of Ultrasonic in Medicine, Tokyo,25-27May,2012.Medical ultrasonography.2013;15:140-6.
    [235] Panje CM, Wang DS, Willmann JK. Ultrasound and microbubble-mediated genedelivery in cancer: progress and perspectives. Investigative radiology.2013;48:755-69.
    [236] Fujii H, Matkar P, Liao C, Rudenko D, Lee PJ, Kuliszewski MA, et al. Optimizationof Ultrasound-mediated Anti-angiogenic Cancer Gene Therapy. Molecular therapyNucleic acids.2013;2:e94.
    [237] Hosny NA, Mohamedi G, Rademeyer P, Owen J, Wu Y, Tang MX, et al. Mappingmicrobubble viscosity using fluorescence lifetime imaging of molecular rotors.Proceedings of the National Academy of Sciences of the United States of America.2013;110:9225-30.
    [238] Capece S, Chiessi E, Cavalli R, Giustetto P, Grishenkov D, Paradossi G. A generalstrategy for obtaining biodegradable polymer shelled microbubbles as theranosticdevices. Chemical communications.2013;49:5763-5.
    [239] Dicker S, Mleczko M, Siepmann M, Wallace N, Sunny Y, Bawiec CR, et al. Influenceof shell composition on the resonance frequency of microbubble contrast agents.Ultrasound in medicine&biology.2013;39:1292-302.
    [240] Escoffre JM, Novell A, Serriere S, Lecomte T, Bouakaz A. Irinotecan delivery bymicrobubble-assisted ultrasound: in vitro validation and a pilot preclinical study.Molecular pharmaceutics.2013;10:2667-75.
    [241] Liu F, Zhu J, Huang Y, Guo W, Rui M, Xu Y, et al. Contrast imaging and genedelivery through the combined use of novel cationic liposomal microbubbles andultrasound in rat carotid arteries. Archives of medical science: AMS.2013;9:347-53.
    [242] Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review ofits potential in cancer treatment. Drug design, development and therapy.2013;7:375-88.
    [243] Yang J, Zeng Y, Guo DJ, Fang Z, Zhao JN, Wang ZG.[Preparation and in vitro studyof a high olecular weight contrast agent targeting hepatoma cells]. Zhonghua gan zangbing za zhi=Zhonghua ganzangbing zazhi=Chinese journal of hepatology.2013;21:53-6.
    [244] Yang SL, Mu YM, Tang KQ, Jiang XK, Bai WK, Shen E, et al. Enhancement ofrecombinant adeno-associated virus mediated transgene expression by targetedecho-contrast agent. Genetics and molecular research: GMR.2013;12:1318-26.
    [245] Siepmann M, Fokong S, Mienkina M, Lederle W, Kiessling F, Gatjens J, et al. Phaseshift variance imaging-a new technique for destructive microbubble imaging. IEEEtransactions on ultrasonics, ferroelectrics, and frequency control.2013;60:909-23.
    [246] Gauthier M, King D, O'Brien W. Influence of microbubble size on postexcitationcollapse thresholds for single ultrasound contrast agents using double passivecavitation detection. IEEE transactions on ultrasonics, ferroelectrics, and frequencycontrol.2013;60:877-9.
    [247] Santin MD, Debeir T, Bridal SL, Rooney T, Dhenain M. Fast in vivo imaging ofamyloid plaques using mu-MRI Gd-staining combined with ultrasound-inducedblood-brain barrier opening. NeuroImage.2013;79:288-94.
    [248] Cornelis F, Rigou G, Le Bras Y, Coutouly X, Hubrecht R, Yacoub M, et al. Real-timecontrast-enhanced transrectal US-guided prostate biopsy: diagnostic accuracy in menwith previously negative biopsy results and positive MR imaging findings. Radiology.2013;269:159-66.
    [249] Shekhar H, Doyley MM. The response of phospholipid-encapsulated microbubbles tochirp-coded excitation: implications for high-frequency nonlinear imaging. TheJournal of the Acoustical Society of America.2013;133:3145-58.
    [250] Carroll JM, Calvisi ML, Lauderbaugh LK. Dynamical analysis of the nonlinearresponse of ultrasound contrast agent microbubbles. The Journal of the AcousticalSociety of America.2013;133:2641-9.
    [251] Jin LF, Li F, Wang HP, Wei F, Qin P, Du LF. Ultrasound targeted microbubbledestruction stimulates cellular endocytosis in facilitation of adeno-associated virusdelivery. International journal of molecular sciences.2013;14:9737-50.
    [252] Reznik N, Shpak O, Gelderblom EC, Williams R, de Jong N, Versluis M, et al. Theefficiency and stability of bubble formation by acoustic vaporization of submicronperfluorocarbon droplets. Ultrasonics.2013;53:1368-76.
    [253] Peyman SA, Abou-Saleh RH, Evans SD. Research spotlight: microbubbles fortherapeutic delivery. Therapeutic delivery.2013;4:539-42.
    [254] Kang SJ, Zhang Q, Patel SR, Berezovsky D, Yang H, Wang Y, et al. In vivohigh-frequency contrast-enhanced ultrasonography of choroidal melanoma in rabbits:imaging features and histopathologic correlations. The British journal ofophthalmology.2013;97:929-33.
    [255] Vavuranakis M, Sigala F, Vrachatis DA, Papaioannou TG, Filis K, Kavantzas N, et al.Quantitative analysis of carotid plaque vasa vasorum by CEUS and correlation withhistology after endarterectomy. VASA Zeitschrift fur Gefasskrankheiten.2013;42:184-95.
    [256] Dixon AJ, Dhanaliwala AH, Chen JL, Hossack JA. Enhanced intracellular delivery ofa model drug using microbubbles produced by a microfluidic device. Ultrasound inmedicine&biology.2013;39:1267-76.
    [257] Kim HC, Al-Mahrouki A, Gorjizadeh A, Karshafian R, Czarnota GJ. Effects ofbiophysical parameters in enhancing radiation responses of prostate tumors withultrasound-stimulated microbubbles. Ultrasound in medicine&biology.2013;39:1376-87.
    [258] Paul S, Russakow D, Rodgers T, Sarkar K, Cochran M, Wheatley MA. Determinationof the interfacial rheological properties of a poly(DL-lactic acid)-encapsulatedcontrast agent using in vitro attenuation and scattering. Ultrasound in medicine&biology.2013;39:1277-91.
    [259] Dicker S, Mleczko M, Schmitz G, Wrenn SP. Size distribution of microbubbles as afunction of shell composition. Ultrasonics.2013;53:1363-7.
    [260] Yasui J, Shimizu T, Ando T, Uchida S, Shibata H, Kawakami A. Successfulvisualization of an indeterminate hepatic metastasis from thyroid carcinoma usingcontrast-enhanced CT and contrast-enhanced ultrasound. The Journal of clinicalendocrinology and metabolism.2013;98:2639-40.
    [261] Alkins RD, Brodersen PM, Sodhi RN, Hynynen K. Enhancing drug delivery forboron neutron capture therapy of brain tumors with focused ultrasound.Neuro-oncology.2013;15:1225-35.
    [262] Mai L, Yao A, Li J, Wei Q, Yuchi M, He X, et al. Cyanine5.5conjugatednanobubbles as a tumor selective contrast agent for dual ultrasound-fluorescenceimaging in a mouse model. PloS one.2013;8:e61224.
    [263] Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems inultrasound-responsive drug delivery systems. International journal of nanomedicine.2013;8:1621-33.
    [264] Cox K, Sever A, Jones S, Weeks J, Mills P, Devalia H, et al. Validation of a techniqueusing microbubbles and contrast enhanced ultrasound (CEUS) to biopsy sentinellymph nodes (SLN) in pre-operative breast cancer patients with a normal grey-scaleaxillary ultrasound. European journal of surgical oncology: the journal of theEuropean Society of Surgical Oncology and the British Association of SurgicalOncology.2013;39:760-5.
    [265] Li P, Gao Y, Zhang J, Liu Z, Tan K, Hua X, et al. Renal interstitial permeabilitychanges induced by microbubble-enhanced diagnostic ultrasound. Journal of drugtargeting.2013;21:507-14.
    [266] Hu J, Wu F, Sui Y, Xu T. A microbubble contrast agent improves prediction of ablatedareas during radiofrequency ablation: a rabbit liver study. Journal of ultrasound inmedicine: official journal of the American Institute of Ultrasound in Medicine.2013;32:787-93.
    [267] Cao BS, Liang YM, Li XL, Deng J, Zhang GC. Contrast-enhanced sonography ofjuxtapleural pulmonary tuberculoma. Journal of ultrasound in medicine: officialjournal of the American Institute of Ultrasound in Medicine.2013;32:749-56.
    [268] Li YH, Jin LF, Du LF, Shi QS, Liu L, Jia X, et al. Enhancing HSP70-ShRNAtransfection in22RV1prostate cancer cells by combination of sonoporation,liposomes and HTERT/CMV chimeric promoter. International journal of oncology.2013;43:151-8.
    [269] Bioley G, Zehn D, Lassus A, Terrettaz J, Tranquart F, Corthesy B. The effect ofvaccines based on ovalbumin coupled to gas-filled microbubbles for reducinginfection by ovalbumin-expressing Listeria monocytogenes. Biomaterials.2013;34:5423-30.
    [270] Liu F, Zhu J, Huang Y, Guo W, Rui M, Xu Y, et al. Hypolipidemic effect of SRBIgene delivery by combining cationic liposomal microbubbles and ultrasound inhypercholesterolemic rats. Molecular medicine reports.2013;7:1965-9.
    [271] Lerche CJ, Haugan KJ, Reimers JI, Ihlemann N. A misinterpreted case of aortaprosthesis endocarditis: remember the phenomenon of microbubbles.Echocardiography.2013;30:E188-91.
    [272] Westwood M, Joore M, Grutters J, Redekop K, Armstrong N, Lee K, et al.Contrast-enhanced ultrasound using SonoVue(R)(sulphur hexafluoride microbubbles)compared with contrast-enhanced computed tomography and contrast-enhancedmagnetic resonance imaging for the characterisation of focal liver lesions anddetection of liver metastases: a systematic review and cost-effectiveness analysis.Health technology assessment.2013;17:1-243.
    [273] Furuichi Y, Moriyasu F, Sugimoto K, Taira J, Sano T, Miyata Y, et al. Obliteration ofgastric varices improves the arrival time of ultrasound contrast agents in hepaticartery and vein. Journal of gastroenterology and hepatology.2013;28:1526-31.
    [274] Yang SL, Tang KQ, Bai WK, Zhao YW, Shen E, Tao JJ, et al. Combinedlow-frequency ultrasound and microbubble contrast agent for the treatment of benignprostatic hyperplasia. Journal of endourology/Endourological Society.2013;27:1020-6.
    [275] Chu PC, Chai WY, Hsieh HY, Wang JJ, Wey SP, Huang CY, et al. Pharmacodynamicanalysis of magnetic resonance imaging-monitored focused ultrasound-inducedblood-brain barrier opening for drug delivery to brain tumors. BioMed researchinternational.2013;2013:627496.
    [276] Aryal M, Vykhodtseva N, Zhang YZ, Park J, McDannold N. Multiple treatments withliposomal doxorubicin and ultrasound-induced disruption of blood-tumor andblood-brain barriers improve outcomes in a rat glioma model. Journal of controlledrelease: official journal of the Controlled Release Society.2013;169:103-11.
    [277] Lu Q, Ling WW, Ma L, Huang ZX, Lu CL, Luo Y. Contrast-enhancedultrasonographic findings of hepatic paragonimiasis. World journal ofgastroenterology: WJG.2013;19:2087-91.
    [278] Yu BF, Wu J, Zhang Y, Sung HW, Xie J, Li RK. Ultrasound-targeted HSVtk andTimp3gene delivery for synergistically enhanced antitumor effects in hepatoma.Cancer gene therapy.2013;20:290-7.
    [1]Raymond Gramiak, Pravin M. Shah, et al. Ultrasound Cardiography: Contrast Studies inAnatomy and Function.Radiology.1969;92(5):939-948.
    [2]Raffi Bekeredjian, Shuyuan Chen,et al. Ultrasound-Targeted Microbubble DestructionCan Repeatedly Direct Highly Specific Plasmid Expression to the Heart.Circulation.2003;108:1022-1026.
    [3]Chen CY, Ding JH, et al. Efficient gene delivery to pancreatic islets with ultrasonicmicrobubble destruction technology. PNAS.2006;103(22):8469-8474.
    [4]Ali H Mesiwala, Lindi Farrell, H.Jurgen Wenzel, et al. High-intensity focusedultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound in Medicine&Biology.2002;28(3):389-400.
    [5]杨延庆,程远等.MRI引导聚焦超声联合微泡开放血脑屏障的时效关系.中国医学杂志.2008;24(9):773-778.
    [6]S. Kubo1, H. Kinoshita, K. Preoperative Localization of Hepatomas by Sonographywith Microbubbles of Carbon Dioxide. AJR.1994;163:1405-1406.
    [7]Martin J K Blomley, Jennifer C Cooke, et al. Microbubble contrast agents: a new era inultrasound. BMJ.2001;322(7296):1222–1225.
    [8]Ralph V. Shohet,Shuyuan Chen. Echocardiographic Destruction of AlbuminMicrobubbles Directs Gene Delivery to the Myocardium.Circulation.2000;101:2554-2556.
    [9]V P Zharov, R R Letfullin, E N Galitovskaya. Microbubbles-overlapping mode for laserkilling of cancer cells with absorbing nanoparticle clusters. Journal of Physics D:Applied Physics.2005;38:2571.
    [10]Folkman J, Watson K, Ingber D. Induction of angiogenesis during the transition fromhyperplasia to neoplasia[J]. Nature.1989;339:58-61.
    [11]Alexander L. Klibanov. Ligand-Carrying Gas-Filled Microbubbles: UltrasoundContrast Agents for Targeted Molecular Imaging. Bioconjugate Chem.2005;6(1):9-17.
    [12]T. S. Reese,Morris J. Karnovsky. Fine structural localization of a blood-brain barrier toexogenous peroxidase.JCB.1967;34(1):207-217.
    [13]Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junctionstrands in endothelial cells. J Cell Biol.1999;147:185–194.
    [14]Mikio Furuse, Masaki Hata, Shoichiro Tsukita, et al. Claudin-based tight junctions arecrucial for the mammalian epidermal barrier. JCB.2002;156(6):1099-1111.
    [15]Matthias Rothermundt1, Marion Peters1,et al. S100B in brain damage andneurodegeneration. Microscopy Research and Technique.2003;60(6):614-632.
    [16] Hynynen K, McDannold N, Vykhodt seva N, et al. Noninvasive MR imaging-guidedfocal opening of the blood-brainbarrier in rabbits. Radiology.2001;220(101):64026461.
    [17]J ames J, mathieu P, Scott A, et al. noninvasive t ranscranial and localized openingof the blood-brain barrier using focused ultrasound in mice.Ult rasound in Med&Biol.2007;33(1):95-104.
    [18]Liu P, Gao YH, Tan KB, et al. Effect of different power ultrasound on t heblood-brain barrier permeability in cerebral ultrasound imaging. Chinese Ult rasoundMed.2005;21(7):481-483.
    [19]Chen Y, Yu R, Song Y, et al. Preliminary study of low-f requency ultrasoundassociated with microbubbles to open the blood brain barrier through the skull. ChinMed Imaging Technol.2006;22(1):42-44.
    [20]Kinoshita M, McDannold N, Jolesz FA, et al. Targeted delivery of antibodies throughthe blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys ResCommun.2006;34(4):1085-1090.
    [21]Kopen GC, Prockop DJ, PhinneyDG. Marrow stromal cells migrate throughoutforebrain and cerebellum and they differentiate into astrocytes after injection intoneonatal mouse brains. Proc Natl Acad Sci USA.1999;96:10711-10716.
    [22]Brazelton TR, Rossi FM, Keshet GI, et al. From marrow to brain:exp ression ofneuronal phenotypes in adult mice. Science.2000;290:1775-1779.
    [23]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bonemarrow stromal cells after cerebral ischemia in rats. Stroke.2001;32:1005-1011.
    [24] Guo C, Jin Y, Dai Z. Multifunctional ultrasound contrast agents for imaging guidedphotothermal therapy. Bioconjugate chemistry.2014;25:840-54.
    [25] Ebben HP, Nederhoed JH, Slikkerveer J, Kamp O, Tangelder GW, Musters RJ, et al.Therapeutic application of contrast-enhanced ultrasound and low-dose urokinase forthrombolysis in a porcine model of acute peripheral arterial occlusion. Journal ofvascular surgery.2014.
    [26] Shimamura M, Nakagami H, Taniyama Y, Morishita R. Gene therapy for peripheralarterial disease. Expert opinion on biological therapy.2014.
    [27] Shen ZY, Shen E, Diao XH, Bai WK, Zeng MX, Luan YY, et al. Inhibitory effects ofsubcutaneous tumors in nude mice mediated by low-frequency ultrasound andmicrobubbles. Oncology letters.2014;7:1385-90.
    [28] Zhang X, Yang G, Zhang Y, Huang P, Qiu J, Sun Y, et al. An experimental research intoendostatin microbubble combined with focused ultrasound for anti-tumor angiogenesisin colon cancer. Gastroenterology report.2014;2:44-53.
    [29] Abou-Saleh RH, Swain M, Evans SD, Thomson NH. Poly(ethylene glycol)Lipid-Shelled Microbubbles: Abundance, Stability, and Mechanical Properties.Langmuir: the ACS journal of surfaces and colloids.2014;30:5557-63.
    [30] Wei CW, Lombardo M, Larson-Smith K, Pelivanov I, Perez C, Xia J, et al. Nonlinearcontrast enhancement in photoacoustic molecular imaging with gold nanosphereencapsulated nanoemulsions. Applied physics letters.2014;104:033701.
    [31] Pflieger R, Chave T, Virot M, Nikitenko SI. Activating molecules, ions, and solidparticles with acoustic cavitation. Journal of visualized experiments: JoVE.2014.
    [32] Helfield BL, Leung BY, Huo X, Goertz DE. Scaling of the viscoelastic shell propertiesof phospholipid encapsulated microbubbles with ultrasound frequency. Ultrasonics.2014;54:1419-24.
    [33] Kobayashi D, Hayashida Y, Sano K, Terasaka K. Effect of surfactant addition onremoval of microbubbles using ultrasound. Ultrasonics.2014;54:1425-9.
    [34] Leng X, Wang J, Carson A, Chen X, Fu H, Ottoboni S, et al. Ultrasound detection ofmyocardial ischemic memory using an e-selectin targeting Peptide amenable to humanapplication. Molecular imaging.2014;16:1-9.
    [35] Wang H, Song Y, Hao D, Bai M, Jin L, Gu J, et al. Ultrasound-targeted microbubbledestruction combined with dual targeting of HSP72and HSC70inhibits HSP90function and induces extensive tumor-speci fi c apoptosis. International journal ofoncology.2014;45:157-64.
    [36] El Kaffas A, Nofiele J, Giles A, Cho S, Liu SK, Czarnota GJ. Dll4-notch signallingblockade synergizes combined ultrasound-stimulated microbubble and radiationtherapy in human colon cancer xenografts. PloS one.2014;9:e93888.
    [37] Deng L, Li L, Yang H, Li L, Zhao F, Wu C, et al. Development and optimization ofdoxorubicin loaded poly(lactic-co-glycolic acid) nanobubbles for drug delivery intoHeLa cells. Journal of nanoscience and nanotechnology.2014;14:2947-54.
    [38] Wen Q, Wan S, Liu Z, Xu S, Wang H, Yang B. Ultrasound contrast agents andultrasound molecular imaging. Journal of nanoscience and nanotechnology.2014;14:190-209.
    [39] Shi Q, Liu P, Sun Y, Zhang H, Du J, Li F, et al. siRNA delivery mediated by copolymernanoparticles, phospholipid stabilized sulphur hexafluoride microbubbles andultrasound. Journal of biomedical nanotechnology.2014;10:436-44.
    [40] Gong Z, Ran H, Wu S, Zhu J, Zheng J. Ultrasound-Microbubble Transplantation ofBone Marrow Stromal Cells Improves Neurological Function after Forebrain Ischemiain Adult Mice. Cell biochemistry and biophysics.2014.
    [41] Mikula E, Hollman K, Chai D, Jester JV, Juhasz T. Measurement of Corneal Elasticitywith an Acoustic Radiation Force Elasticity Microscope. Ultrasound in medicine&biology.2014.
    [42] Shen ZY, Xia GL, Wu MF, Shi MX, Qiang FL, Shen E, et al. The effects oflow-frequency ultrasound and microbubbles on rabbit hepatic tumors. Experimentalbiology and medicine.2014.
    [43] Kim TK, Jang HJ. Contrast-enhanced ultrasound in the diagnosis of nodules in livercirrhosis. World journal of gastroenterology: WJG.2014;20:3590-6.
    [44] Huang L, Belousova T, Pan JS, Du J, Ju H, Lu L, et al. AKI after Conditional andKidney-Specific Knockdown of Stanniocalcin-1. Journal of the American Society ofNephrology: JASN.2014.
    [45] Chen H, Li J, Zhou W, Pelan EG, Stoyanov SD, Arnaudov LN, et al.Sonication-microfluidics for fabrication of nanoparticle-stabilized microbubbles.Langmuir: the ACS journal of surfaces and colloids.2014;30:4262-6.
    [46] Gao S, Zhang Y, Wu J, Shi WT, Lof J, Vignon F, et al. Improvements in CerebralBlood Flow and Recanalization Rates With Transcranial Diagnostic Ultrasound andIntravenous Microbubbles After Acute Cerebral Emboli. Investigative radiology.2014.
    [47] Vlasin M, Lukac R, Kauerova Z, Kohout P, Masek J, Bartheldyova E, et al. Specificcontrast ultrasound using sterically stabilized microbubbles for early diagnosis ofthromboembolic disease in a rabbit model. Canadian journal of veterinary research=Revue canadienne de recherche veterinaire.2014;78:133-9.
    [48] Unga J, Hashida M. Ultrasound induced cancer immunotherapy. Advanced drugdelivery reviews.2014;72C:144-53.
    [49] Chen X, Leow RS, Hu Y, Wan JM, Yu AC. Single-site sonoporation disrupts actincytoskeleton organization. Journal of the Royal Society, Interface/the Royal Society.2014;11:20140071.
    [50] Wang J, Yang Y, Ding L, Cui J, Ye H, Ruan H, et al.[Diagnostic value ofcontrast-enhanced ultrasonography in preoperative Borrmann classification of gastriccancer]. Zhonghua wei chang wai ke za zhi=Chinese journal of gastrointestinalsurgery.2014;17:254-7.
    [51] Hua X, Zhou L, Liu P, He Y, Tan K, Chen Q, et al. In vivo thrombolysis with targetedmicrobubbles loading tissue plasminogen activator in a rabbit femoral artery thrombusmodel. Journal of thrombosis and thrombolysis.2014.
    [52] Yang FY, Ko CE, Huang SY, Chung IF, Chen GS. Pharmacokinetic changes induced byfocused ultrasound in glioma-bearing rats as measured by dynamic contrast-enhancedMRI. PloS one.2014;9:e92910.
    [53] Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles andimplications for drug delivery. Advanced drug delivery reviews.2014;72C:28-48.
    [54] Liu HL, Jan CK, Chu PC, Hong JC, Lee PY, Hsu JD, et al. Design and experimentalevaluation of a256-channel dual-frequency ultrasound phased-array system fortranscranial blood-brain barrier opening and brain drug delivery. IEEE transactions onbio-medical engineering.2014;61:1350-60.
    [55] O'Reilly MA, Jones RM, Hynynen K. Three-dimensional transcranial ultrasoundimaging of microbubble clouds using a sparse hemispherical array. IEEE transactionson bio-medical engineering.2014;61:1285-94.
    [56] Florinas S, Kim J, Nam K, Janat-Amsbury MM, Kim SW. Ultrasound-assisted siRNAdelivery via arginine-grafted bioreducible polymer and microbubbles targeting VEGFfor ovarian cancer treatment. Journal of controlled release: official journal of theControlled Release Society.2014;183:1-8.
    [57] Ji G, Yang J, Chen J. Preparation of novel curcumin-loaded multifunctionalnanodroplets for combining ultrasonic development and targeted chemotherapy.International journal of pharmaceutics.2014;466:314-20.
    [58] Sato T, Mori S, Arai Y, Kodama T. The combination of intralymphatic chemotherapywith ultrasound and nano-/microbubbles is efficient in the treatment of experimentaltumors in mouse lymph nodes. Ultrasound in medicine&biology.2014;40:1237-49.
    [59] Poehlmann M, Grishenkov D, Kothapalli SV, Harmark J, Hebert H, Philipp A, et al. Onthe interplay of shell structure with low-and high-frequency mechanics ofmultifunctional magnetic microbubbles. Soft matter.2014;10:214-26.
    [60] Segers T, Versluis M. Acoustic bubble sorting for ultrasound contrast agent enrichment.Lab on a chip.2014;14:1705-14.
    [61] Sun RR, Noble ML, Sun SS, Song S, Miao CH. Development of therapeuticmicrobubbles for enhancing ultrasound-mediated gene delivery. Journal of controlledrelease: official journal of the Controlled Release Society.2014;182:111-20.
    [62] Burgess A, Hynynen K. Drug delivery across the blood-brain barrier using focusedultrasound. Expert opinion on drug delivery.2014;11:711-21.
    [63] Ejlersen JA, May O. Impact of microbubble contrast on2D strain quantification. Actacardiologica.2014;69:15-22.
    [64] Scarcelli T, Jordao JF, O'Reilly MA, Ellens N, Hynynen K, Aubert I. Stimulation ofhippocampal neurogenesis by transcranial focused ultrasound and microbubbles inadult mice. Brain stimulation.2014;7:304-7.
    [65] Wills M, Harvey CJ, Kuzmich S, Afaq A, Lim A, Cosgrove D. Characterizingmalignant liver lesions with contrast-enhanced ultrasound. British journal of hospitalmedicine.2014;75:151-4.
    [66] Huynh E, Jin CS, Wilson BC, Zheng G. Aggregate enhanced trimodal porphyrin shellmicrobubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjugatechemistry.2014;25:796-801.
    [67] Helfield BL, Leung BY, Goertz DE. The effect of boundary proximity on the responseof individual ultrasound contrast agent microbubbles. Physics in medicine and biology.2014;59:1721-45.
    [68] Logallo N, Fromm A, Waje-Andreassen U, Thomassen L, Matre K. Effect ofmicrobubble contrast on intracranial blood flow velocity assessed by transcranialDoppler. Journal of ultrasound.2014;17:21-6.
    [69] Miller DL, Dou C, Owens GE, Kripfgans OD. Optimization of ultrasound parametersof myocardial cavitation microlesions for therapeutic application. Ultrasound inmedicine&biology.2014;40:1228-36.
    [70] Wei S, Fu N, Sun Y, Yang Z, Lei L, Huang P, et al. Targeted contrast-enhancedultrasound imaging of angiogenesis in an orthotopic mouse tumor model of renalcarcinoma. Ultrasound in medicine&biology.2014;40:1250-9.
    [71] Renaud G, Bosch JG, Van Der Steen AF, De Jong N. Low-Amplitude Non-linearVolume Vibrations of Single Microbubbles Measured with an "Acoustical Camera".Ultrasound in medicine&biology.2014;40:1282-95.
    [72] Wu J, Xie F, Kumar T, Liu J, Lof J, Shi W, et al. Improved Sonothrombolysis from aModified Diagnostic Transducer Delivering Impulses Containing a Longer PulseDuration. Ultrasound in medicine&biology.2014.
    [73] Kee PH, Kim H, Huang S, Laing ST, Moody MR, Vela D, et al. Nitric OxidePretreatment Enhances Atheroma Component Highlighting in Vivo with IntercellularAdhesion Molecule-1-Targeted Echogenic Liposomes. Ultrasound in medicine&biology.2014;40:1167-76.
    [74] Zhang Y, Ye C, Xu Y, Dong X, Li J, Liu R, et al. Ultrasound-mediated microbubbledestruction increases renal interstitial capillary permeability in early diabeticnephropathy rats. Ultrasound in medicine&biology.2014;40:1273-81.
    [75] Wang HH, Song YX, Bai M, Jin LF, Gu JY, Su YJ, et al. Ultrasound targetedmicrobubble destruction for novel dual targeting of HSP72and HSC70in prostatecancer. Asian Pacific journal of cancer prevention: APJCP.2014;15:1285-90.
    [76] Wu SK, Yang MT, Kang KH, Liou HC, Lu DH, Fu WM, et al. Targeted delivery oferythropoietin by transcranial focused ultrasound for neuroprotection againstischemia/reperfusion-induced neuronal injury: a long-term and short-term study. PloSone.2014;9:e90107.
    [77] Wang X, Cui G, Yang X, Zhang Z, Shi H, Zu J, et al. Intracerebral administration ofultrasound-induced dissolution of lipid-coated GDNF microbubbles providesneuroprotection in a rat model of Parkinson's disease. Brain research bulletin.2014;103:60-5.
    [78] Shekhar H, Awuor I, Thomas K, Rychak JJ, Doyley MM. The delayed onset ofsubharmonic and ultraharmonic emissions from a phospholipid-shelled microbubblecontrast agent. Ultrasound in medicine&biology.2014;40:727-38.
    [79] Liu HL, Fan CH, Ting CY, Yeh CK. Combining microbubbles and ultrasound for drugdelivery to brain tumors: current progress and overview. Theranostics.2014;4:432-44.
    [80] Park JS, Kim HK, Bang BW, Kim SG, Jeong S, Lee DH. Effectiveness ofcontrast-enhanced harmonic endoscopic ultrasound for the evaluation of solidpancreatic masses. World journal of gastroenterology: WJG.2014;20:518-24.
    [81] Zhang CC, Yan Z, Giddabasappa A, Lappin PB, Painter CL, Zhang Q, et al.Comparison of dynamic contrast-enhanced MR, ultrasound and optical imagingmodalities to evaluate the antiangiogenic effect of PF-03084014and sunitinib. Cancermedicine.2014;3:462-71.
    [82] Kilroy JP, Patil AV, Rychak JJ, Hossack JA. An IVUS transducer for microbubbletherapies. IEEE transactions on ultrasonics, ferroelectrics, and frequency control.2014;61:441-9.
    [83] Leung KS, Chen X, Zhong W, Yu AC, Lee CY. Microbubble-mediated sonoporationamplified lipid peroxidation of Jurkat cells. Chemistry and physics of lipids.2014;180:53-60.
    [84] Sparchez Z, Radu P. Role of contrast enhanced ultrasound in the assessment of biliaryduct disease. Medical ultrasonography.2014;16:41-7.
    [85] Cui K, Yan T, Luo Q, Zheng Y, Liu X, Huang X, et al. Ultrasoundmicrobubble-mediated delivery of integrin-linked kinase gene improves endothelialprogenitor cells dysfunction in pre-eclampsia. DNA and cell biology.2014;33:301-10.
    [86] Chen S, Bastarrachea RA, Roberts BJ, Voruganti VS, Frost PA, Nava-Gonzalez EJ, etal. Successful beta cells islet regeneration in streptozotocin-induced diabetic baboonsusing ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1. Cellcycle.2014;13:1145-51.
    [87] Jiang N, Xie B, Zhang X, He M, Li K, Bai J, et al. Enhancing Ablation Effects of aMicrobubble-Enhancing Contrast Agent ("SonoVue") in the Treatment of UterineFibroids With High-Intensity Focused Ultrasound: A Randomized Controlled Trial.Cardiovascular and interventional radiology.2014.
    [88] Papadopoulou V, Tang MX, Balestra C, Eckersley RJ, Karapantsios TD. Circulatorybubble dynamics: from physical to biological aspects. Advances in colloid andinterface science.2014;206:239-49.
    [89] Zhang C, Huang P, Zhang Y, Chen J, Shentu W, Sun Y, et al. Anti-tumor efficacy ofultrasonic cavitation is potentiated by concurrent delivery of anti-angiogenic drug incolon cancer. Cancer letters.2014;347:105-13.
    [90] Li W, Liu G, Wang W, Wang Z, Huang Y, Xu Z, et al. Real-time contrast enhancedultrasound imaging of focal splenic lesions. European journal of radiology.2014;83:646-53.
    [91] Bouhlel N, Coron A, Barrois G, Lucidarme O, Bridal SL. Dual-mode registration ofdynamic contrast-enhanced ultrasound combining tissue and contrast sequences.Ultrasonics.2014;54:1289-99.
    [92] Unger E, Porter T, Lindner J, Grayburn P. Cardiovascular drug delivery withultrasound and microbubbles. Advanced drug delivery reviews.2014;72C:110-26.
    [93] Catalano O, Izzo F, Vallone P, Sandomenico F, Albino V, Nunziata A, et al. Integratingcontrast-enhanced sonography in the follow-up algorithm of hepatocellular carcinomatreated with radiofrequency ablation: single cancer center experience. Acta radiologica.2014.
    [94] Wills M, Harvey CJ, Kuzmich S, Afaq A, Lim A, Cosgrove D. Characterizing benignliver lesions and trauma with contrast-enhanced ultrasound. British journal of hospitalmedicine.2014;75:91-5.
    [95] Stanzani D, Chala LF, de Barros N, Cerri GG, Chammas MC. Can Doppler orcontrast-enhanced ultrasound analysis add diagnostically important information aboutthe nature of breast lesions? Clinics.2014;69:87-92.
    [96] Kutty S, Wu J, Hammel JM, Abraham JR, Venkataraman J, Abdullah I, et al.Prevention of arteriovenous shunt occlusion using microbubble and ultrasoundmediated thromboprophylaxis. Journal of the American Heart Association.2014;3:e000689.
    [97] Liu GX, Li YQ, Huang XR, Wei LH, Zhang Y, Feng M, et al. Smad7inhibitsAngII-mediated hypertensive nephropathy in a mouse model of hypertension. Clinicalscience.2014;127:195-208.
    [98] Shim CY, Lindner JR. Cardiovascular Molecular Imaging with Contrast Ultrasound:Principles and Applications. Korean circulation journal.2014;44:1-9.
    [99] Li Y, Ya-Nan Z, Li-Qun W. Which Technique Is Better for Detection of Right-to-LeftShunt in Patients with Patent Foramen Ovale: Comparing Contrast TransthoracicEchocardiography with Contrast Transesophageal Echocardiography.Echocardiography.2014.
    [100] Tsuruta JK, Klauber-DeMore N, Streeter J, Samples J, Patterson C, Mumper RJ, et al.Ultrasound molecular imaging of secreted frizzled related protein-2expression inmurine angiosarcoma. PloS one.2014;9:e86642.
    [101] Al-Mahrouki AA, Iradji S, Tran WT, Czarnota GJ. Cellular characterization ofultrasound-stimulated microbubble radiation enhancement in a prostate cancerxenograft model. Disease models&mechanisms.2014;7:363-72.
    [102] Rychak JJ, Klibanov AL. Nucleic acid delivery with microbubbles and ultrasound.Advanced drug delivery reviews.2014;72C:82-93.
    [103] Fan Z, Chen D, Deng CX. Characterization of the dynamic activities of a populationof microbubbles driven by pulsed ultrasound exposure in sonoporation. Ultrasound inmedicine&biology.2014;40:1260-72.
    [104] Wu H, Zhu Q, Cai M, Tong X, Liu D, Huang J, et al. Effect of inhibitingmalonyl-CoA decarboxylase on cardiac remodeling after myocardial infarction in rats.Cardiology.2014;127:236-44.
    [105] Li F, Jin L, Wang H, Wei F, Bai M, Shi Q, et al. The dual effect of ultrasound-targetedmicrobubble destruction in mediating recombinant adeno-associated virus delivery inrenal cell carcinoma: transfection enhancement and tumor inhibition. The journal ofgene medicine.2014;16:28-39.
    [106] Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediatedblood-brain barrier disruption for targeted drug delivery in the central nervous system.Advanced drug delivery reviews.2014;72C:94-109.
    [107] Reznik N, Lajoinie G, Shpak O, Gelderblom EC, Williams R, de Jong N, et al. On theacoustic properties of vaporized submicron perfluorocarbon droplets. Ultrasound inmedicine&biology.2014;40:1379-84.
    [108] Qin P, Xu L, Hu Y, Zhong W, Cai P, Du L, et al. Sonoporation-induced depolarizationof plasma membrane potential: analysis of heterogeneous impact. Ultrasound inmedicine&biology.2014;40:979-89.
    [109] Nguyen AT, Wrenn SP. Acoustically active liposome-nanobubble complexes forenhanced ultrasonic imaging and ultrasound-triggered drug delivery. Wileyinterdisciplinary reviews Nanomedicine and nanobiotechnology.2014;6:316-25.
    [110] Arellano R, Nurmohamed A, Rumman A, Day AG, Milne B, Phelan R, et al. Theutility of transthoracic echocardiography to confirm central line placement: anobservational study. Canadian journal of anaesthesia=Journal canadien d'anesthesie.2014;61:340-6.
    [111] Kong WT, Wang WP, Zhang WW, Qiu YD, Ding H, Huang BJ. Contribution ofcontrast-enhanced sonography in the detection of intrahepatic cholangiocarcinoma.Journal of ultrasound in medicine: official journal of the American Institute ofUltrasound in Medicine.2014;33:215-20.
    [112] Yao L, Song Q, Bai W, Zhang J, Miao D, Jiang M, et al. Facilitated brain delivery ofpoly (ethylene glycol)-poly (lactic acid) nanoparticles by microbubble-enhancedunfocused ultrasound. Biomaterials.2014;35:3384-95.
    [113] Hyvelin JM, Tardy I, Bettinger T, von Wronski M, Costa M, Emmel P, et al.Ultrasound molecular imaging of transient acute myocardial ischemia with a clinicallytranslatable P-and E-selectin targeted contrast agent: correlation with the expressionof selectins. Investigative radiology.2014;49:224-35.
    [114] Kripfgans OD, Zhang M, Fabiilli ML, Carson PL, Padilla F, Swanson SD, et al.Acceleration of ultrasound thermal therapy by patterned acoustic droplet vaporization.The Journal of the Acoustical Society of America.2014;135:537-44.
    [115] Hu Q, Wang XY, Zhu SY, Kang LK, Xiao YJ, Zheng HY. Meta-analysis ofcontrast-enhanced ultrasound for the differentiation of benign and malignant breastlesions. Acta radiologica.2014.
    [116] Swan JG, Wilbur JC, Moodie KL, Kane SA, Knaus DA, Phillips SD, et al.Microbubbles are detected prior to larger bubbles following decompression. Journal ofapplied physiology.2014;116:790-6.
    [117] Tremblay-Darveau C, Williams R, Burns PN. Measuring absolute blood pressureusing microbubbles. Ultrasound in medicine&biology.2014;40:775-87.
    [118] Chuang YH, Wang YH, Chang TK, Lin CJ, Li PC. Albumin acts like transforminggrowth factor beta1in microbubble-based drug delivery. Ultrasound in medicine&biology.2014;40:765-74.
    [119] Muramoto T, Shimoya R, Yoshida K, Watanabe Y. Evaluation of the specificadsorption of biotinylated microbubbles using a quartz crystal microbalance.Ultrasound in medicine&biology.2014;40:1027-33.
    [120] Sorace AG, Korb M, Warram JM, Umphrey H, Zinn KR, Rosenthal E, et al.Ultrasound-stimulated drug delivery for treatment of residual disease after incompleteresection of head and neck cancer. Ultrasound in medicine&biology.2014;40:755-64.
    [121] de Saint Victor M, Crake C, Coussios CC, Stride E. Properties, characteristics andapplications of microbubbles for sonothrombolysis. Expert opinion on drug delivery.2014;11:187-209.
    [122] Gill SL, O'Neill H, McCoy RJ, Logeswaran S, O'Brien F, Stanton A, et al. Enhanceddelivery of microRNA mimics to cardiomyocytes using ultrasound responsivemicrobubbles reverses hypertrophy in an in-vitro model. Technology and health care:official journal of the European Society for Engineering and Medicine.2014;22:37-51.
    [123] Jeon M, Song W, Huynh E, Kim J, Kim J, Helfield BL, et al. Methylene bluemicrobubbles as a model dual-modality contrast agent for ultrasound and activatablephotoacoustic imaging. Journal of biomedical optics.2014;19:16005.
    [124] Hamano N, Negishi Y, Takatori K, Endo-Takahashi Y, Suzuki R, Maruyama K, et al.Combination of bubble liposomes and high-intensity focused ultrasound (HIFU)enhanced antitumor effect by tumor ablation. Biological&pharmaceutical bulletin.2014;37:174-7.
    [125] Lutz AM, Bachawal SV, Drescher CW, Pysz MA, Willmann JK, Gambhir SS.Ultrasound molecular imaging in a human CD276expression-modulated murineovarian cancer model. Clinical cancer research: an official journal of the AmericanAssociation for Cancer Research.2014;20:1313-22.
    [126] Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drugdelivery. Advanced drug delivery reviews.2014;72C:3-14.
    [127] Quaia E, De Paoli L, Angileri R, Cabibbo B, Cova MA. Indeterminate solid hepaticlesions identified on non-diagnostic contrast-enhanced computed tomography:assessment of the additional diagnostic value of contrast-enhanced ultrasound in thenon-cirrhotic liver. European journal of radiology.2014;83:456-62.
    [128] Oh JS, Kwon YS, Lee KH, Jeong W, Chung SK, Rhee K. Drug perfusionenhancement in tissue model by steady streaming induced by oscillating microbubbles.Computers in biology and medicine.2014;44:37-43.
    [129] Wang S, Hossack JA, Klibanov AL, Mauldin FW, Jr. Binding dynamics of targetedmicrobubbles in response to modulated acoustic radiation force. Physics in medicineand biology.2014;59:465-84.
    [130] Tzu-Yin W, Wilson KE, Machtaler S, Willmann JK. Ultrasound and microbubbleguided drug delivery: mechanistic understanding and clinical implications. Currentpharmaceutical biotechnology.2014;14:743-52.
    [131] Graham SM, Carlisle R, Choi JJ, Stevenson M, Shah AR, Myers RS, et al. Inertialcavitation to non-invasively trigger and monitor intratumoral release of drug fromintravenously delivered liposomes. Journal of controlled release: official journal ofthe Controlled Release Society.2014;178:101-7.
    [132] Juffermans LJ, Meijering BD, Henning RH, Deelman LE. Ultrasound andmicrobubble-targeted delivery of small interfering RNA into primary endothelial cellsis more effective than delivery of plasmid DNA. Ultrasound in medicine&biology.2014;40:532-40.
    [133] Sun C, Sboros V, Butler MB, Moran CM. In vitro acoustic characterization of threephospholipid ultrasound contrast agents from12to43MHz. Ultrasound in medicine&biology.2014;40:541-50.
    [134] Xiao L, Zhu X, Yang S, Liu F, Zhou Z, Zhan M, et al. Rap1ameliorates renal tubularinjury in diabetic nephropathy. Diabetes.2014;63:1366-80.
    [135] Sheeran PS, Matsunaga TO, Dayton PA. Phase change events of volatile liquidperfluorocarbon contrast agents produce unique acoustic signatures. Physics inmedicine and biology.2014;59:379-401.
    [136] Chen JL, Dhanaliwala AH, Dixon AJ, Klibanov AL, Hossack JA. Synthesis andcharacterization of transiently stable albumin-coated microbubbles via a flow-focusingmicrofluidic device. Ultrasound in medicine&biology.2014;40:400-9.
    [137] Denbeigh JM, Nixon BA, Hudson JM, Puri MC, Foster FS. VEGFR2-targetedmolecular imaging in the mouse embryo: an alternative to the tumor model.Ultrasound in medicine&biology.2014;40:389-99.
    [138] Bjarnason GA, Khalil B, Hudson JM, Williams R, Milot LM, Atri M, et al. Outcomesin patients with metastatic renal cell cancer treated with individualized sunitinibtherapy: correlation with dynamic microbubble ultrasound data and review of theliterature. Urologic oncology.2014;32:480-7.
    [139] Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T. Recentadvances in molecular, multimodal and theranostic ultrasound imaging. Advanceddrug delivery reviews.2014;72C:15-27.
    [140] Inaba Y, Davidson BP, Kim S, Liu YN, Packwood W, Belcik JT, et al.Echocardiographic evaluation of the effects of stem cell therapy on perfusion andfunction in ischemic cardiomyopathy. Journal of the American Society ofEchocardiography: official publication of the American Society of Echocardiography.2014;27:192-9.
    [141] Hannah A, Luke G, Wilson K, Homan K, Emelianov S. Indocyanine green-loadedphotoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacousticand ultrasound imaging. ACS nano.2014;8:250-9.
    [142] Yu H, Xu L. Cell experimental studies on sonoporation: state of the art and remainingproblems. Journal of controlled release: official journal of the Controlled ReleaseSociety.2014;174:151-60.
    [143] Inoue H, Arai Y, Kishida T, Shin-Ya M, Terauchi R, Nakagawa S, et al.Sonoporation-mediated transduction of siRNA ameliorated experimental arthritisusing3MHz pulsed ultrasound. Ultrasonics.2014;54:874-81.
    [144] Deng Z, Yan F, Jin Q, Li F, Wu J, Liu X, et al. Reversal of multidrug resistancephenotype in human breast cancer cells using doxorubicin-liposome-microbubblecomplexes assisted by ultrasound. Journal of controlled release: official journal of theControlled Release Society.2014;174:109-16.
    [145] Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT. Understandingultrasound induced sonoporation: Definitions and underlying mechanisms. Advanceddrug delivery reviews.2014;72C:49-64.
    [146] Sehgal CM, Wood AK. Re "Disruption of tumor neovasculature by microbubbleenhanced ultrasound: a potential new physical therapy of anti-angiogenesis".Ultrasound in medicine&biology.2014;40:455-6.
    [147] Gao S, Liu Z, Xie F. Reply to the Letter to the Editor re "Disruption of TumorNeovasculature by Microbubble Enhanced Ultrasound: A Potential New PhysicalTherapy of Anti-angiogenesis". Ultrasound in medicine&biology.2014;40:456.
    [148] Liu H, Chang S, Sun J, Zhu S, Pu C, Zhu Y, et al. Ultrasound-mediated destruction ofLHRHa-targeted and paclitaxel-loaded lipid microbubbles induces proliferationinhibition and apoptosis in ovarian cancer cells. Molecular pharmaceutics.2014;11:40-8.
    [149] Raymond JL, Haworth KJ, Bader KB, Radhakrishnan K, Griffin JK, Huang SL, et al.Broadband attenuation measurements of phospholipid-shelled ultrasound contrastagents. Ultrasound in medicine&biology.2014;40:410-21.
    [150] Wang S, Samiotaki G, Olumolade O, Feshitan JA, Konofagou EE. Microbubble typeand distribution dependence of focused ultrasound-induced blood-brain barrieropening. Ultrasound in medicine&biology.2014;40:130-7.
    [151] Lindsey BD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW.3-D transcranialultrasound imaging with bilateral phase aberration correction of multiple isoplanaticpatches: a pilot human study with microbubble contrast enhancement. Ultrasound inmedicine&biology.2014;40:90-101.
    [152] Yan T, Cui K, Huang X, Ding S, Zheng Y, Luo Q, et al. Assessment of therapeuticefficacy of miR-126with contrast-enhanced ultrasound in preeclampsia rats. Placenta.2014;35:23-9.
    [153] Volta A, Manfredi S, Vignoli M, Russo M, England GC, Rossi F, et al. Use ofcontrast-enhanced ultrasonography in chronic pathologic canine testes. Reproductionin domestic animals=Zuchthygiene.2014;49:202-9.
    [154] Pu C, Chang S, Sun J, Zhu S, Liu H, Zhu Y, et al. Ultrasound-mediated destruction ofLHRHa-targeted and paclitaxel-loaded lipid microbubbles for the treatment ofintraperitoneal ovarian cancer xenografts. Molecular pharmaceutics.2014;11:49-58.
    [155] Kondo T, Maruyama H, Sekimoto T, Shimada T, Takahashi M, Chiba T, et al. Naturalhistory of postvascular-phase iso-enhanced lesions on the sonogram in chronic liverdiseases. Journal of gastroenterology and hepatology.2014;29:165-72.
    [156] Hudson JM, Williams R, Karshafian R, Milot L, Atri M, Burns PN, et al. Quantifyingvascular heterogeneity using microbubble disruption-replenishment kinetics inpatients with renal cell cancer. Investigative radiology.2014;49:116-23.
    [157] Yu H, Chen S. A model to calculate microstreaming-shear stress generated byoscillating microbubbles on the cell membrane in sonoporation. Bio-medical materialsand engineering.2014;24:861-8.
    [158] Yan F, Li X, Jiang C, Jin Q, Zhang Z, Shandas R, et al. A novel microfluidic chip forassessing dynamic adhesion behavior of cell-targeting microbubbles. Ultrasound inmedicine&biology.2014;40:148-57.
    [159] Burke CW, Alexander Et, Timbie K, Kilbanov AL, Price RJ. Ultrasound-activatedagents comprised of5FU-bearing nanoparticles bonded to microbubbles inhibit solidtumor growth and improve survival. Molecular therapy: the journal of the AmericanSociety of Gene Therapy.2014;22:321-8.
    [160] Yan P, Chen KJ, Wu J, Sun L, Sung HW, Weisel RD, et al. The use of MMP2antibody-conjugated cationic microbubble to target the ischemic myocardium,enhance Timp3gene transfection and improve cardiac function. Biomaterials.2014;35:1063-73.
    [161] Chadderdon SM, Belcik JT, Bader L, Kirigiti MA, Peters DM, Kievit P, et al.Proinflammatory endothelial activation detected by molecular imaging in obesenonhuman primates coincides with onset of insulin resistance and progressivelyincreases with duration of insulin resistance. Circulation.2014;129:471-8.
    [162] Akkus Z, Hoogi A, Renaud G, van den Oord SC, Ten Kate GL, Schinkel AF, et al.New quantification methods for carotid intra-plaque neovascularization usingcontrast-enhanced ultrasound. Ultrasound in medicine&biology.2014;40:25-36.
    [163] Chen X, Leeman JE, Wang J, Pacella JJ, Villanueva FS. New insights intomechanisms of sonothrombolysis using ultra-high-speed imaging. Ultrasound inmedicine&biology.2014;40:258-62.
    [164] Satinover SJ, Dove JD, Borden MA. Single-particle optical sizing of microbubbles.Ultrasound in medicine&biology.2014;40:138-47.
    [165] Mouterde G, Aegerter P, Correas JM, Breban M, D'Agostino MA. Value ofcontrast-enhanced ultrasonography for the detection and quantification of enthesitisvascularization in patients with spondyloarthritis. Arthritis care&research.2014;66:131-8.
    [166] Brems S, Hauptmann M, Camerotto E, Mertens PW, Heyns M, Struyf H, et al.Physical forces exerted by microbubbles on a surface in a traveling wave field.Ultrasonics.2014;54:706-9.
    [167] Levinsen MT. Concomitance in single bubble sonoluminescence of period doublingin emission and shape distortion. Ultrasonics.2014;54:637-43.
    [168] Stricker L, Lohse D. Radical production inside an acoustically driven microbubble.Ultrasonics sonochemistry.2014;21:336-45.
    [169] Goertz DE, Thind AS, Karshafian R, Ladouceur M, Whyne CM, Foster FS, et al. Invivo feasibility study of ultrasound potentiated collagenase therapy of chronic totalocclusions. Ultrasonics.2014;54:20-4.
    [170] Ren ST, Kang XN, Liao YR, Wang W, Ai H, Chen LN, et al. The ultrasound contrastimaging properties of lipid microbubbles loaded with urokinase in dog livers and theirthrombolytic effects when combined with low-frequency ultrasound in vitro. Journalof thrombosis and thrombolysis.2014;37:303-9.
    [171] Wu H, Wilkins LR, Ziats NP, Haaga JR, Exner AA. Real-time monitoring ofradiofrequency ablation and postablation assessment: accuracy of contrast-enhancedUS in experimental rat liver model. Radiology.2014;270:107-16.
    [172] Yu H, Xu L, Chen S. A transfer efficiency model for ultrasound mediated drug/genetransferring into cells. Ultrasonics sonochemistry.2014;21:113-20.
    [173] Vong F, Son Y, Bhuiyan S, Zhou M, Cavalieri F, Ashokkumar M. A comparison of thephysical properties of ultrasonically synthesized lysozyme-and BSA-shelledmicrobubbles. Ultrasonics sonochemistry.2014;21:23-8.
    [174] Daneshi M, Rajayogeswaran B, Peddu P, Sidhu PS. Demonstration of an occultbiliary-arterial fistula using percutaneous contrast-enhanced ultrasoundcholangiography in a transplanted liver. Journal of clinical ultrasound: JCU.2014;42:108-11.
    [1] Savitz SI, Fisher M (2007) Future of neuroprotection for acute stroke: in the aftermathof the SAINT trials. Ann Neurol61:396–402.
    [2] Jablonska A, Lukomska B (2011) Stroke induced brain changes: Implications for stemcell transplantation. Acta Neurobiol Exp (Wars)71:74–85.
    [3] Bliss T, Guzman R, Daadi M, Steinberg GK (2007) Cell transplantation therapy forstroke. Stroke38:817–826.
    [4] Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromalcells for the repair of central nervous system injury. Bone Marrow Transplant40:609–619.
    [5] Wu QY, Li J, Feng ZT, Wang TH (2007) Bone marrow stromal cells of transgenicmice can improve the cognitive ability of an Alzheimer’s disease rat model. NeurosciLett417:281–285.
    [6] Shichinohe H, Kuroda S, Sugiyama T, Ito M, Kawabori M (2010) Bone marrowstromal cell transplantation attenuates cognitive dysfunction due to chronic cerebralischemia in rats. Dement Geriatr Cogn Disord30:293–301.
    [7].Lee PH, Kim JW, Bang OY, Ahn YH, Joo IS, Huh K (2008) Autologousmesenchymal stem cell therapy delays the progression of neurological deficits inpatients with multiple system atrophy. Clin Pharmacol Ther83:723–730.
    [8] Zhang ZX, Guan LX, Zhang K, Zhang Q, Dai LJ (2008) A combined procedure todeliver autologous mesenchymal stromal cells to patients with traumatic braininjury.Cytotherapy10:134–139.
    [9] Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M,Chandra R, Dixit A, RauthanA, Murgod U, Totey S (2009) Ex vivo-expanded autologous bone marrow-derivedmesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinicalstudy. Cytotherapy11:897–911.
    [10] Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010) A long-termfollow-up study of intravenous autologous mesenchymal stem cell transplantation inpatients with ischemic stroke. Stem Cells28:1099–1106.
    [11] Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L,Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, VercelliR, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F (2010) Mesenchymalstem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. ExpNeurol223:229–237.
    [12] Saito F, Nakatani T, Iwase M, Maeda Y, Murao Y, Suzuki Y,Fukushima M, Ide C(2012) Administration of cultured autologous bone marrow stromal cells intocerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci30:127–136.
    [13] Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H,Kawahara N (2012) Stemcell therapy for cerebral ischemia: from basic science to clinical applications. J CerebBlood Flow Metab32:1317–1331.
    [14] Shichinohe H, Kuroda S, Yano S, Ohnishi T, Tamagami H, Hida K, Iwasaki Y (2006)Improved expression of gamma-aminobutyric acid receptor in mice with cerebralinfarct and transplanted bone marrow stromal cells: an autoradiographic andhistologic analysis. J Nucl Med47:486–491.
    [15] Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A,Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2003) Effect ofstromal-cell-derived factor1on stem-cell homing and tissue regeneration inischaemic cardiomyopathy. Lancet362:697–703.
    [16] Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y (2007) Role of SDF-1/CXCR4system in survival and migration of bone marrow stromal cells after transplantationinto mice cerebral infarct. Brain Res1183:138–147.
    [17].Gu Y, Wang J, Ding F, Hu N, Wang Y, Gu X (2009) Neurotrophic actions of bonemarrow stromal cells on primary culture of dorsal root ganglion tissues and neurons. JMol Neurosci40:332–341
    [18] Kamei N, Tanaka N, Oishi Y, Ishikawa M, Hamasaki T, Nishida K, Nakanishi K,Sakai N, Ochi M (2007) Bone marrow stromal cells promoting corticospinal axongrowth through the release of humoral factors in organotypic cocultures in neonatalrats. J Neurosurg Spine6:412–419.
    [19] Shichinohe H, Kuroda S, Tsuji S, Yamaguchi S, Yano S, Lee JB, Kobayashi H,Kikuchi S, Hida K, Iwasaki Y (2008) Bone marrow stromal cells promote neuriteextension in organotypic spinal cord slice: significance for cell transplantationtherapy. Neurorehabil Neural Repair22:447–457.
    [20].He XY, Chen ZZ, Cai YQ, Xu G, Shang JH, Kou SB, Li M, Zhang HT, Duan CZ,Zhang SZ, Ke YQ, Zeng YJ, Xu RX, Jiang XD (2011) Expression of cytokines in ratbrain with focal cerebral ischemia after grafting with bone marrow stromal cells andendothelial progenitor cells.Cytotherapy13:46–53.
    [21] Gornicka-Pawlak E, Janowski M, Habich A, Jablonska A, Drela K, Kozlowska H,Lukomska B, Sypecka J, Domanska-Janik K (2011) Systemic treatment of focal braininjury in the rat by human umbilical cord blood cells being at different level of neuralcommitment. ActaNeurobiol Exp (Wars)71:46–64.
    [22] Scheibe F, Klein O, Klose J, Priller J (2012) Mesenchymal stromal cells rescuecortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia.Cellular and molecular neurobiology32:567–576.
    [23] Scheibe F, Klein O, Klose J, Priller J (2012) Mesenchymal stromal cells rescuecortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia.Cellular and molecular neurobiology32:567–576.
    [24] Ito M, Kuroda S, Sugiyama T, Maruichi K, Kawabori M, Nakayama N, Houkin K,Iwasaki Y (2012) Transplanted bone marrow stromal cells protect neurovascular unitsand ameliorate brain damage in stroke-prone spontaneously hypertensive rats.Neuropathology32:522–533.
    [25] Hoffmann J, Glassford AJ, Doyle TC, Robbins RC, Schrepfer S, Pelletier MP (2010)Angiogenic effects despite limited cell survival of bone marrow-derivedmesenchymal stem cells under ischemia. Thorac Cardiovasc Surg58:136–142.
    [26] Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: newopportunities for novel therapeutics. J Cereb Blood Flow Metab19:819–834.
    [27] Auletta JJ, Deans RJ, Bartholomew AM (2012) Emerging roles for multipotent, bonemarrow-derived stromal cells in host defense. Blood119:1801–1809.
    [28] Mundra V, Gerling IC, Mahato RI (2012) Mesenchymal stem cell-based therapy. MolPharm10:77–89.
    [29].Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F,Ottonello L, Pistoia V (2008) Human mesenchymal stem cells inhibit neutrophilapoptosis: a model for neutrophil preservation in the bone marrow niche. Stem cells26:151–162.
    [30] van den Akker F, Deddens JC, Doevendans PA, Sluijter JP (2013) Cardiac stem celltherapy to modulate inflammation upon myocardial infarction. Biochim Biophys Acta1830:2449–2458.
    [31].Yang WJ, Li SH, Weisel RD, Liu SM, Li RK (2012) Cellfusion contributes to therescue of apoptotic cardiomyocytes by bone marrow cells. J Cell Mol Med16:3085–3095.
    [32] Curril IM, Koide M, Yang CH, Segal A, Wellman GC, Spees JL (2010) Incompletereprogramming after fusion of human multipotent stromal cells and bronchialepithelial cells. FASEB J24:4856–4864.
    [33] Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, QuadriSK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer frombone-marrow-derived stromal cells to pulmonary alveoli protects against acute lunginjury. Nat Med18:759–765.
    [34].Bossolasco P, Cova L, Calzarossa C, Rimoldi SG, Borsotti C, Deliliers GL, Silani V,Soligo D, Polli E (2005) Neuroglial differentiation of human bone marrow stem cellsin vitro. Exp Neurol193:312–325.
    [35].Yamaguchi S, Kuroda S, Kobayashi H, Shichinohe H, Yano S, Hida K, Shinpo K,Kikuchi S, Iwasaki Y (2006) The effects of neuronal induction on gene expressionprofile in bone marrow stromal cells (BMSC)-a preliminary study using microarrayanalysis. Brain Res1087:15–27.
    [36].Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y (2007) Role of SDF-1/CXCR4system in survival and migration of bone marrow stromal cells after transplantationinto mice cerebral infarct. Brain Res1183:138–147.
    [37] Maruichi K, Kuroda S, Chiba Y, Hokari M, Shichinohe H, Hida K, Iwasaki Y (2009)Transplanted bone marrow stromal cells improves cognitive dysfunction due todiffuse axonal injury in rats. Neuropathology29:422–432.
    [38].Miyamoto M, Kuroda S, Zhao S, Magota K, Shichinohe H,Houkin K, Kuge Y,Tamaki N (2012) Bone marrow stromal cell transplantation enhances recovery oflocal glucose metabolism after cerebral infarction in rats: A serial18F-FDG PETstudy. J Nucl Med54:145–150
    [39].[76] Abe M.[Hormones and Cytokines in Bone Metabolism. Cytokines and myelomabone disease]. Clinical calcium.2014;24:871-8.
    [40] Addison WN, Fu MM, Yang HX, Lin Z, Nagano K, Gori F, et al. Directtranscriptional repression of Zfp423by Zfp521mediates a BMP-dependent osteoblastversus adipocyte lineage commitment switch. Molecular and cellular biology.2014.
    [41] Al-Saqi SH, Saliem M, Asikainen S, Quezada HC, Ekblad A, Hovatta O, et al.Defined serum-free media for in vitro expansion of adipose-derived mesenchymalstem cells. Cytotherapy.2014.
    [42] Al-Sharabi N, Xue Y, Fujio M, Ueda M, Gjerde C, Mustafa K, et al. Bone marrowstromal cell paracrine factors direct osteo/odontogenic differentiation of dental pulpcells. Tissue engineering Part A.2014.
    [43] Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R. Protein synthesisand secretion in human mesenchymal cells derived from bone marrow, adipose tissueand Wharton's jelly. Stem cell research&therapy.2014;5:53.
    [44] Amini A, Kan HM, Cui Z, Maye P, Nair L. Enzymatically Cross-linked BovineLactoferrin as Injectable Hydrogel for Cell Delivery. Tissue engineering Part A.2014.
    [45] Appaix F, Nissou MF, van der Sanden B, Dreyfus M, Berger F, Issartel JP, et al. Brainmesenchymal stem cells: The other stem cells of the brain? World journal of stemcells.2014;6:134-43.
    [46] Arnold JN, Magiera L, Kraman M, Fearon DT. Tumoral immune suppression bymacrophages expressing fibroblast activation protein-alpha and heme oxygenase-1.Cancer immunology research.2014;2:121-6.
    [47] Asif IM, Shelton RM, Cooper PR, Addison O, Martin RA. In vitro bioactivity oftitanium-doped bioglass. Journal of materials science Materials in medicine.2014.
    [48] Asmussen S, Ito H, Traber DL, Lee JW, Cox RA, Hawkins HK, et al. Humanmesenchymal stem cells reduce the severity of acute lung injury in a sheep model ofbacterial pneumonia. Thorax.2014.
    [49] Bai H, Weng Y, Bai S, Jiang Y, Li B, He F, et al. CCL5secreted from bone marrowstromal cells stimulates the migration and invasion of Huh7hepatocellular carcinomacells via the PI3K-Akt pathway. International journal of oncology.2014;45:333-43.
    [50] Bain O, Detela G, Kim HW, Mason C, Mathur A, Wall IB. Altered hMSC functionalcharacteristics in short-term culture and when placed in low oxygen environments:implications for cell retention at physiologic sites. Regenerative medicine.2014;9:153-65.
    [51] Baker BA, Pine PS, Chatterjee K, Kumar G, Lin NJ, McDaniel JH, et al. Ontologyanalysis of global gene expression differences of human bone marrow stromal cellscultured on3D scaffolds or2D films. Biomaterials.2014.
    [52] Barminko JA, Nativ NI, Schloss R, Yarmush ML. Fractional factorial design toinvestigate stromal cell regulation of macrophage plasticity. Biotechnology andbioengineering.2014.
    [53] Bayo J, Fiore E, Aquino JB, Malvicini M, Rizzo M, Peixoto E, et al. IncreasedMigration of Human Mesenchymal Stromal Cells by Autocrine Motility Factor (AMF)Resulted in Enhanced Recruitment towards Hepatocellular Carcinoma. PloS one.2014;9:e95171.
    [54] Bedekovics J, Szeghalmy S, Beke L, Fazekas A, Mehes G. Image analysis of plateletderived growth factor receptor-beta (PDGFRbeta) expression to determine the gradeand dynamics of myelofibrosis in bone marrow biopsy samples. Cytometry Part B,Clinical cytometry.2014.
    [55] Bellayr IH, Catalano JG, Lababidi S, Yang AX, Lo Surdo JL, Bauer SR, et al. Genemarkers of cellular aging in human multipotent stromal cells in culture. Stem cellresearch&therapy.2014;5:59.
    [56] Bischel LL, Casavant BP, Young PA, Eliceiri KW, Basu HS, Beebe DJ. A microfluidiccoculture and multiphoton FAD analysis assay provides insight into the influence ofthe bone microenvironment on prostate cancer cells. Integrative biology: quantitativebiosciences from nano to macro.2014;6:627-35.
    [57] Bliss SA, Greco SJ, Rameshwar P. Hierarchy of Breast Cancer Cells: Key to ReverseDormancy for Therapeutic Intervention. Stem cells translational medicine.2014.
    [58] Bolomsky A, Schreder M, Meissner T, Hose D, Ludwig H, Pfeifer S, et al.Immunomodulatory drugs thalidomide and lenalidomide affect osteoblastdifferentiation of human bone marrow stromal cells in vitro. Experimentalhematology.2014.
    [59] Borriello L, DeClerck YA.[Tumor microenvironment and therapeutic resistanceprocess]. Medecine sciences: M/S.2014;30:445-51.
    [60] Bouvet-Gerbettaz S, Boukhechba F, Balaguer T, Schmid-Antomarchi H, Michiels JF,Scimeca JC, et al. Adaptive immune response inhibits ectopic mature bone formationinduced by BMSCs/BCP/plasma composite in immune competent mice. Tissueengineering Part A.2014.
    [61] Bueno C, Roldan M, Anguita E, Romero-Moya D, Martin-Antonio B, Rosu-Myles M,et al. Bone marrow mesenchymal stem cells from aplastic anemia patients preservefunctional and immune properties and do not contribute to the pathogenesis of thedisease. Haematologica.2014.
    [62] Busser H, De Bruyn C, Urbain F, Najar M, Pieters K, Raicevic G, et al. Isolation ofadipose derived stromal cells without enzymatic treatment: expansion, phenotypicaland functional characterization. Stem cells and development.2014.
    [63] Chang MC, Tsao CH, Huang WH, Chih-Hsueh Chen P, Hung SC. Conditionedmedium derived from mesenchymal stem cells overexpressing HPV16E6E7dramatically improves ischemic limb. Journal of molecular and cellular cardiology.2014;72:339-49.
    [64] Chen L, Cui X, Wu Z, Jia L, Yu Y, Zhou Q, et al. Transplantation of bone marrowmesenchymal stem cells pretreated with valproic acid in rats with an acute spinal cordinjury. Bioscience trends.2014;8:111-9.
    [65] Chen L, Fan X, Jin G, Wan X, Qiu R, Yi G, et al. Treatment of rat with traumatic braininjury and MR tracing in vivo via combined transplantation of bone marrow stromalcells labeled with superparamagnetic iron oxide and Schwann cells. Journal ofbiomedical nanotechnology.2014;10:205-15.
    [66] Cheng Y, Ramos D, Lee P, Liang D, Yu X, Kumbar SG. Collagen functionalizedbioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells:bone tissue engineering. Journal of biomedical nanotechnology.2014;10:287-98.
    [67] Chengming F, Youshan Z, Juan G, Shucheng G, Xiao L, Chunkang C. Senescence ofBone Marrow Mesenchymal Stromal Cells is accompanied by Activation of p53/p21Pathway in Myelodysplastic Syndromes. European journal of haematology.2014.
    [68] Cheung LC, Strickland DH, Howlett M, Ford J, Charles AK, Lyons KM, et al.Connective tissue growth factor is expressed in bone marrow stromal cells andpromotes IL-7-dependent B lymphopoiesis. Haematologica.2014.
    [69] Chiarugi P, Paoli P, Cirri P. Tumor microenvironment and metabolism in prostatecancer. Seminars in oncology.2014;41:267-80.
    [70] Choi DH, Suhaeri M, Hwang MP, Kim IH, Han DK, Park K. Multi-lineagedifferentiation of human mesenchymal stromal cells on the biophysicalmicroenvironment of cell-derived matrix. Cell and tissue research.2014.
    [71] Chomel JC, Aggoune D, Sorel N, Turhan AG.[Chronic myeloid leukemia stem cells:cross-talk with the niche]. Medecine sciences: M/S.2014;30:452-61.
    [72] Ciccocioppo R, Camarca A, Cangemi GC, Radano G, Vitale S, Betti E, et al.Tolerogenic effect of mesenchymal stromal cells on gliadin-specific T lymphocytes inceliac disease. Cytotherapy.2014.
    [73] Cipriano AF, De Howitt N, Gott SC, Miller C, Rao MP, Liu H. Bone marrow stromalcell adhesion and morphology on micro-and sub-micropatterned titanium. Journal ofbiomedical nanotechnology.2014;10:660-8.
    [74] Colaianni G, Cuscito C, Mongelli T, Oranger A, Mori G, Brunetti G, et al. Irisinenhances osteoblast differentiation in vitro. International journal of endocrinology.2014;2014:902186.
    [75] Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment ofspinal cord injuries: A review. World journal of stem cells.2014;6:120-33.
    [76] de Windt TS, Hendriks JA, Zhao X, Vonk LA, Creemers LB, Dhert WJ, et al. Concisereview: unraveling stem cell cocultures in regenerative medicine: which cellinteractions steer cartilage regeneration and how? Stem cells translational medicine.2014;3:723-33.
    [77] Di Bernardo J, Maiden MM, Jiang G, Hershenson MB, Kunisaki SM. Paracrineregulation of fetal lung morphogenesis using human placenta-derived mesenchymalstromal cells. The Journal of surgical research.2014.
    [78] Ding DC, Wu KC, Chou HL, Hung WT, Liu HW, Chu TY. Human infra-patellar fatpad-derived stromal cells have more potent differentiation capacity than othermesenchymal cells and can be enhanced by hyaluronan. Cell transplantation.2014.
    [79] Duan C, Liu J, Yuan Z, Meng G, Yang X, Jia S, et al. Adenovirus-mediated transfer ofVEGF into marrow stromal cells combined with PLGA/TCP scaffold increasesvascularization and promotes bone repair in vivo. Archives of medical science: AMS.2014;10:174-81.
    [80] Dumont N, Boyer L, Emond H, Saltik BC, Pasha R, Bazin R, et al. Mediumconditioned with MSC-derived osteoblasts improves the expansion and engraftmentproperties of cord blood progenitors. Experimental hematology.2014.
    [81] Elder S, Thomason J. Effect of platelet-rich plasma on chondrogenic differentiation inthree-dimensional culture. The open orthopaedics journal.2014;8:78-84.
    [82] El-Ghany HM, El-Saadany ZA, Bahaa NM, Ibrahim NY, Hussien SM. Stromal cellderived factor-1(CXCL12) chemokine gene variant in myeloid leukemias. Clinicallaboratory.2014;60:735-41.
    [83] El-Mabhouh AA, Ayres ML, Shpall EJ, Baladandayuthapani V, Keating MJ, WierdaWG, et al. Evaluation of bendamustine in combination with fludarabine in primarychronic lymphocytic leukemia cells. Blood.2014.
    [84] Fabiani E, Falconi G, Fianchi L, Guidi F, Bellesi S, Voso MT, et al. Mutationalanalysis of bone marrow mesenchymal stromal cells in myeloid malignancies.Experimental hematology.2014.
    [85] Fan X, Gay FP, Lim FW, Ang JM, Chu PP, Bari S, et al. Low dose insulin like growthfactor binding proteins1and2and angiopoietin like protein3coordinately stimulateex vivo expansion of human umbilical cord blood hematopoietic stem cells as assayedin NOD/SCID gamma null mice. Stem cell research&therapy.2014;5:71.
    [86] Fang KH, Kao HK, Chi LM, Liang Y, Liu SC, Hseuh C, et al. Overexpression ofBST2is associated with nodal metastasis and poorer prognosis in oral cavity cancer.The Laryngoscope.2014.
    [87] Fotia C, Massa A, Boriani F, Baldini N, Granchi D. Hypoxia enhances proliferationand stemness of human adipose-derived mesenchymal stem cells. Cytotechnology.2014.
    [88] Frolich K, Hagen R, Kleinsasser N.[Adipose-derived Stromal Cells (ASC)-Basicsand Therapeutic Approaches in Otorhinolaryngology]. Laryngo-rhino-otologie.2014;93:369-80.
    [89] Galderisi U, Giordano A. The Gap Between the Physiological and Therapeutic Rolesof Mesenchymal Stem Cells. Medicinal research reviews.2014.
    [90] Han NR, Oh HA, Nam SY, Moon PD, Kim DW, Kim HM, et al. TSLP Induces MastCell Development and Aggravates Allergic Reactions through the Activation ofMDM2and STAT6. The Journal of investigative dermatology.2014.
    [91] Hanley PJ, Mei Z, Durett AG, da Graca Cabreira-Harrison M, Klis M, Li W, et al.Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of theQuantum Cell Expansion System. Cytotherapy.2014.
    [92] Hayashi E, Hosoda T. Myocyte renewal and therapeutic myocardial regenerationusing various progenitor cells. Heart failure reviews.2014.
    [93] He G, Guo W, Lou Z, Zhang H. Achyranthes bidentata Saponins Promote OsteogenicDifferentiation of Bone Marrow Stromal Cells Through the ERK MAPK SignalingPathway. Cell biochemistry and biophysics.2014.
    [94] Hegyi B, Kornyei Z, Ferenczi S, Fekete R, Kudlik G, Kovacs KJ, et al. Regulation ofmouse microglia activation and effector functions by bone marrow-derivedmesenchymal stem cells. Stem cells and development.2014.
    [95] Hempel U, Preissler C, Vogel S, Moller S, Hintze V, Becher J, et al. Artificialextracellular matrices with oversulfated glycosaminoglycan derivatives promote thedifferentiation of osteoblast-precursor cells and premature osteoblasts. BioMedresearch international.2014;2014:938368.
    [96] Hiasa M, Teramachi J, Oda A, Amachi R, Harada T, Nakamura S, et al. Pim-2kinaseis an important target of treatment for tumor progression and bone loss in myeloma.Leukemia.2014.
    [97] Hsu WT, Jui HY, Huang YH, Su MY, Wu YW, Tseng WY, et al. CXCR4AntagonistTG-0054Mobilizes Mesenchymal Stem Cells, Attenuates Inflammation, andPreserves Cardiac Systolic Function in a Porcine Model of Myocardial Infarction.Cell transplantation.2014.
    [98] Hu X, Xuan H, Du H, Jiang H, Huang J. Down-Regulation of CD9by MethylationDecreased Bortezomib Sensitivity in Multiple Myeloma. PloS one.2014;9:e95765.
    [99] Huang CK, Luo J, Lee SO, Chang C. Androgen receptor differential roles instem/progenitor cells including prostate, embryonic, stromal, and hematopoieticlineages. Stem cells.2014.
    [100] Huang H, Hou M, Xu J, Pang T, Duan J, Li Z, et al.[Roles of heme oxygenase-1promoting regeneration of peribiliary vascular plexus in bile ductischemia/reperfusion injury]. Zhonghua wai ke za zhi [Chinese journal of surgery].2014;52:193-7.
    [101] Hundepool CA, Nijhuis TH, Mohseny B, Selles RW, Hovius SE. The effect of stemcells in bridging peripheral nerve defects: a meta-analysis. Journal of neurosurgery.2014:1-15.
    [102] Jajosky AN, Coad JE, Vos JA, Martin KH, Senft JR, Wenger SL, et al. RepSox SlowsDecay of CD34+Acute Myeloid Leukemia Cells and Decreases T CellImmunoglobulin Mucin-3Expression. Stem cells translational medicine.2014.
    [103] James AW, Shen J, Khadarian KA, Pang S, Chung G, Goyal R, et al. Lentiviraldelivery of PPARgamma shRNA Alters the Balance of Osteogenesis andAdipogenesis, Improving Bone Microarchitecture. Tissue engineering Part A.2014.
    [104] James EN, Delany AM, Naira LS. Post-transcriptional regulation in osteoblasts usinglocalized delivery of miR-29a inhibitor from nanofibers to enhance extracellularmatrix deposition. Acta biomaterialia.2014.
    [105] Javorkova E, Trosan P, Zajicova A, Krulova M, Hajkova M, Holan V. Modulation ofthe Early Inflammatory Microenvironment in the Alkali-Burned Eye by SystemicallyAdministered Interferon-gamma-Treated Mesenchymal Stromal Cells. Stem cells anddevelopment.2014.
    [106] Kanehira M, Kikuchi T, Santoso A, Tode N, Hirano T, Ohkouchi S, et al. HumanMarrow Stromal Cells Downsize the Stem Cell Fraction of Lung Cancers byFibroblast Growth Factor10. Molecular and cellular biology.2014.
    [107] Kaneto CM, Lima PS, Zanette DL, Prata KL, Pina Neto JM, de Paula FJ, et al.COL1A1and miR-29b show lower expression levels during osteoblast differentiationof bone marrow stromal cells from Osteogenesis Imperfecta patients. BMC medicalgenetics.2014;15:45.
    [108] Kikuchi J, Koyama D, Mukai HY, Furukawa Y. Suitable drug combination withbortezomib for multiple myeloma under stroma-free conditions and in contact withfibronectin or bone marrow stromal cells. International journal of hematology.2014.
    [109] Kunisaki Y, Frenette PS. Influences of vascular niches on hematopoietic stem cell fate.International journal of hematology.2014.
    [110] Lee DS, Choung HW, Kim HJ, Gronostajski RM, Yang YI, Ryoo HM, et al. NFI-Cregulates osteoblast differentiation via control of Osterix expression. Stem cells.2014.
    [111] Lee JY, Jeong HJ, Kim MK, Wee WR. Bone Marrow-derived Mesenchymal StemCells Affect Immunologic Profiling of Interleukin-17-secreting Cells in a ChemicalBurn Mouse Model. Korean journal of ophthalmology: KJO.2014;28:246-56.
    [112] Leotta M, Biamonte L, Raimondi L, Ronchetti D, Martino MT, Botta C, et al. Ap53-dependent tumor suppressor network is induced by selective miR-125a-5pinhibition in multiple myeloma cells in vitro. Journal of cellular physiology.2014.
    [113] Leung VY, Aladin DM, Lv F, Tam V, Sun Y, Lau RY, et al. Mesenchymal stem cellsreduce intervertebral disc fibrosis and facilitate repair. Stem cells.2014.
    [114] Liu Y, Zhang X, Liu Y, Jin X, Fan C, Ye H, et al. Bi-functionalization of a calciumphosphate-coated titanium surface with slow-release simvastatin and metronidazole toprovide antibacterial activities and pro-osteodifferentiation capabilities. PloS one.2014;9:e97741.
    [115] Long MY, Li HH, Pen XZ, Huang MQ, Luo DY, Wang PS. Expression of chemokinereceptor-4in bone marrow mesenchymal stem cells on experimental rat abdominalaortic aneurysms and the migration of bone marrow mesenchymal stem cells withstromal-derived factor-1. The Kaohsiung journal of medical sciences.2014;30:224-8.
    [116] Lopatina O, Yoshihara T, Nishimura T, Zhong J, Akther S, Fakhrul AA, et al. Anxiety-and depression-like behavior in mice lacking the CD157/BST1gene, a risk factor forParkinson's disease. Frontiers in behavioral neuroscience.2014;8:133.
    [117] Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, et al. Reactiveoxygen species regulate hematopoietic stem cell self renewal, migration, anddevelopment, as well as their bone marrow microenvironment. Antioxidants&redoxsignaling.2014.
    [118] Mao X, Chen Z, Ling J, Quan J, Peng H, Xiao Y. Methoxy-Poly(ethylene glycol)Modified Poly(L-lactide) Enhanced Cell Affinity of Human Bone Marrow StromalCells by the Upregulation of1-Cadherin and Delta-2-catenin. BioMed researchinternational.2014;2014:738239.
    [119] Michineau S, Franck G, Wagner-Ballon O, Dai J, Allaire E, Gervais M. Chemokine(C-X-C Motif) Receptor4Blockade by AMD3100Inhibits Experimental AbdominalAortic Aneurysm Expansion Through Anti-Inflammatory Effects. Arteriosclerosis,thrombosis, and vascular biology.2014.
    [120] Milazzo L, Vulcano F, Barca A, Macioce G, Paldino E, Rossi S, et al. Cord bloodCD34+cells expanded on Wharton's jelly multipotent mesenchymal stromal cellsimprove the hematopoietic engraftment in NOD/SCID mice. European journal ofhaematology.2014.
    [121] Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, et al. OsterixMarks Distinct Waves of Primitive and Definitive Stromal Progenitors during BoneMarrow Development. Developmental cell.2014;29:340-9.
    [122] Moghadasali R, Azarnia M, Hajinasrollah M, Arghani H, Nassiri SM, Molazem M, etal. Intra-renal arterial injection of autologous bone marrow mesenchymal stromalcells ameliorates cisplatin-induced acute kidney injury in a rhesus Macaque mulattamonkey model. Cytotherapy.2014;16:734-49.
    [123] Mohammadi R, Haghighat A, Amini K. Transplantation of UndifferentiatedBone-Marrow Stromal Cells into a Vein Graft Accelerates Sciatic Nerve Regenerationin Streptozotocin Induced Diabetic Rats. Current neurovascular research.2014.
    [124] Murray ME, Gavile CM, Nair JR, Koorella C, Carlson LM, Buac D, et al.CD28-mediated pro-survival signaling induces chemotherapeutic resistance inmultiple myeloma. Blood.2014.
    [125] Nakahara F, Kitaura J, Uchida T, Nishida C, Togami K, Inoue D, et al. Hes1promotesblast crisis in chronic myelogenous leukemia through MMP-9upregulation inleukemic cells. Blood.2014.
    [126] Nanbakhsh A, Pochon C, Amsellem S, Pittari G, Tejchman A, Bourhis JH, et al.Enhanced Cytotoxic Activity of Ex Vivo-differentiated Human Natural Killer Cells inthe Presence of HOXB4. Journal of immunotherapy.2014;37:278-82.
    [127] Nemeth K. Mesenchymal stem cell therapy for immune-modulation: the donor, therecipient, and the drugs in-between. Experimental dermatology.2014.
    [128] Noh H, Yu MR, Kim HJ, Jang EJ, Hwang ES, Jeon JS, et al. Uremic toxin p-cresolinduces Akt-pathway-selective insulin resistance in bone marrow-derivedmesenchymal stem cells. Stem cells.2014.
    [129] O'Neill HC, Griffiths KL, Periasamy P, Hinton RA, Petvises S, Hey YY, et al. SpleenStroma Maintains Progenitors and Supports Long-Term Hematopoiesis. Current stemcell research&therapy.2014.
    [130] Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HM.Vasculature-associated cells expressing nestin in developing bones encompass earlycells in the osteoblast and endothelial lineage. Developmental cell.2014;29:330-9.
    [131] Parameswaran R, Lim M, Fei F, Abdel-Azim H, Arutyunyan A, Schiffer I, et al.Effector-Mediated Eradication of Precursor B Acute Lymphoblastic Leukemia with aNovel Fc-Engineered Monoclonal Antibody Targeting the BAFF-R. Molecular cancertherapeutics.2014.
    [132] Pawar SA, Shao L, Chang J, Wang W, Pathak R, Zhu X, et al. C/EBPdelta DeficiencySensitizes Mice to Ionizing Radiation-Induced Hematopoietic and Intestinal Injury.PloS one.2014;9:e94967.
    [133] Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited bynonchondrogenic urine stem cells strengthens the chondrogenic capacity ofrepeated-passage bone marrow stromal cells. Cell and tissue research.2014;356:391-403.
    [134] Pelekanos RA, Ting MJ, Sardesai VS, Ryan JM, Lim YC, Chan JK, et al. Intracellulartrafficking and endocytosis of CXCR4in fetal mesenchymal stem/stromal cells. BMCcell biology.2014;15:15.
    [135] Phillips MD, Kuznetsov SA, Cherman N, Park K, Chen KG, McClendon BN, et al.Directed Differentiation of Human Induced Pluripotent Stem Cells Toward Bone andCartilage: In Vitro Versus In Vivo Assays. Stem cells translational medicine.2014.
    [136] Phinney DG, Isakova IA. Mesenchymal stem cells as cellular vectors for pediatricneurological disorders. Brain research.2014.
    [137] Pirraco RP, Iwata T, Yoshida T, Marques AP, Yamato M, Reis RL, et al. Endothelialcells enhance the in vivo bone-forming ability of osteogenic cell sheets. Laboratoryinvestigation; a journal of technical methods and pathology.2014;94:663-73.
    [138] Potier E, Ito K. Can notochordal cells promote bone marrow stromal cell potential fornucleus pulposus enrichment? A simplified in vitro system. Tissue engineering Part A.2014.
    [139] Prado-Lopez S, Duffy MM, Baustian C, Alagesan S, Hanley SA, Stocca A, et al. Theinfluence of hypoxia on the differentiation capacities and immunosuppressiveproperties of clonal mouse mesenchymal stromal cell lines. Immunology and cellbiology.2014.
    [140] Raimondi L, Amodio N, Di Martino MT, Altomare E, Leotta M, Caracciolo D, et al.Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitroand in vivo anti-tumor activity. Oncotarget.2014.
    [141] Rajashekhar G. Mesenchymal Stem Cells: New Players in Retinopathy Therapy.Frontiers in endocrinology.2014;5:59.
    [142] Rampa C, Tian E, Vatsveen TK, Buene G, Slordahl TS, Borset M, et al. Identificationof the source of elevated hepatocyte growth factor levels in multiple myelomapatients. Biomarker research.2014;2:8.
    [143] Roy S, Arora S, Kumari P, Ta M. A simple and serum-free protocol forcryopreservation of human umbilical cord as source of Wharton's jelly mesenchymalstem cells. Cryobiology.2014;68:467-72.
    [144] Ruetze M, Richter W. Adipose-derived stromal cells for osteoarticular repair: trophicfunction versus stem cell activity. Expert reviews in molecular medicine.2014;16:e9.
    [145] Saggio I, Remoli C, Spica E, Cersosimo S, Sacchetti B, Robey PG, et al. ConstitutiveExpression of Gsalpha in Mice Produces a Heritable, Direct Replica of HumanFibrous Dysplasia Bone Pathology and Demonstrates Its Natural History. Journal ofbone and mineral research: the official journal of the American Society for Bone andMineral Research.2014.
    [146] Sanvoranart T, Supokawej A, Kheolamai P, Y UP, Klincumhom N, Manochantr S, etal. Bortezomib enhances the osteogenic differentiation capacity of humanmesenchymal stromal cells derived from bone marrow and placental tissues.Biochemical and biophysical research communications.2014;447:580-5.
    [147] Sasaki JI, Matsumoto T, Imazato S. Oriented bone formation using biomimetic fibrinhydrogels with three-dimensional patterned bone matrices. Journal of biomedicalmaterials research Part A.2014.
    [148] Sayed M, Drummond CA, Evans KL, Haller ST, Liu J, Xie Z, et al. Effects ofNa/K-ATPase and its ligands on bone marrow stromal cell differentiation. Stem cellresearch.2014;13:12-23.
    [149] Schellenberg A, Mauen S, Koch CM, Jans R, de Waele P, Wagner W. Proof ofprinciple: quality control of therapeutic cell preparations using senescence-associatedDNA-methylation changes. BMC research notes.2014;7:254.
    [150] Schesny MK, Monaghan M, Bindermann AH, Freund D, Seifert M, Eble JA, et al.Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein usingphoto-crosslinked PEGda hydrogels. Biomaterials.2014.
    [151] Schnabel LV, Abratte CM, Schimenti JC, Felippe MJ, Cassano JM, Southard TL, et al.Induced pluripotent stem cells have similar immunogenic and more potentimmunomodulatory properties compared with bone marrow-derived stromal cells invitro. Regenerative medicine.2014.
    [152] Shen K, Lee J, Yarmush ML, Parekkadan B. Microcavity substrates casted fromself-assembled microsphere monolayers for spheroid cell culture. Biomedicalmicrodevices.2014.
    [153] Shoshani O, Ravid O, Massalha H, Aharonov A, Ovadya Y, Pevsner-Fischer M, et al.Cell isolation induces fate changes of bone marrow mesenchymal cells leading to lossor alternatively to acquisition of new differentiation potentials. Stem cells.2014.