生长激素释放肽Ghrelin在三磷酸腺苷依赖蛋白酶介导的自发糖尿病大鼠心肌保护效应中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Mischanism of AMPK-mediated Effect of Ghrelin on Cardiomyophathy in Goto Kakisaki Wistar Rats
  • 作者:李昭
  • 论文级别:博士
  • 学科专业名称:内科学
  • 学位年度:2009
  • 导师:胡健
  • 学科代码:100201
  • 学位授予单位:中国医科大学
  • 论文提交日期:2009-03-01
摘要
前言
     现有的研究提示,糖尿病心血管病并发症的发病机制可能有多种因素通过多种途径参与。糖尿病引起的内皮功能异常、胰岛素抵抗、心肌代谢异常是糖尿病心肌重构和心肌舒张功能障碍致心功能不全的始动环节。AMP依赖蛋白激酶(AMPK),因可能通过多种途径参与保护心血管效应而受到越来越广泛的关注。目前认为AMPK是胰岛素敏感性的一种正调节因子,它不仅参与细胞内脂肪酸氧化代谢,还可通过调节GLUT4和mTOR的表达影响心肌细胞的糖代谢以及蛋白质合成。
     近年来,Ghrelin的心脏保护作用逐渐被人们重视,尽管作用机制仍在探讨之中,但其在心血管系统的作用成为目前研究的热点。Ghrelin在体研究表明,下丘脑内注射外源性Ghrelin,可以通过激活AMPK调节机体的能量代谢;细胞水平的研究表明,Ghrelin可以通过激活AMPK改善血管内皮细胞的氧化应激。总之,越来越多的科学研究表明,Ghrelin可能与细胞代谢的关键酶AMPK有着密切的联系。
     本研究应用外源性的Rat-Ghrelin注射于大鼠腹腔,观察其对大鼠心脏功能、血糖血脂代谢、心脏病理结构的影响,系统评价Ghrelin对自发性糖尿病大鼠的干预作用;采用分子生物学方法,观察Ghrelin对糖尿病大鼠心肌代谢关键酶AMPK以及信号转导通路下游所调控的GLUT4和mTOR表达的影响,以探讨Ghrelin确切的心血管效应及其可能的分子机制,为临床防治代谢综合征提供新的理论依据和治疗靶点。
     材料与方法
     一、实验材料
     SPF级12周龄雄性GK大鼠(Goto-Kakisaki Wistar rats)24只和SPF级12周龄雄性Wistar大鼠8只,购于上海斯莱科实验动物有限责任公司。分组干预4周后取血,并采集心肌及胸主动脉标本。Ghrelin ELISA试剂盒购于南京生物技术公司;Ghrelin多克隆抗体购于博士德生物公司;Rat-Ghrelin、P-AMPK多克隆抗体、GLUT4单克隆抗体、mTOR单克隆抗体、β-actin单克隆抗体、RT-PCR试剂盒等购于上海Sirocco Pharmaceutic公司.
     二、实验方法
     大鼠编号随机分为4组:Wistar组:蒸馏水灌胃4周;GK组:同等容量蒸馏水灌胃4周;二甲双胍组:二甲双胍350mg/kg/d灌胃4周;Ghrelin组:Rat-Ghrelin200μg/kg/d腹腔注射4周。检测各组大鼠血糖、血脂、胰岛素、内皮素、一氧化氮、肿瘤坏死因子-α、Ghrelin等生化指标。12导生理记录仪测量左心室收缩压、左心室舒张末压、左心室压力最大上升速率、左心室压力最大下降速率。采用Masson特染技术以及免疫组化技术对各组大鼠心肌、胸主动脉的组织超微结构和病理学检查。Western bolt方法检测各组大鼠心肌、胸主动脉组织mTOR蛋白、AMPK、GLUT4蛋白表达水平。RT-PCR方法检测各组大鼠心肌、胸主动脉组织mTOR蛋白、AMPK,GLUT4基因表达。
     三、统计学处理
     计量资料以均数±标准差((?)±s)表示,所有的数据均通过SPSS13.0处理。对于正态分布的变量采用方差分析进行多细问比较,方差不齐者用秩和检验,采用t检验进行两组间比较;非正态分布的变量经对数转换后采用t检验。以P<0.05为差异有统计学意义。
     实验结果
     一、各组大鼠体重及Lee指数比较
     实验干预因素处理前,四组大鼠体重无统计学差异(P>0.05);实验4周后,Ghrelin组和二甲双胍组大鼠的体重增长较GK对照组减少(P<0.05);二甲双胍组大鼠体重增长最缓慢,接近于正常对照组。所有自发性糖尿病大鼠的Lee指数在实验干预因素处理前,均高于Wistar组大鼠(P<0.05);实验4周后,二甲双胍组和Ghrelin组大鼠的Lee指数无显著性差异(P>0.05),均明显低于GK对照组(P<0.05)。
     二、各组大鼠收缩压变化
     实验干预因素处理前,所有自发糖尿病大鼠血压均高于Wistar大鼠(P<0.05);实验4周后,各组大鼠收缩压水平无显著变(P>0.05)化;Ghrelin组和二甲双胍组收缩压仍显著高于Wistar大鼠,较GK组的收缩压水平略低,但差异不显著(P>0.05)。
     三、各组大鼠糖脂代谢相关指标的比较
     实验干预因素处理4周后,GK组大鼠的HW/BW、FBG、FINS、HOMA-IR、TC、TG、LDL-C、TNF-a明显高于另外三组(P<0.05);Ghrelin组的上述指标均明显低于GK组(P<0.05);二甲双胍组HW/BW、FBG、FINS、HOMA-IR、TC、TG、TNF-a明显低于GK组(P<0.05),但LDL-C与GK组差异不显著(P>0.05)。
     四、各组大鼠内皮功能相关指标的比较
     GK组大鼠血浆ET-1、心肌ET-1、心肌iNOS、血清iNOS高于Wistar组(P<0.05),心肌NO、血清cNOS、心肌cNOS、血清NO低于Wistar组(P<0.05);Ghrelin组大鼠血浆ET-1、心肌ET-1、心肌iNOS、血清iNOS较GK组大鼠降低(P<0.05),心肌NO、血清cNOS、心肌cNOS、血清NO较GK组大鼠升高(P<0.05)。二甲双胍组血浆ET-1、心肌ET-1、心肌iNOS、心肌NO、血清cNOS、血清iNOS、心肌cNOS较GK组大鼠降低(P<0.05),心肌iNOS与无显著差别(P>0.05)。
     五、各组大鼠血流动力学指标的变化
     实验4周后,与Wistar组大鼠比较,GK组大鼠的心率、LVEDP升高(P<0.05);而LVESP、±dp/dtmax降低(P<0.05);Ghrelin四周干预后的GK大鼠心率、LVEDP降低,LVESP、±dp/dtmax较Wistar组大鼠显著升高(P<0.05);与Wistar组大鼠比较,二甲双胍组心率、LVEDP降低,±dp/dtmax显著升高(P<0.05),但LVESP无明显差异(P>0.05)。
     六、大鼠心脏HE染色及心肌Masson染色
     Wistar组大鼠心肌纤维无肥大,细胞核呈圆形或椭圆形,据于细胞中心,心肌间质结构正常。GK组大鼠心肌细胞肥大、深染,心肌细胞边界不清,细胞核大小不均匀,心肌Masson染色提示心肌间质增生;Ghrelin干预后,光镜下心肌细胞形态基本完整,无肿大,Masson染色提示心肌间质增生较GK对照组明显减轻。二甲双胍组心肌细胞形态基本完整,无肿大,但Masson染色提示仍有较明显心肌间质增生。
     七、各组大鼠血浆Ghrelin水平比较及各组大鼠主动脉及心肌免疫组化染色
     GK组大鼠血浆及主动脉心肌组织免疫组化半定量显示Ghrelin表达水平明显低于Wistar组(P<0.05)。应用Ghrelin干预组大鼠的血浆Ghrelin水平及免疫组化半定量显示主动脉心肌组织Ghrelin表达水平高于其它三组(P<0.05),二甲双胍组亦高于GK组(P<0.05)。
     八、各组大鼠心肌AMPK,GLUT4,mTOR相对蛋白水平及mRNA表达量比较
     GK组大鼠心肌p-AMPK、GLUT4相对蛋白表达水平较Wistar组低(P<0.05),mTOR相对蛋白表达水平较Wistar组高(P<0.05);Ghrelin及二甲双胍干预后大鼠的心肌p-AMPK、GLUT4相对蛋白表达水平较Wistar组有所增加(P<0.05),mTOR相对蛋白水平较Wistar组有所降低(P<0.05),尤以Ghrelin组更显著(P<0.05)。GK组大鼠心肌AMPKα2、GLUT4 mRNA表达水平较Wistar组低(p<0.05),mTORmRNA表达水平较Wistar组高(P<0.05);Ghrelin及二甲双胍干预后大鼠的心肌AMPKα2、GLUT4 mRNA表达水平较Wistar组有所增加(P<0.05),mTOR mRNA水平较Wistar组有所降低(P<0.05),尤以Ghrelin组更显著(P<0.05)。
     结论
     自发性糖尿病大鼠存在严重的胰岛素抵抗和心肌重构以及主动脉内皮结构功能改变,生长激素释放肽Ghrelin在自发性糖尿病大鼠血浆及心肌主动脉组织中表达减少。Ghrelin腹腔注射可减轻自发性糖尿病大鼠胰岛素抵抗,改善血管内皮结构和功能。Ghrelin腹腔注射可提高自发性糖尿病大鼠心脏左室舒张和收缩功能,抑制心肌细胞间质增生,其机制可能与较长期Ghrelin在体干预上调心肌细胞AMPK表达而促进葡萄糖转运及抑制蛋白质合成有关。
Background
     Ghrelin,a growth hormone releasing peptide,is the endogenous ligand for the growth hormone secretagogue receptor and has been detected in cardiovascular tissues. Recently,some studies indicated that exogenous ghrelin had some protective effects on cardiovascular system.
     However,the cardioprotective effect and the mechanism of ghrelin have not been elucidated.Diabetes mellitus frequently produces cardiocyte hypertrophy and collagen deposition,changes referred to as LV remodeling.Recently experimental studies have suggested that the AMP-activated protein kinase(AMPK) participate in the regulation of cardioprotective effect.Some studies have also shown that ghrelin is associated with AMPK.In addition,recent studies show that the AMPK pathway was involved in preventing or suppressing LV remodeling through its effects on glucose transporter type 4 and mammalian TOR(mTOR).
     In the present experiment,we studied the effect on cardiovascular system and expression of AMPK in the heart of the Goto-Kakizaki(GK) rats injected with ghrelin. The effects of ghrelin on the GLUT4 and mTOR associated with AMPK and LV remodeling were also investigated.
     Methods
     Goto-Kakizaki(GK) rats(8-week-old males) were randomly divided into three groups of 8 rats each:Ghrelin(received ghrelin 200 g/kg sc twice daily);Metformin at 350mg/kg sc;saline controls.Normal male Wistar kyoto rats(n=8) served as normal controls.Four weeks later,the effects of ghrelin on cardiac remodeling were evaluated by echocardiographic,hemodynamic,histopathological,and gene expression analysis (AMPK,GLUT4.......,mTOR protein and mRNA expression).The serum level of ghrelin was examined by ELISA.
     Results
     1、Goto-Kakizaki(GK) rats were combined with cardiovascular system diseases.
     2、Ghrelin has the certain protective effects on cardiovascular system.
     3、Ghrelin prevented ventricular remodeling,increased AMPK and GLUT4 expression in the myocardium,suppressed mTOR protein and mRNA expression.
     Conclusions
     Ghrelin has the certain protective effects on cardiovascular system.Ghrelin inhibits ventricular remodeling induced by diabetes mellitus,and the preventive effects of ghrelin may be mediated by the AMPK-depended pathway.
引文
1.Berry C,Tardif JC,Bourassa MG,et al.Coronary heart disease in patients with diabetes:part I:recent advances in prevention and noninvasive management.J Am Coll Cardiol.2007;49:631-642.
    2.Sovari AA,Bodine CK,Farokhi F.Cardiovascular manifestations of myotonic dystrophy-1.Cardiol Rev.2007;15:191-194.
    3.Kojima M,Hosoda H,Date Y,et al.Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Nature.1999;402:656-660.
    4.Dezaki K,Kakei M,Yada T.Ghrelin uses Galphai2 and activates voltage-dependent K+ channels to attenuate glucose-induced Ca2+ signaling and insulin release in islet beta-cells:novel signal transduction of ghrelin.Diabetes.2007;56:2319-2327.
    5.Qader SS,Lundquist I,Ekelund M.Ghrelin activates neuronal constitutive nitric oxide synthase in pancreatic islet cells while inhibiting insulin release and stimulating glucagon release.Regul Pept.2005;128:51-56.
    6.Mager U,Kolehmainen M,Lindstr(o|¨m J,et al.Association between ghrelin gene variations and blood pressure in subjects with impaired glucose tolerance.Finnish Diabetes Prevention Study Group.Am J Hypertens.2006;19:8-9.
    7.LF UK a VFN,Praha.Laborator pro endokrinologii a metabolizmus Ⅲ.interni kliniky Ⅰ.Cas Lek Cesk.2001;140:70-72.
    8.Piccoli F,Degen L,MacLean C.Pharmacokinetics and pharmacodynamic effects of an oral ghrelin agonist in healthy subjects.J Clin Endocrinol Metab.2007;92:1814-1820.
    9.Nagaya N,Uematsu M,Kojima M,et al.Elevated circulating level of ghrelin in cachexia associated with chronic heart failure:relationships between ghrelin and anabolic/catabolic factors.Circulation.2001;104:2034-20388.
    10.Nagaya N,Moriya J,Yasumura Y,et al.Effects of ghrelin administration on left ventricular function,exercise capacity,and muscle wasting in patients with chronic heart failure.Circulation.2004;110:3674-3679.
    11.Akashi YJ,Springer J,Anker SD.Cachexia in chronic heart failure:prognostic implications and novel therapeutic approaches.Curr Heart Fail Rep.2005;2:198-203.
    12.Portha B,Serradas P,Bailbe D.Beta-cell insensitivity to glucose in the GK rat,a spontaneous nonobese model for type Ⅱ diabetes.Diabetes.1991;40:486-491.
    13.Wu C,Khan SA,Peng LJ.Roles for fructose-2,6-bisphosphate in the control of fuel metabolism:beyond its allosteric effects on glycolytic and gluconeogenic enzymes.Adv Enzyme Regul.2006;46:72-88.
    14.Zecchin HG,Bezerra RM,Carvalheira JB,et al.Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance—the obese middle-aged and the spontaneously hypertensive rats.2003;46:479-491.
    15.Ghalayini IF.Nitric oxide-cyclic GMP pathway with some emphasis on cavernosal contractility.Int J Impot Res.2004;16:459-469.
    16.Ally A,Phattanarudee S,Kabadi S,et al.Cardiovascular responses and neurotransmitter changes during static muscle contraction following blockade of inducible nitric oxide synthase (iNOS) within the ventrolateral medulla.Brain Res.2006;23:123-33.
    17.Lovasova K,Kluchova D,Rybarova S.Alterations of the vessel wall innervation during diabetes mellitus.Bratisl Lek Listy.2002;103:462-466.
    18.Zanatta CM,Gerchman F,Burttet L,et al.Endothelin-1 levels and albuminuria in patients with type 2 diabetes mellitus.Diabetes Res Clin Pract.2008;80:299-304.
    19.Cardiomyopathy in type 2 diabetes:update on pathophysiological mechanisms.Saunders J,Mathewkutty S,DraznerMH,McGuire DK.Herz.2008;33:184-190.
    20.MacDonald MR,Petrie MC,Hawkins NM,et al.Diabetes,left ventricular systolic dysfunction,and chronic heart failure.Eur Heart J.2008;29:1224-1240.
    21.Whellan DJ,Hasselblad V,Peterson E,et al.Metaanalysis and review of heart failure disease management randomized controlled clinical trials.Am Heart J.2005;149:722-729.
    22.Zhao XY,Hu SJ,Li J,et al.Decreased cardiac sarcoplasmic reticulum Ca2+-ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats.J Physiol Biochem.2006;62:1-8.
    23.Flacke WE,Flacke JW,Bloor BC,et al.Effects of dexmedetomidine on systemic and coronary hemodynamics in the anesthetized dog.J Cardiothorac Vasc Anesth.1993;7:41-49.
    24.Schwenke DO,Tokudome T,Kishimoto I,et al.Early ghrelin treatment after myocardial infarction prevents an increase in cardiac sympathetic tone and reduces mortality.Endocrinology.2008;149:5172-5176.
    25.Akashi YJ,Palus S,Datta R,et al.No effects of human ghrelin on cardiac function despite profound effects on body composition in a rat model of heart failure.Int J Cardiol.2008;22.[Epub ahead of print]
    26.Bollano E,Omerovic E,Svensson H,et al.Cardiac remodeling rather than disturbed myocardial energy metabolism is associated with cardiac dysfunction in diabetic rats.Int J Cardiol.2006;10.[Epub ahead of print]
    27.Nemoto O,Kawaguchi M,Yaoita H,Left ventricular dysfunction and remodeling in strep tozotocin-induced diabetic rats.Circ J.2006;70:327-334.
    28.Gundewar S,Calvert JW,Jha S,et al.Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure.Circ Res.2008;18.[Epub ahead of print]
    29.Taha M,Lopaschuk GD.Alterations in energy metabolism in cardiomyopathies.Ann Med.2007;39:594-607.
    30.Young LH,Li J,Baron SJ,AMP-activated protein kinase:a key stress signaling pathway in the heart.Trends Cardiovasc Med.2005;15:110-118.
    31.Liao Y,Takashima S,Maeda N,et al.Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism.Cardiovasc Res.2005;67:705-713.
    32.Russell RR 3rd,Li J,Coven DL,et al.AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction,apoptosis,and injury.J Clin Invest.2004;114:495-503.
    33.Mu J,Kahn BB,Birnbaum MJ,et al.Identification of protein kinase D as a novel contraction-activated kinase linked to GLUT4-mediated glucose uptake,independent of AMPK.J Clin Invest.2005;67:705-713.
    34.Burcelin R,Crivelli V,Perrin C,et al.GLUT4,AMP kinase,but not the insulin receptor,are required for hepatoportal glucose sensor-stimulated muscle glucose utilization.J Clin Invest.2003;111:1555-1562.
    35.Penumathsa SV,Thirunavukkarasu M,Zhan L,et al.Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/AKT/eNOS signaling pathway in diabetic myocardium.J Cell Mol Med.2008;4.[Epub ahead of print]
    36.Jessen N,Pold R,Buhl ES,et al.Effects of AICAR and exercise on insulin-stimulated glucose uptake,signaling,and GLUT-4 content in rat muscles.J Appl Physiol.2003;94:1373-1379.
    37.Stuck BJ,Lenski M,Bohm M,et al.Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin Ⅱ are prevented by AMP-activated protein kinase.J Biol Chem.2008;283:32562-32569.
    38.Dreyer HC,Glynn EL,Lujan HL,et al.Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6Kl signaling pathway.J Appl Physiol.2008;104:27-33.
    39.Thomson DM,Gordon SE.Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle.J Physiol.2006;574:291-305.
    40.Atherton PJ,Babraj J,Smith K,et al.Selective activation of AMPK-PGC-1 alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation.FASEB J.2005;19:786-788.
    41.Fick CA,Gordon SE.AMPK activation attenuates S6K1,4E-BP1,and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions.TJ Appl Physiol.2008;104:625-632.
    42.Reihill JA,Ritchie SA,Connell JM,et al.Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease.Hardie DG.FEBS Lett.2008;582:81-89.
    43.Boyle JG,Logan PJ,Ewart MA,et al.Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase.Cleland SJ,Salt IP.J Biol Chem.2008;283:11210-11217.
    44.Gundewar S,Calvert JW,Jha S,et al.Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure.Circ Res. 2008;18.[Epub ahead of print]
    45.Mauvais-Jarvis F,Andreelli F,Hanaire H,et al.Therapeutic perspectives for type 2 diabetes mellitus:molecular and clinical insights.2001;27:415-423.
    46.Runge S,Alte D,Baumeister SE,et al.Prevalence of risk determinants for metformin-associated lactic acidosis and metformin utilization in the study of health in pomerania.Metab Res.2008;40:491-497.
    47.Barnett AH,Lange P,Dreyer M,et al.Long-term tolerability of inhaled human insulin in patients with poorly controlled type 2 diabetes.Int J Clin Pract.2007;61:1614-1625.
    48.Schwenke DO,Tokudome T,Shirai M,et al.Exogenous ghrelin attenuates the progression of chronic hypoxia-induced pulmonary hypertension in conscious rats.Endocrinology.2008;149:237-234.
    49.Xu Z,Lin S,Wu W,et al.Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial protective mechanisms.Toxicology.2008;247:133-138.
    50.Kola B,Hubina E,Tucci SA,et al.Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase.J Biol Chem.2005;280:25196-251201.
    51.Kohno D,Sone H,Minokoshi Y,et al.Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons.Biochem Biophys Res Commun.2008;366:388-392.
    52.A aha M,Lopaschuk GD.Iterations in energy metabolism in cardiomyopathies.Ann Med.2007;39:594-607.
    53.Young LH,Li J,Baron SJ,et al.AMP-activated protein kinase:a key stress signaling pathway in the heart.Trends Cardiovasc Med.2005;15:110-118.
    54.Russell R.The Role of AMP-activated protein kinase in fuel selection by the stressed heart.Curr Hypertens Rep.2003;5:459-465.
    55.Franz WM,Müller OJ,Katus HA.Cardiomyopathies:from genetics to the prospect of treatment.Lancet.2001;358:1627-1637.
    56.Palanivel R,Vu V,Park M,et al.Differential impact of adipokines derived from primary adipocytes of wild-type versus streptozotocin-induced diabetic rats on glucose and fatty acid metabolism in cardiomyocytes.J Endocrinol.2008;199:389-397.
    57.Xu M,ZhaoYT,Song Y,et al.a lpha(1)-adrenergic receptors activate AMP-activated protein kinase in rat hearts.Sheng Li Xue Bao.2007;59:175-182.
    58.Budanov AV,Karin M.p53 target genes sestrinl and sestrin2 connect genotoxic stress and mTOR signaling.Cell.2008;134:451-460.
    59.Suryawan A,Jeyapalan AS,Orellana RA,et al.Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORCl activation.Am J Physiol Endocrinol Metab.2008;295:868-875.
    60.Cao C,Lu S,Jiang Q,et al.EGFR activation confers protections against UV-induced apoptosis in cultured mouse skin dendritic cells.Cell Signal.2008;20:1830-1838.
    61.Jiang W,Zhu Z,Thompson HJ.Dietary energy restriction modulates the activity of AMP-activated protein kinase,Akt,and mammalian target of rapamycin in mammary carcinomas,mammary gland,and liver.Cancer Res.2008;68:5492-5499.
    62.Louden E,Chi MM,Moley KH.Crosstalk between the AMP-activated kinase and insulin signaling pathways rescues murine blastocyst cells from insulin resistance.Reproduction.2008;136:335-344.
    63.Cai Y,Wang Q,Ling Z,et al.Akt activation protects pancreatic beta cells from AMPK-mediated d eath through stimulation of mTOR.Biochem Phannacol.2008;75:1981-1993.
    64.Stuck BJ,Lenski M,Bohm M,et al.Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin Ⅱ are prevented by AMP-activated protein kinase.J Biol Chem.2008;283:32562-32569.
    65.McGee SL,Mustard KJ,Hardie DG,et al.Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha 1 following overload in LKB1 knockout mice.Baar KJ Physiol.2008;586:1731-1741.
    66.Mack E,Ziv E,Reuveni H,et al.Prevention of insulin resistance and beta-cell loss by abrogating PKCepsilon-induced serine phosphorylation of muscle IRS-1 in Psammomys obesus.Diabetes Metab Res Rev.2008;24:577-584.
    67.Ohtake T,Yokoyama I,Watanabe T,et al.Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET.J Nucl Med.2005;36:456-463.
    68.Liao W,Nguyen MT,Yoshizaki T,et al.Suppression of PPAR-gamma attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes.Am J Physiol Endocrinol Metab.2007;293:219-227.
    69.Zhang W,Xu YC,Guo FJ,et al.Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus.Chin Med J (Engl).2008;121:2124-2128.
    70.Doehner W,Gathercole D,Cicoira M,et al.Reduced glucose transporter GLUT4 in skeletal muscle predicts insulin resistance in non-diabetic chronic heart failure patients independently of body composition.Int J Cardiol.2008;6.[Epub ahead of print]
    71.Fulcher FK,Smith BT,Russ M,et al.Dual role for myosin Ⅱ in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes.Exp Cell Res.2008;314:3264-3274.
    72.McConell GK,Manimmanakom A,Lee-Young RS,et al.Differential attenuation of AMPK activation during acute exercise following exercise training or AICAR treatment.J Appl Physiol.2008;105:1422-1427.
    73.Green HJ,Burnett ME,D'Arsigny CL,et al.Altered metabolic and transporter characteristics of vastus lateralis in chronic obstructive pulmonary disease.J Appl Physiol.2008;105:879-886.
    74.Hasinoff BB,Patel D,O'Hara KA.Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib.Mol Pharmacol.2008;74:1722-1728.
    75.Lopaschuk GD.AMP-activated protein kinase control of energy metabolism in the ischemic heart.Int J Obes (Lond).2008;32:29-35.
    76.Stuck BJ,Lenski M,Bohm M,et al.Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin Ⅱ are prevented by AMP-activated protein kinase.J Biol Chem.2008;283:32562-32569.
    77.Cheng Y,Hauton D.Cold acclimation induces physiological cardiac hypertrophy and increases assimilation of triacylglycerol metabolism through lipoprotein lipase.Biochim Biophys Acta.2008;1781:618-626.
    78.Gundewar S,Calvert JW,Jha S,et al.Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure.Circ Res.2008;18.[Epub ahead of print]
    79.Palanivel R,Vu V,Park M,et al.Differential impact of adipokines derived from primary adipocytes of wild-type versus streptozotocin-induced diabetic rats on glucose and fatty acid metabolism in cardiomyocytes.J Endocrinol.2008;199:389-397.
    80.Xu M,ZhaoYT,Song Y,et al.a lpha(1)-adrenergic receptors activate AMP-activated protein kinase in rat hearts.Sheng Li Xue Bao.2007;59:175-182.
    81.Kanazawa I,Yamaguchi T,Yano S,et al.Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression.Biochem Biophys Res Commun.2008;375:414-419.
    1.Kojima M,Kangawa K.Ghrelin:structure and function.PhysiolRev.2005;85:495-522.
    2.Machado MC,Valeria de Sa S,Correa-Giannella ML,et al.Association between tumoral GH-releasing peptide receptor type 1a mRNA expression and in vivo response to GH-releasing peptide-6 in ACTH-dependent Cushing's syndrome patients.Eur J Endocrinol.2008;158:605-613.
    3.Ashby D,Choi P,Bloom S.Gut hormones and the treatment of disease cachexia.Proc Nutr Soc.2008;1:1-7.
    4.Broglio F,Papotti M,Muccioli G,et al.Brain-gut communication:cortistatin,somatostatin and ghrelin.Trends Endocrinol Metab.2007;18:246-251.
    5.Pusztai P,Sarman B,Ruzicska E,et al.Ghrelin:a new peptide regulating the neurohormonal system,energy homeostasis and glucose metabolism.Diabetes Metab Res Rev.2008;18:246-251.
    6.Simoni KA,Athanasios M,Olga P,et al.Ghrelin in Pathological Conditions.Endocr J.2008;7:11-13.
    7.Hagiwara S,Iwasaka H,Shingu C,et al.Comparison of effects of total enteral versus total parenteral nutrition on ischemia/ reperfusion-induced heart injury in rats.Eur Surg Res.2008;40:361-367.
    8.Ozbay Y,Aydin S,Dagli AF,et al.Obestatin is present in saliva:alterations in obestatin and ghrelin levels of saliva and serum in ischemic heart disease.BMB Rep.2008;41:55-61.
    9.Yilmaz E,Ustundag B,Sen Y,et al.The levels of Ghrelin,TNF-alpha,and IL-6 in children with cyanotic and acyanotic congenital heart disease.Mediators Inflamm.2007;07:324-303.
    10.de Korwin JD.Does Helicobacter pylori infection play a role in extragastric diseases? Presse Med.2008;37:525-534.
    11.Lasseter KC,Shaughnessy L,Cummings D.Ghrelin agonist (TZP-101):safety,pharmacokinetics and pharmacodynamic evaluation in healthy volunteers:a phase I,first-in-human study.J Clin Pharmacol.2008;48:193-202.
    12.Hagiwara S,Iwasaka H,Shingu C,et al.EFFECT OF ENTERAL VS.PARENTERAL NUTRITION ON INFLAMMATION AND CARDIAC FUNCTION IN A RAT MODEL OF ENDOTOXIN-INDUCED SEPSIS.Shock.2008;9:13-16.
    13.Lee BW,Park SH,Ihm SH,et al.Changes in total ghrelin within the somatotropic axis in severe burn patients:Comparison of those with inhalation injury and those without inhalation injury.Growth Horm IGF Res.2008;18:291-297.
    14.Dubi(?)ski A,Zdrojewicz Z.Ghrelin and its influence on cardiovascular system.Wiad Lek.2007;60:352-355.
    15.Collins M,Varady KA,Jones PJ.Modulation of apolipoprotein Al and B,adiponectin,ghrelin,and growth hormone concentrations by plant sterols and exercise in previously sedentary humans.Can J Physiol Pharmacol.2007;85:903-910.
    16.Soeki T,Kishimoto I,Schwenke DO,et al.Ghrelin suppresses cardiac sympathetic activity and prevents early left ventricular remodeling in rats with myocardial infarction.Am J PhysiolHeart Circ Physiol.2008;294:H426-32.
    17.Leite-Moreira AF,Rocha-Sousa A,Henriques-Coelho T.Cardiac,skeletal,and smooth muscle regulation by ghrelin.Vitam Horm.2008;77:207-238.
    18.Schwenke DO,Tokudome T,Shirai M,Kangawa K.Exogenous ghrelin attenuates the progression of chronic hypoxia-induced pulmonary hypertension in conscious rats.Endocrinology.2008;149:237-244.
    19.Iglesias MJ,Salgado A,Pineiro R,et al.Lack of effect of the ghrelin gene-derived peptide obestatin on cardiomyocyte viability and metabolism.J Endocrinol Invest.2007;30:470-476.
    20.Muccioli G,Ghigo E.Heterogeneity of ghrelin/growth hormone secretagogue receptors.Toward the understanding of the molecular identity of novel ghrelin/GHS receptors.Neuroendocrinology.2007;86:147-164.
    21.Erdmann J,Schusdziarra V.Plasma ghrelin levels during exercise-effects of intensity and duration.Regul Pept.2007;143:127-135.
    22.Rouach V,Bloch M,Rosenberg N,et al.The acute ghrelin response to a psychological stress challenge does not predict the post-stress urge to eat.Psychoneuroendocrinology.2007;32:693-702.
    23.De Vriese C,Delporte C.Ghrelin:A new peptide regulating growth hormone release and food intake.Int J Biochem Cell Biol.2008;40:1420-1424.
    24.Akamizu T,Kangawa K.Emerging results of anticatabolic therapy with ghrelin.Curr Opin Clin Nutr Metab Care.2007;10:278-83.
    25.Xu Z,Wu W,Zhang X,Liu G.Endogenous ghrelin increases in adriamycin-induced heart failure rats.J Endocrinol Invest.2007;30:117-125.
    26.Schwarz ER,Jammula P,Gupta R,et al.A case and review of acromegaly-induced cardiomyopathy and the relationship between growth hormone and heart failure:cause or cure or neither or both? J Cardiovasc Pharmacol Ther.2006;11:232-244.
    27.Tanida M,Kaneko H,Shen J,et al.Involvement of the histaminergic system in renal sympathetic and cardiovascular responses to leptin and ghrelin.Neurosci Lett.2007;413:88-92.
    28.Grossini E,Molinari C,Mary DA,et al.Intracoronary ghrelin infusion decreases coronary blood flow in anesthetized pigs.Endocrinology.2007;148:806-812.
    29.Huang ZG,Xiong L,Liu ZS,et al.The tissue distribution and developmental changes of ghrelin mRNA expression in sheep.Yi Chuan Xue Bao.2006;33:808-813.
    30.Lainscak M,Andreas S,Scanlon PD,et al.Ghrelin and neurohumoral antagonists in the treatment of cachexia associated with cardiopulmonary disease.Intern Med.2006;45:837.
    31.Langenberg C,Bergstrom J,Scheidt-Nave C,et al.Cardiovascular death and the metabolic syndrome:role of adiposity-signaling hormones and inflammatory markers.Diabetes Care.2006;29:1363-1369.
    32.32.Maria,Zenebe WJ,Strange TB.Cardiovascular function in a rat model of diet-induced obesity.Hypertension.2006;48:65-72.
    33.Avallone R,Demers A,Ong H,et al.A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a peroxisome proliferator-activated receptor gamma-dependent pathway.Mol Endocrinol.2006;20:3165-3178.
    34.Baldanzi,Nakahara T,Muranaga T,et al.Ghrelin concentrations and cardiac vagal tone are decreased after pharmacologic and cognitive-behavioral treatment in patients with bulimia nervosa.Horm Behav.2006;50:261-265.
    35.Zigman JM,Jones JE,Lee CE,et al.Expression of ghrelin receptor mRNA in the rat and the mouse brain.J Comp Neurol.2006;494:528-458.
    36.Henriques-Coelho T,Roncon-Albuquerque Junior R,et al.Ghrelin reverses molecular,structural and hemodynamic alterations of the right ventricle in pulmonary hypertension.Rev Port Cardiol.2006;25:55-63.
    37.Nagaya,Carnicelli V,Frascarelli S,et al.Ghrelin tissue distribution:comparison between gene and protein expression.J Endocrinol Invest.2006;29:115-121.
    38.Shimizu,Kangawa K.Therapeutic potential of ghrelin in the treatment of heart failure.Drugs.2006;66:439-448.
    39.Frascarelli,Kwitek AE,Fischer M,et al.Association of the Ghrelin receptor gene region with left ventricular hypertrophy in the general population:results of the MONICA/KORA Augsburg Echocardiographic Substudy.Hypertension.2006;47:920-927.
    40.Chang CC,Hung CH,Yen CS,et al.The relationship of plasma ghrelin level to energy regulation,feeding and left ventricular function in non-diabetic haemodialysis patients.Nephrol Dial Transplant.2005;20:2172-2172.
    41.Kangawa K.Ghrelin,a novel growth honnone-releasing peptide,in the treatment of cardiopulmonary-associated cachexia.Intern Med.2006;45:127-134.
    42.Garcia EA,Korbonits M.Ghrelin and cardiovascular health.Curr Opin Pharmacol.2006;6:142-147.
    43.Nagaya,Muccioli G,Deghenghi R,et al.Evidence for a role of the GHS-Rla receptors in ghrelin inhibition of gastric acid secretion in the rat.J Neuroendocrinol.2006;34:122-128.
    44.Soares JB,Rocha-Sousa A,Castro-Chaves P,et al.Inotropic and lusitropic effects of ghrelin and their modulation by the endocardial endothelium,NO,prostaglandins,GHS-R1a and KCa channels.Peptides.2006;27:1616-1623.
    45.Okumura JB,Rocha-Sousa A,Castro-Chaves P,et al.Contractile effects of Ghrelin and expression of its receptor GHS-Rla in normal and hypertrophic myocardium.Rev Port Cardiol.2005;24:1235-1242.
    46.Isgaard J,Johansson I.Ghrelin and GHS on cardiovascular applications/ functions.J Endocrinol Invest.2005;28:838-842..
    47.Kleinz MJ,Maguire JJ,Skepper JN.Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man.Cardiovasc Res.2006;69:227-235.
    48.Marleau S,Mulumba M,Lamontagne D,et al.Cardiac and peripheral actions of growth hormone and its releasing peptides:relevance for the treatment of cardiomyopathies.Cardiovasc Res.2006;69:26-35.
    49.Hubina E,Goth M,Korbonits M.Ghrelin~a hormone with multiple functions.Orv Hetil.2005;146:1345-13451.
    50.51.Chang CC,Hung CH,Yen CS,et al.The relationship of plasma ghrelin level to energy regulation,feeding and left ventricular function in non-diabetic haemodialysis patients.Nephrol Dial Transplant.2005;20:2172-2177.
    51.Colao A,Di Somma C,Vitale G,et al.Influence of growth hormone on cardiovascular health and disease.Treat Endocrinol.2003;23:347-356.
    52.Xu XB,Pang JJ,Chen MC,et al.GH-releasing peptides improve cardiac dysfunction and cachexia and suppress stress-related hormones and cardiomyocyte apoptosis in rats with heart failure.Am J Physiol Heart Circ Physiol.2005;289:1643-1651.
    53.Kola B,Hubina E,Tucci SA,et al.Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase.J Biol Chem.2005;280:25196-25201.
    54.Nagaya N,Moriya J,Yasumura Y,et al.Effects of ghrelin administration on left ventricular function,exercise capacity,and muscle wasting in patients with chronic heart failure.Circulation.2004;110:3674-3679.
    55.Hamirani YS,Pandey S,Rivera JJ,et al.Markers of inflammation and coronary artery calcification:A systematic review.J Clin Pharmacol.2006;12:452-445
    56.Xu Z,Lin S,Wu W,et al.Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial protective mechanisms.Toxicology.2008;247:133-138.
    57.Burcelin R,Crivelli V,Perrin C,et al.GLUT4,AMP kinase,but not the insulin receptor,are required for hepatoportal glucose sensor-stimulated muscle glucose utilization.J Clin Invest.2003;111:1555-1562.
    58.Penumathsa SV,Thirunavukkarasu M,Zhan L,et al.Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/AKT/eNOS signaling pathway in diabetic myocardium.J Cell Mol Med.2008;4.[Epub ahead of print]
    59.Jessen N,Pold R,Buhl ES,et al.Effects of AICAR and exercise on insulin-stimulated glucose uptake,signaling,and GLUT-4 content in rat muscles.J Appl Physiol.2003;94:1373-1379.
    60.Stuck BJ,Lenski M,Bohm M,et al.Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin Ⅱ are prevented by AMP-activated protein kinase.J Biol Chem.2008;283:32562-32569.
    61.Dreyer HC,Glynn EL,Lujan HL,et al.Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway.J Appl Physiol.2008;104:27-33.
    62.Thomson DM,Gordon SE.Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle.J Physiol.2006;574:291-305.
    63.Atherton PJ,Babraj J,Smith K,et al.Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation.FASEB J.2005;19:786-788.
    64.Fick CA,Gordon SE.AMPK activation attenuates S6K1,4E-BP1,and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions.TJ Appl Physiol.2008;104:625-632.
    65.Reihill JA,Ritchie SA,Connell JM,et al.Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease.Hardie DG.FEBS Lett.2008;582:81-89.
    66.Boyle JG,Logan PJ,Ewart MA,et al.Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase.Cleland SJ,Salt IP.J Biol Chem.2008;283:11210-11217.
    67.Gundewar S,Calvert JW,Jha S,et al.Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure.Circ Res.2008;18.[Epub ahead of print]
    68.Mauvais-Jarvis F,Andreelli F,Hanaire H,et al.Therapeutic perspectives for type 2 diabetes mellitus:molecular and clinical insights.2001;27:415-423.
    69.Runge S,Alte D,Baumeister SE,et al.Prevalence of risk determinants for metformin-associated lactic acidosis and metformin utilization in the study of health in pomerania.Metab Res.2008;40:491-497.
    70.Barnett AH,Lange P,Dreyer M,et al.Long-term tolerability of inhaled human insulin (Exubera) in patients with poorly controlled type 2 diabetes.Int J Clin Pract.2007;61:1614-1625.
    71.Schwenke DO,Tokudome T,Shirai M,et al.Exogenous ghrelin attenuates the progression of chronic hypoxia-induced pulmonary hypertension in conscious rats.Endocrinology.2008;149:237-2344.
    72.Xu Z,Lin S,Wu W,et al.Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial protective mechanisms.Toxicology.2008;247:133-138.
    73.Kola B,Hubina E,Tucci SA,et al.Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase.J Biol Chem.2005;280:25196-251201.
    74.Kohno D,Sone H,Minokoshi Y,et al.Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons.Biochem Biophys Res Commun.2008;366:388-392.
    75.A aha M,Lopaschuk GD.Iterations in energy metabolism in cardiomyopathies.Ann Med.2007;39:594-607.
    76.Young LH,Li J,Baron SJ,et al.AMP-activated protein kinase:a key stress signaling pathway in the heart.Trends Cardiovasc Med.2005;15:110-118.
    77.Russell R.The Role of AMP-activated protein kinase in fuel selection by the stressed heart.Curr Hypertens Rep.2003;5:459-465.
    78.Franz WM,Müller OJ,Katus HA.Cardiomyopathies:from genetics to the prospect of treatment.Lancet.2001;358:1627-1637.