质谱数据发掘与联用色谱分析方法及其在中药分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代分析仪器提供了大量而又丰富的量测信息,化学数据知识发掘的目的在于找到外在表征与内在结构之间的相互关系。高维数据解析方法的发展使人们对复杂化学体系分析能力有了很大的提高,使得传统分析化学难以处理的“黑色”体系的分析成为可能。本论文从当前化学学科发展现状出发,从色谱和质谱分析及其联用仪器入手,目的是通过建立能有效利用色谱和质谱提供的联合信息的化学计量学方法,从而实现对中药等复杂体系的定性和定量分析。论文主要涉及三个方面:质谱库数据发掘,联用色谱分辨方法和中药实际体系的分析。
     一.质谱库数据发掘(第二章—第四章):这部分主要是通过对质谱库的机器学习,来达到未知化合物的某些结构或子结构的预测。第二章提出了基于重采样技术的光谱特征选择方法,该法可找到包含某些子结构的特征信息,为质谱的分类和判别奠定了基础。第三章利用前人对质谱峰丰度统计的对数分布的先验知识,将原始数据进行合理的转化,降低了数据的方差,从而得到稳定的分类回归树。第四章采用调节样本权重的boosting技术来提高质谱数据的分类精度,有效降低了分类的误判率。
     二.联用色谱数据分辨方法研究(第五章—第八章):联用数据的分辨通常可分为两个问题:1)确定待测体系组分数 2)各个化学成分的光谱和色谱轮廓的求解。针对上述两个问题,第五章
    
    提出基于扰动的函数型主成分分析用于化学体系的秩估计,通过
    观察多次扰动采样来得到稳定的秩估计。第六章利用色谱的依次
    流出信息,提出了渐进窗口正交投影法来得到色谱和光谱轮廓,
    该法可有效避免局部共线性问题。针对特殊的包埋体系,第七章
    提出了诊断流出模式的渐进子窗口比较法。第八章提出了处理包
    埋体系的广义子窗口因子分析和基于最大嫡的估计方法。
     三.实际中药分析应用研究(第九章一第十章):发掘中药化
    学背景,提高中医药的使用和疗效水平很大程度上依赖于对其活
    性化学组分协同作用的鉴别分析。本部分结合化学计量学分辨方
    法,主要研究了桂枝和鱼腥草两味中药的挥发油。第九章结合子
    窗口因子分析和渐进窗口正交投影法来实现对复杂体系的快速
    定性定量分析。第十章研究了四川产鱼腥草的挥发油,并将几个
    主要产地的鱼腥草挥发油主要成分进行了比较。
The data mining in chemical data sets is to discover the hidden relationship between the chemical property and their structure. The recent development of high-dimensional chemometrics resolution methods provide a powerful tool for us to deal with the difficult "black system". Therefore, the aim of the thesis is to develop new methodology in mass spectra data mining and hyphenated chromatography research and apply the proposed methods to analyze the complex herbal medicines systems.
    1. Data-mining in mass spectra (chapter 2 to chapter 4). One can predict the presence or absence of the certain substructure by learning from mass spectra library. In chapter 2, a re-sampling technique is manipulated to obtain the characteristic spectra features. In chapter 3, an honest tree is built upon prior logarithm normal distribution. In chapter 4, a powerful boosting-tree is used to classify the mass spectra data sets with low prediction error.
    2. Hyphenated chromatographic resolution methods (chapter5 -chapter 8). In resolution problem, firstly, one should estimate the number of chemical components in the system under study, and then obtain the pure spectra and chromatographic profiles. In chapter 5, a noise perturbation method in functional principal component analysis is proposed to solve a chemical rank problem. In chapter 6, an evolving window orthogonal projection method is proposed to resolve the pure spectra and chromatographic profiles by utilizing
    
    
    
    the evolving information in retention time direction. A new diagnosing method proposed in chapter 7 is to analyze the elution pattern of components. In chapter 8, a generalized sub-window factor analysis and entropy method is proposed to solve the embedded problem.
    3. Herbal medicine systems (chapter 9 to chapter 10): Building a new herbal medicine pharmacology theory usually heavily depends on the thorough understanding of their chemical knowledge background. The essential oil of Guizhi and Yuxingcao is well studied with chemometric resolution methods in this part. In chapter 9, a new evolving-approach is proposed to resolve complex Guizhi system. In chapter 10, we compare the main components of Yuxingcao form different region.
引文
[1] 徐光宪.21世纪化学的前瞻.大学化学.2001,16(1):1-25
    [2] Gates B. The road ahead, the second edition, Penguin USA, 1996. 1~5
    [3] Efron B, Tibshirani R. Statistical data analysis in the computer age. Science, 1991, 253(5018): 390~395
    [4] Hastie T, Tibshirani R, Friedman JH.The elements of statistical learning, data mining, inference and predication. New York, Springer, 2001
    [5] Fayyad UM. Editorial. Data Mining and Knowledge Discovery, 1997, 1:5~10
    [6] 高鸿主编.分析化学前沿.北京:科学出版社,1991
    [7] 汪尔康主编.21世纪的分析化学.北京:科学出版社,1999
    [8] 俞汝勤著.化学计量学导论.长沙:湖南教育出版社,1991
    [9] 梁逸曾,俞汝勤.分析化学手册(第十分册)化学计量学.北京,化学工业出版社,2001
    [10] 许禄,化学计量学方法,北京,科学出版社,1994
    [11] Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review B, 1964, 136(3B): B864~B871
    [12] Mclafferty FW, Turecek F.Interpretation of mass spectra, 4th edition. California, University science books, 1993
    [13] Smith RM, Busch KL.Understanding mass spectra—a basic approach, New York, John Wiley & Sons, 1999
    [14] Varmuza K, Werther W. Mass Spectral classifiers for supporting systematic structure elucidation.J.Chem. Inf.Comput. Sci.1996, 36(2): 323~333
    [15] Warr WA. Computer-assisted structure elucidation. 1. Library search and spectral data collection. Anal. Chem. 1993, 65(23): 1045A~1050A
    [16] Warr WA. Computer-assisted structure elucidation. 2. Indirect database approaches and established systems. Anal. Chem. 1993, 65(24): 1087A~1095A
    [17] Mclafferty FW, Stauffer DA. Retrieval and interpretative computer programs for mass spectrometry. J. Chem. Inf. Comput. Sci. 1985, 25(3): 245~252
    [18] Pesyna GM, Venkataraghavan R, Dayringer HE, et al. Probability based matching system using a large collection of reference mass spectra. Anal. Chem. 1976, 48(9):1362~1368
    [19] Sokolow S, Karnofsky J, Gustafson E The finnigan library search program: finnigan
    
    application report 2;Finnigan Corp.San Jose,CA,March 1978
    [20] Stein SE,Scott DR.Optimization and testing of mass spectral library search algorithms for compound identification.J.Am Soc.Mass Spectrom.1994,5(9):859~866
    [21] Mclafferty FW,Zhang MY Stauffer DB,et.al.Comparison of algorithms and databases for matching unknown mass spectra.J.Am.Soc.Mass.Spectrom.1998.9(1):92~95
    [22] 梁逸曾,白灰黑复杂多组分分析体系及其化学计量学算法,长沙,湖南科学技术出版社,1996
    [23] Sanchez FC, Vandenbogaert V, Rutan SC, et.al. Multivariate peak purity approaches, Chemom. Intell. Lab.Syst. 1996, 34(2): 139~171
    [24] Keller HR, Massart DL. Window evolving factor-analysis for assessment of peak homogeneity in liquid-chromatography. Anal.Chem. 1993, 65(4): 471~475
    [25] Lindsay RK, Buchanan BG, Feigenbaum EA, et.al. Application of artificial intelligence for grganic chemistry: DENDRAL Project; New York, mcgraw & Hill, 1980
    [26] Breiman L, Friedman JH, Olshen RA, et.al Classification and regression trees, Wadsworth, Belmont, CA. 1984
    [27] Carhart RE, Smith DH, Gray NAB, et.al. GENOA: a computer program for structure elucidation utilizing overlapping and alternative substructures. J.Org.Chem. 1981, 46(8): 1708~1718
    [28] Funatsu K, Miyabayashi N, Sasaki SI. Further development of structure generation in the automated structure elucidation system CHEMICS. J.Chem.Inf.Comput.Sci. 1988,28(1): 18~28
    [29] Gribov LA, Elyashberg ME, Koldashov VN, et.al A dialogue computer program system for structure recognition of complex molecules by spectroscopic methods. Anal. Chim. Acta. 1983, 148(4): 159~170
    [30] Christie BD, Munk ME, Structure generation by reduction: a new strategy for computer-assisted structure elucidation. J.Chem .Inf .Comput Sci. 1988, 28(2): 87~93
    [31] Specinfo:Spectroscopic Information System, vers.3.0, Available from: Chemical Concepts, P.O.Box 100202,D-69442 Weihheim, Germany, 1995
    [32] E.Martinelli, D.Redeker, R. Neudert and S.Kornig, the spectroscopic interpretation system specinfo, past, present and futrue. Chim.Oggi. 1994, 12(1): 33~37
    [33] Kalchhauser H, Robien W. CSEARCH: a computer program for identification of
    
    organic compounds and fully automated assignment of carbon-13 nuclear magnetic resonance spectra. J. Chem. Inf. Comput. Sci. 1985, 25(2): 103~108
    [34] Thiele H. X-PERT: a new expert system for structure elucidation in software development in chemistry; R. Moll, Ed.; Springer-Verlag, Berlin, 1995, Vol 9, pp305~317
    [35] Kwok KS, Venkataraghavan R, Mclafferty FW. Computer-aided interpretation of mass spectra, ⅲ.A self-training interpretive and retrieval system. J. Am. Chem. Soc. 1973, 95(13): 4185~4194
    [36] Cone MM, Venkataraghavan R, Mclatferty FW. Molecular structure comparison program for the identification of maximal common substructures. J. Am. Chem. Soc. 1977, 99(23): 7668~7671
    [37] Haraki KS, Venkataraghavan R, Mclafferty FW. Prediction of Substructures from Unknown Mass Spectra by the Self-training Interpretive and Retrieval System. Anal. Chem. 1981, 53(3): 386~392
    [38] Varmuza K, Pattern Recognition in Chemistry, Berlin, Springer-Verlag, 1980
    [39] Varmuza K, Chemometrics in Mass Spectrometry, Int. J. Mass Spectrom.1992, 118(2): 811~823
    [40] Lohninger H, Varmuza K, selective detection of classes of chemical compounds by gas chromatography/mass spectrometry/ pattern recognition: polycyclic aromatic hydrocarbons and alkanes, Anal. Chem. 1987, 59(2): 236~244
    [41] Werther W, Lohninger H, Stanel, et.al.Classification of mass spectra. A comparison of yes/no classification methods for the recognition of simple structural properties. Chemom. Intell. Lab.Syst. 1994, 22(1): 63~76
    [42] Bendl E, Schmid ER Varmuza K. MS-UTIL: a program for interpretation and manipulation of mass spectra and chemical structures. Comput. Meth. Prog. Bio. 1995, 46(1): 23~28
    [43] Varmuza K, Penchev P, Stancl F, et.al. Systematic structure elucidation of organic compounds by mass spectra classification. J. Mol Struct. 1997, 408(6): 91~96
    [44] Yoshida H, Leardi R, Funatsu K, et.al. Feature selection by genetic algorithms for mass spectral classifiers.Anal. Chim. Acta, 2001, 446(1-2): 485~494
    [45] Varmuza K, Recognition of relationships between mass spectral data and chemical structures by multivariate data analysis. Anal. Sci.2001, 17, supplement. i467~i470
    [46] Lebedev KS, Cabrol-Bass D. new computer aided methods for revealing structural features of unknown compounds using low-resolution mass spectra.J. Chem. Inf.
    
    Comput. Sci. 1998, 38(3): 410~419
    [47] Eghbaldar A, Forrest TP, Cabrol-Bass D. development of neural networks for identification of stucural features form mass spectral data.Anal. Chim. Acta, 1998, 359(3): 283~301
    [48] Eghbaldar A, Forrest TP, Cabrol-Bass D, et.al. Identification of structural features form mass spectrometry using a neural network approach: application to trimethylsilyl derivatives used for medical diagnosis.J. Chem. Inf. Comput. Sci., 1996, 36(4): 637~643
    [49] Harrington PDB, Street TE, Voorhees LJ, et.al Rule-building expert system for classification of mass spectra. Anal. Chem. 1989, 61 (7): 715~719
    [50] Rozett RW, Petersen RM. Classification of compounds by the factor analysis of their mass spectra, Anal. Chem. 1976, 48(6): 817~825
    [51] Mcgill JR, Kowalski BR. Classification of mass spectra via pattern recognition. J.Chem. Inf. Comput. Sci., 1978, 18(1): 52~55
    [52] Alsberg BK, Goodacre R, Rowland JJ, et.al. Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, k-nearest neighbour, neural and decision-tree methods. Anal. Chim. Acta. 1997, 348(1-3): 389~407
    [53] Justice JB, Isenhour TL. Information content of mass spectra as determined by pattern recognition method. Anal. Chem. 1974, 46(3): 223~226
    [54] Damo C, Dachun C, Teshu K, et.al.An artificial intelligence system for computer-aided mass spectra interpretation of saturated aliphatic monhydric alcohols. Anal. Chim. Acta. 1981, 5(4): 575~581
    [55] Gasteiger J,Hanebeck W, Schulz JP. Prediction of mass spectra from structural information.J. Chem, Inf. Comput. Sci. 1992, 32(4): 264~271
    [56] Derendyaev BG, Piottukh-Peletskii VN, Chmutina KS, et.al. Use of the mass spectrum-compound fragment composition database in the determination of structure of organic compounds.J.Anal. Chem. 2002, 57(11): 1176~1185
    [57] Neudert R, Penk M. Enhanced strucure elucidation.J.Chem. Inf. Comput. Sci 1996, 36(2): 244~248
    [58] Luinge HJ. A knowledge-based system for structure analysis from infrared and mass spectral data. Trac-Trend Anal. Chem. 1990, 9(2): 66~69
    [59] Word D, Christie OHJ. Extraction of mass spectral information by a combination of autocorrelation and principal component models. Anal. Chim. Acta. 1984, 165(11):51~59
    [60] Drablφs F, Classification of mass spectra, J. Chemom. 1992, 6(3): 119~133
    
    
    [61] Klawun C, Wilkins CL. Joint neural network interpretation of infrared and mass spectra, J. Chem. Inf. Comput. Sci 1996, 36(2): 249~257
    [62] Jalali-Hervvi M, Fatemi MH, Simulation of mass spectra of noncyclic alkanes and alkenes using artificial neural network. Anal. Chim. Acta. 2000, 415(1-2): 95~103
    [63] Zander GS, Jurs PC, Generation of mass-spectra using pattern-recognition techniques. Anal.Chem. 1975, 47(9): 1552~1573
    [64] Clark HA, Jurs PC, Simulation of mass-spectral intensities by regression-analysis of calculated structural characteristics. Anal.Chim. Acta. 1981, 132(1-2): 75~88
    [65] Liang YZ, Gan F, Chemical knowledge discovery from mass spectral database, i. isotope distribution and beynon table.Anal. Chim. Acta, 2001, 446(102): 115~120
    [66] Malinowski ER, Factor analysis in chemistry, 2nd Edition, Wiley, New York, 1991
    [67] Faber K, Kowalski BR, Critical evaluation of two f-tests for selecting the number of factors in abstract factor analysis, Anal. Chim. Acta. 1997, 337(1): 57~71
    [68] Chen ZP, Liang YZ, Jiang JH, et.al Determination of the number of components in mixtures using a new approach incorporating chemical information. J. Chemom., 1999, 13(1): 15~30
    [69] Rossi TM, Warner IM. Rank estimation of excitation emission matrices using frequency-analysis of eigenvectors. Anal. Chem., 1986, 58(4): 810~815
    [70] Tu XM, Burdick DS, Millican DW, et,al. Canonical correlation technique for rank estimation of excitation-emission matrices,Anal.Chem. 1989, 61(19): 2219~2224
    [71] Wang JH,Jiang JH, Xiong JF,et.al.Chemical rank estimation for excitation-emission matrices using a morphological approach J. Chemom., 1998, 12(2): 95~104
    [72] Shen HL, Liang YZ, Kvalheim OM, et.al.Determination of chemical rank of two-way data from mixtures using subspace comparisons. Chemom. Intell. Lab. Syst. 2000, 51(1): 49~59
    [73] Meloun M, Capek J, Miksik P, et.al, Critical comparison of methods predicting the number of components in spectroscopic data. Anal. Chim. Acta., 2000, 423(1):51~68
    [74] Lawton WH and Sylvestr EA, Self modeling-curve resolution. Technometrics, 1971,13(3): 617-633
    [75] Windig W, Guilment J. Interactive self-modeling mixture analysis. Anal. Chem. 1991, 63(14): 1425~1432
    [76] Gemperline PJ, A priori estimates of the elution profiles of the pure components in overlapped liquid-chromatography peaks using target factor-analysis. J. Chem. Inf.
    
    Comp. Sci., 1984, 24(4): 206~212
    [77] Vandeginste BGM, Essers R, Bosman T, et.al. 3-component curve resolution in liquid-chromatography with multiwavelength diode-array detection. Anal.Chem. 1985, 57(6): 971~985
    [78] Sanchez FC, Rutan SC, Garcia MDG, et.al. Resolution of multi-component overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemom. Intell. Lab. Syst., 1997, 36(2): 153~164
    [79] Grande BV, Manne R. Use of convexity for finding pure variables in two-way data from mixtures. Chemom. Intell. Lab. Syst., 2000, 50(1): 19~33
    [80] Marine R, Grande BV. Resolution of two-way data from hyphenated chromatography by means of elementary matrix transformations. Chemom. Intell. Lab. Syst., 2000, 50(1): 35~46
    [81] Jiang JH, Liang YZ, Ozaki Y. On simplex-based method for self-modeling curve resolution of two-way data. Chemom. Intell. Lab. Syst., 2003, 65(1): 51~65
    [82] Maeder M, Evolving factor-analysis for the resolution of overlapping chromatographic peaks. Anal. Chem., 1987, 59(3): 527~530
    [83] Maeder M, Zilian A, Evolving factor-analysis, a new multivariate technique in chromatography. Chemom. Intell. Lab. Syst., 1988, 3(3): 205~213
    [84] Malinowski ER. Window factor-analysis- theoretical derivation and application to flow-injection analysis data. J. Chemom., 1992, 6(1): 29~40
    [85] Kvalheim OM, Liang YZ. Heuristic evolving latent projections-resolving 2-way multicomponent data. 1. Selectivity, latent-projective graph, datascope, local rank and unique resoltuion. Anal. Chem. 1992, 64(8): 936~946
    [86] Liang YZ, Kvalheim OM, Keller HR, et.al. Heuristic evolving latent projections-Resolving 2-way multicomponent data. 2. Detection and resolution of minor constituents. Anal. Chem., 1992, 64(8): 946~953
    [87] Manne R, Shen HL, Liang YZ, Subwindow factor analysis, Chemom. Intell. Lab. Syst. 1999, 45(1-2): 171~176
    [88] Shen HL, Manne R, Xu QS, et.al. Local resolution of hyphenated chromatographic data. Chemom. Intell.Lab. Syst., 1999, 45(1-2): 323~328
    [89] Wang ZG, Chen ZP, Gong F, et.al. Inner chromatogram projection (ICP) for resolution of GC-MS data with embedded chromatographic peaks, Analyst, 2002, 127(5): 623~628
    [90] Sanchez E, Kowalski BR. Generalized rank annihilation factor-analysis, Anal. Chem., 1986, 58(2): 496~499
    
    
    [91] Bro R. PARAFAC. Tutorial and applications. Chemom. Intell.Lab. Syst., 1997, 38(2): 149~171
    [92] Li Y, Jiang JH, Wu HL, et.al. Alternating coupled matrices resolution method for three-way arrays analysis. Chemom. Intell. Lab. Syst., 2000, 52(1): 33~43
    [93] Liang YZ, Kvalheim OM. Unique resolution of hidden minor peaks in multidetection chromatography by lst-order differentiation and orthogonal projections. Anal. Chim. Acta 1993,276(2): 425~440
    [94] Liang YZ, Kvalheim OM. Diagnosis and resolution of multiwavelength chromatograms by rank map, orthogonal projections and sequential rank analysis. Anal. Chim. Acta, 1994, 292(1-2): 5~15
    [95] Xu C J, Liang YZ, Song YQ, Li JS. Resolution of the essential constituents of ramulus cinnamomi by an evolving chemometric approach. Fresenius. J. Anal. Chem, 2001, 371(2): 331~336
    [96] Zhang HB, Sun GY. Feature selection using tabu search method. Pattern Recognition, 2002, 35(2): 701~711
    [97] Pesyna, GM, Mclafferty FW, Venkataraghavan R, et.al. Statistical occurrence of mass and abundance values in mass spectra. Anal. Chem. 1975, 47(7): 1161~1164
    [98] Breiman L, Bagging Predictors, Machine Learning, 1996, 24(2): 123~140
    [99] Fan JQ, Li RZ, Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association. 2001, 96 (456), 1348-1360.
    [100] Friedman JH, Multivariate adaptive regression splines. Anals of Statistics. 1991, 19(1): 1~67
    [101] Grotch SL, Peak Height Distribution of Organic Mass Spectra, 17th Annual Conference", Dallas, May 1969 American Society of Mass spectrometry, pp 459-466
    [102] Stein SE, An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 1999,10(4): 770~781
    [103] Mallet Y, Coomans D, Vel OD, Recent developments in discriminant analysis on high dimensional spectra data. Chemom. Intell. Lab. Syst. 1996, 35(1): 157~173
    [104] Ripley BD, Neural networks and retated methods for classification, J.R.Statist. Soc.B, 1994, 56(3): 409~456
    [105] Freund Y, Schapire R, Experiments with a new boosting algorithm in machine learning: Proceeding of the Thirteenth International Conference. 1996
    
    
    [106] Freund Y, Schapire R, A decision theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Science, 1997, 55(1): 119-139
    [107] Breiman L, Arcing classifiers, Annals of statistics, 1998, 26 (4): 801~849
    [108] Friedman JH, Hastie T, Tibshirani R, Additive logistic regression: a statistical view of boosting, Annals of Statistics 2000, 28 (2): 337~307
    [109] He P, Xu C J, Liang YZ, Fang KT, Improving the classification accuracy in chemistry via boosting technique, Chemom. Intell.Lab.Syst., accepted
    [110] Ramsay JO, Dalzell CJ, Some tools for functional data Analysis (with discussion). J.R. Statist. Soc. B, 53, 1991, 53(3): 539~572
    [111] Ramsay JO, Silverman BW. Functional data analysis. Springer, New York, 1997
    [112] Silverman BW, Smoothed functional principal component analysis by choice of norm. Ann. Statist 1996, 24(1): 1~24
    [113] Green PJ, Silverman BW, Nonparametric Regression and generalized linear models: A Roughness Penalty Approach, Chapman and Hall, London, 1994
    [114] Conlin AK, Martin EB, Morris AJ, Data augmentation: an alternative approach to the analysis of spectroscopic data. Chemom.Intell.Lab.Syst., 1998, 44(2): 161~171
    [115] Silverman BW, Young GA, The bootstrap- to smooth or not to smooth. Biometrika, 1987, 74(4): 469~479
    [116] Ritter C, Gilliard JA, Cumps J, et.al Corrections for heteroscedasticity in window evolving factor analysis, Anal. Chim. Acta, 1996, 318(1): 125~136
    [117] Liang YZ, Kvalheim OM, Manne R, White, Gray and black multicomponent systems- a classification of mixture problems and methods for their quantitative analysis. Chemom. Intelli. Lab. Syst. 1993,18(2): 235~250
    [118] Manne R, On the resolution problem in hyphenated chromatography. Chemom. Intelli. Lab. Syst., 1995, 27(1): 89~94
    [119] Lorber A, Error propagation and figures of merit for quantification by solving matrix equations. Anal. Chem., 1986, 58(6): 1167~1172
    [120] Keller HR, Massart DL, Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Anal. Chim. Acta, 1991, 246(2): 379~390
    [121] Liang YZ, Kvalheim OM, Rahrnani A, et.al Resolution-of strongly overlapping 2-way multicomponent data by means of heuristic evolving latent projections. J. Chemom. 1993, 7(1): 15~43
    [122] Xu CJ, Jiang JH, Liang YZ, Evolving window orthogonal projections method for
    
    two-way Data Resolution, Analyst, 1999,124 (10): 1471~1476
    [123] Xu CJ, Liang YZ, Gong F, et.al. Incorporating the prior information of spectra into identification of elution region in hyphenated chromatography, Anal. Chim. Acta, 2001, 428(2): 235~244
    [124] Whitson AC, Maeder M, Exhaustive evolving factor analysis (E-EFA), J. Chemom. 2001, 15(2): 475~484
    [125] Zeng ZD, Xu CJ, Liang YZ, et.al Sectional Moving Window Factor Analysis for Diagnosing Elution Chromatographic Patterns, Chemom. Intelli. Lab. Syst., 2003, 2003, 69, 89~101
    [126] Liang YZ, Manne R, Kvalheim OM, Resolution of embedded chromatographic peaks by sequential rank analysis of the lst-order differentiated elution profile in the time-domain. Chemom. Intell. Lab Syst., 1994, 22(2): 229~240
    [127] Xu C J, Liang YZ, Jiang JH, Resolution of the embedded chromatographic peaks by modified orthogonal projection resolution and entropy maximization method, Analytical Letters, 2000, 33(8): 2105~2128
    [128] Sasaki K. Kawata S, Minami S, Estimation of component spectra curves from unknown mixture spectra, Appl.Opt, 1984, 23(10): 1955~1959
    [129] Kawata S, Komeda H, Sasaki K, et.al Advanced algorithm for determining component spectra based on principal component analysis. Applied Spectrosc. 1985, 39(3): 610~614
    [130] Shen HL, Cui H, Liang YZ, Qualitative and quantitative analysis of polycyclic aromatic hydrocarbons in environmental samples by heuristic evolving latent projections. ACTA CHIM SINICA 1998, 56 (4): 378~384
    [131] 国家药典委员会,中华人民共和国药典一部,化学工、业出版社,北京,2000
    [132] 马鹏,张强,许利平,沈映君,HRCGC-MS分析中药桂枝挥发油成分。华西药学杂志,1999,14(1):11~12
    [133] 吴卫,鱼腥草的研究进展,中草药,2001,32(2):367~368
    [134] Hayashi K, Kamiya M, Hayashi T, Virucidal Effects of the Steam Distillate from Houttuynia Cordata and its Components On HSV-1, Influenza Virus, and HIV. Planta. Med. 1995, 61 (2): 237~241
    [135] Hildebert W, Budolf B, Xiao PG, et.al Chinese Drug Monographs and Analysis, Herba Houttuyniae Cordatae (Yuxingcao): 1997, Vol1, No.6