SKF-81297对ADHD动物模型SHR大鼠行为及其影响机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     注意缺陷多动障碍(attention-deficit/hyperactivity disorder,ADHD)是儿童时期最常见的神经行为发育障碍性疾病。主要表现为与患儿年龄不相称的注意力易分散、注意广度缩小、不分场合的过度活动、情绪冲动并常伴有认知障碍、品行障碍和学习困难等。ADHD的发病率较高,国外报道学龄儿童的患病率为3%-5%,男孩患病率高于女孩,二者的比例为4:1-9:1。由于其症状多在学龄期出现,因此数十年来ADHD被认为是一种局限于儿童、青少年的行为问题。但是到20世纪80年代初,相继有许多学者对ADHD进行了追踪研究,结果发现10%-60%的ADHD患者到青春期后,其症状尤其是社会功能并未缓解,只是ADHD的临床表现形式发生了变化,而且出现了更多的共患病和社会问题,对患者的学业、家庭和社会生活等方面产生了明显不良的影响。因此,ADHD已经越来越引起人们更广泛地关注。
     中枢兴奋药在临床上已经成为治疗ADHD的一线用药,最常用的是盐酸哌甲酯(利他林)。然而在临床上大约有20%-30%的患者使用MPH治疗效果差甚至无效,不能达到症状的控制。还有一部分患者因不能耐受MPH的副作用(睡眠障碍、食欲降低、头痛、抽搐等)而减少药量甚至停药,也不能达到临床控制。另外由于中枢兴奋药物远期疗效的局限性和潜在的滥用危险,一些家庭拒绝中枢兴奋药物的治疗。因此进一步深入研究ADHD的发病机制,寻求新的药物靶点是至关重要的,也是这一领域的研究热点。
     由于在人体研究许多因素受限,动物模型可以客观观察评价ADHD的症状,可以直接从脑组织采集标本,监测在不同行为状态,症状的缓解或恶化时期相应的脑组织结构、功能以及各种神经递质生化的改变;可以妥善地控制遗传和环境因素,因而实验可取得较好的重复性和反应的一致性;与疾病有关的直接病因和影响因素可以在动物身上再现,从而了解其在该病发病过程中的作用。因此,建立理想的动物模型对于研究ADHD的病因和发病机理有重要价值。
     幼年自发性高血压大鼠(spontaneously hypertensive rat,SHR)有很多特点类似ADHD患者的临床表现,如在新奇环境中活动过度、在固定间歇/消退强化实验中反应过度、操作任务完成困难等,而且研究表明其纹状体和伏隔核的多巴胺受体的密度是增高的,这与ADHD患者多巴胺失调假说是相一致的。虽然有研究者置疑,SHR作为自发性高血压模型,高血压会产生一定的混杂效应,但更多学者认为,SHR大鼠在4周龄即表现多动,高血压在12周龄才出现,因此多动并非是高血压所致。而且有人专门从效标效度、结构效度和预测效度三个方面对SHR进行论证,结果表明幼年SHR是迄今最理想的ADHD动物模型。
     尽管ADHD的病因和发病机制还不十分明确,但是大量的实验研究表明ADHD的发病可能与投射到额叶和前额叶皮层的儿茶酚胺通路功能障碍有关。在遗传学水平上,通过对家系和孪生子的研究发现ADHD具有很强的遗传倾向,初步研究认为ADHD与D1R的多态性有关。探讨ADHD与多巴胺能系统之间的关系更进一步的研究是基于几个间接的多巴胺能激动剂对ADHD治疗的有效性,学者们提出了ADHD发病地多巴胺失调假说。在脑内多巴胺通过激活D1和D2两个不同的受体家族来介导其作用。多巴胺D1受体(D1R)在前额叶皮层和纹状体有很高的表达,而且其对额叶纹状体通路介导的活动和认知功能有着重要的调节作用,而ADHD患者则表现为这两个功能的缺陷。那么D1R在ADHD发病中起着怎样的作用,D1R激动剂又会对ADHD产生怎样的影响机制又是怎样的呢?
     目的
     利用Wista-Kyoto大鼠(WKY)作为对照组初步观察幼年SHR大鼠对注意缺陷多动障碍临床特征的再现性,以评估其作为ADHD模型的有效性。观察完全选择性多巴胺D1受体激动剂SKF-81297对幼年SHR/WKY大鼠活动及其认知的影响并通过研究其对脑内多巴胺D1受体表达、早期反应基因及神经元可塑性相关因子的影响初步探讨SKF-81297介导幼年SHR大鼠行为学变化的分子生物学机制,为ADHD的治疗寻找可能的药物靶点。
     方法
     1.观察幼年SHR/WKY大鼠对注意缺陷多动障碍临床特征的再现性。应用动物行为学原理,采用开场试验、Lat迷宫、morris水迷宫、Y迷宫试验方法,初步观察动物自主活动、非选择性注意、视觉—空间学习记忆及工作记忆等方面的行为特征。所有行为检测均用摄像机连续拍摄后离线分析。
     2.研究完全选择性D1R激动剂SKF-81297对幼年SHR/WKY大鼠活动水平及空间学习记忆的影响。5周龄雄性SHR大鼠和WKY大鼠随机分为SHR对照组、SHR药物组、WKY对照组以及WKY药物组。药物组各24只,对照组各6只。药物组随机分为A(低剂量组)、B(中剂量组)、C(高剂量组)三组,每组8只,每天腹腔注射SKF-81297(0.5mg/kg,5mg/kg,10mg/kg),对照组注射同等体积的生理盐水。在连续用药2周后用开场试验和morris水迷宫检测其活动水平及视觉-空间学习和记忆的变化。
     3.探讨完全选择性多巴胺D1受体激动剂SKF-81297对SHR/WKY大鼠前额叶皮层中多巴胺D1受体、早期反应蛋白及神经元可塑性相关因子的影响。将5周龄的SHR和WKY大鼠按照上述剂量用药2周后。一部分大鼠断头取脑用实时定量RT-PCR检测其D1RmRNA、BDNFmRNA、ARCmRNA的表达,用western-blot检测其早期反应基因蛋白及calcyon蛋白的定量表达,其余大鼠及相应对照组过量麻醉后灌注固定,用于免疫组织化学检测早期反应基因蛋白及calcyon蛋白在前额叶皮层中的定性表达情况。
     结果
     1.(1)开场实验中SHR大鼠穿越格子数及直立次数均较对照组WKY大鼠显著增多,提示SHR大鼠较对照组WKY大鼠活动明显增多;(2)Lat迷宫中SHR大鼠在0-5分钟、15-20分钟、25-30分钟各个时间段SHR大鼠穿越角落的频数均较WKY大鼠显著增加,提示SHR大鼠不但在新奇环境中,而且在熟悉环境中的自发活动水平也较WKY大鼠显著增加;在Lat迷宫的30分钟及上述三个时间段内SHR大鼠的直立或者两前足斜搭在墙上的频率数均显著高于WKY大鼠,提示SHR大鼠的非选择性注意水平也高于对照WKY大鼠;(3)morris水迷宫试验结果显示,SHR大鼠和WKY大鼠的学习能力并无显著差异,记忆测试时SHR大鼠在目的象限停留的时间停留的时间与WKY组相比缩短,说明SHR大鼠存在空间记忆力的缺陷(4)Y迷宫中SHR大鼠在训练阶段和保持阶段的错误次数均明显高于WKY大鼠,说明SHR大鼠存在明显的工作记忆的缺陷。
     2.SKF-81297对幼年SHR大鼠活动水平及空间学习记忆的影响。
     2.1对活动水平的影响:在连续用药14天后,低剂量组(0.5mg/kg)SHR与WKY大鼠在测试的5-20min时段均表现为活动水平的明显增加,而且刻板行为也是明显增加的,而仅在测试的25-40min表现为直立次数的增加。中等剂量组(5mg/kg)仅在测试25-40min表现了活动水平的增加,同时明显增加了两类大鼠的刻板行为。而在观察的三个时段都明显增加了SHR大鼠的直立次数,仅在5-20min减少了WKY大鼠的直立次数。在高剂量组对SHR/WKY大鼠的活动水平产生了双时相的影响即表现为开始阶段的抑制和随后的兴奋。在抑制阶段,没有增加动物的刻板行为,而兴奋阶段同时引起了动物刻板行为的明显增加。而在测试的5-20min和25-40min时段明显降低了SHR大鼠的直立次数,而在WKY大鼠则仅表现为25-40min直立次数的减少。
     2.2对空间学习记忆的影响:在连续用药14天后,在morris水迷宫4天的定向航行试验中,各组大鼠找到平台的潜伏期与对照组相比没有明显差异,说明SKF-81297对动物的空间学习能力没有明显的影响。第5天的探索试验,与对照组相比较SHR/WKY大鼠在目标象限停留的时间均明显增长,说明SKF-81297明显改善了大鼠的空间记忆水平。
     3.SKF-81297对SHR/WKY大鼠前额叶皮质多巴胺D1受体、早期反应基因及神经元重塑因子的影响
     3.1免疫组化及Western-blot的试验结果表明,SKF-81297在各个剂量都不同程度的增加了SHR/WKY大鼠的c-fos、fosB及calcyon的表达。
     3.2实时定量PCR结果显示,在SHR/WKY大鼠的额叶皮层D1RmRNA和GDNFmRNA的表达呈剂量依赖性的增高,而SKF-81297对arcmRNA的表达则没有明显的影响。
     结论
     1.SHR大鼠在多动、注意力障碍、学习认知障碍等方面很好的再现了ADHD的行为特征;利用开场实验、Lat迷宫、morris水迷宫以及Y迷宫多种行为学方法组合可以简单有效的从多动、注意障碍、学习记忆等方面对SHR大鼠ADHD模型有效性加以评估,为下一步的研究莫定基础。
     2.SKF-81297不同的剂量以及观察的不同时间都对SHR/WKY大鼠的活动水平产生了一定的影响;SKF-81297可以明显改善SHR/WKY大鼠的空间记忆能力,并且在中等剂量时改善效果最明显,初步说明了适当的多巴胺D1受体的激活对动物的认知功能有着重要的作用。
     3.SKF-81297不同程度的提高了SHR/WKY大鼠前额叶皮质中多巴胺D1受体、BDNF、calcyon以及c-fos、fosB的表达,说明SKF-81297在调整前额叶的功能中发挥着重要的作用,而多巴胺D1受体、神经元可塑性相关因子BDNF以及多巴胺D1受体调节蛋白calcyon参与了这一调节的过程,从而最终介导了SHR/WKY大鼠行为的一系列变化。
Background
     Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common chronic neurobehavioural disease encountered in child development. It is characterized by symptoms of developmentally inappropriate inattention, distractibility ,excessive motor activity and impulsivity ofen accompany with behavioural problems and cognitive deficits. It affects 3%-5% of the school-aged population worldwide. The disorder occurs more frequently in males than females, with male-to female ratios ranging from 4:1 to 9:1 on setting. ADHD is most ofen diagnosed during childhood and therefore, over the last decade, it was regarded as a disease which is belong to children. But follw up studies have indicated that 10%-60% of patients continue to suffer from ADHD during late adolescence and adulthood. These children are at risk for developing mood, anxiety, and drug abuse disorder as adult . So ADHD would lead to a series of negative consequences for their academic and personal lives. As a result, more and more attention focus on the ADHD.
     Although stimulants are the drugs of choice in the treatment of ADHD. Methylphenidate is the first drug for the treatment of ADHD. However, the clinical response to methylphenidate may be absent or insufficient in about 20-30 % drug-treated children while the occurrence of adverse effects with methylphenidate (sleep disturbances, loss of appetite, tics increase...) may sometimes require a dose reduction or even the discontinuation of the treatment. Consequently, there is a need for alternatives to stimulant medication. So it is very important to further explore the mechanism of ADHD for finding a new action point to treatment of ADHD.
     Many studies don't attempt in the man because many reasons, animal model is a good choice , it can observe, evaluate the symptom of ADHD and specimen may be collected from the brain of animal model to better explore the structure, function, and the change of transmitter under the different state of behaviour or different period of disease. In the animal experiment, we can better control the inheritance and environment factor, thus it is possible to repeated and conformity of response. The etiopathogenisis and influential factor of disease can be reappearance in an animal model, so we can also explore the action in the invasion course of disease. As a result, it is important for an ideal animal model to investigate the etiological factor and pathogenesy of disease.
     The spontaneously hypertensive rat (SHR) is commonly used as a rodent model of attention deficit hyperactivity disorder(ADHD), as it displays a characteristic pattern of behaviour including increased impulsivity, hyperactivity,and an inability to sustain attention. In addition, D1R densities are elevated in the striatum and nucleus accumbens of SHR which is consistent with the hypothesis that D1R neurotransmission may be altered in ADHD. Hypertension is a confounding factor in the SHR model of ADHD. However, SHR do not develop hypertension until they are adults, from 10 to 12 weeks of age, whereas hyperactivity is observed at 3 to 4 weeks of age before they enter puberty . A series of studies that addressed the criterion validity, constitution validity and predictive validity have been finished. It is suggest that SHR is the best validated animal of ADHD.
     The aetiology of ADHD is not well understood, but there is converging evidence implicating the catecholamine dysfuction frontal-striatal circuitry . At the genetic level, ADHD is highly heritable and the genetic component as demonstrated by family and twin studies and preliminary evidence supports an association between ADHD and polymorphisms in D1R. Specifically, dysregulation of dopamine (DA) has been hypothesized in ADHD based on the potent efficacy of indirect dopaminergic agonists. In brain, DA effects are mediated through activation of two distinct receptor families, referred to as the D1 and the D2 classes .The DAD1 receptors (D1R), which are expressed highly in the striatum and prefrontal cortex (PFC), may be particularly relevant for ADHD. These receptors are crucial modulators of the motor and cognitive functions mediated by the frontal-striatal circuitry , functions which are impaired in patients with ADHD. So what is the action of D1R in ADHD ,What is the effect of D1R agonists to ADHD and How isit?
     Objective
     To evaluate juvenile spontaneously hypertensive rats (SHR) as an animal model of a developmental disorder, which is diagnosed according to attention deficit/hyperactivity disorder (ADHD). We observe the effects of treatment with a highly selective dopamine D1 receptor agonist SKF-81297 on locomotion and cognition (spatial learning and working memory) of SHR. We also explore the role of D1R in cause of ADHD, by evaluating the effect of SKF-81297 on on D1R expression, IEG and neuron plasticity fator in the PFC of an animal model of ADHD.
     Methods
     1. To characterize behavioural alterations, we studied motor activity, as well as attention and cognitive behaviours in juvenile SHR by using open-field environment test, lat maze, morris water maze and Y-maze. All the behavior in the tests were monitored by a CCD video camera and analyzed off-line.
     2. The effects of treatment with SKF-81297 on locomotor, spatial learning and memory. Thirty male 4 weeks old SHRs and thirty male 4 week-old WKY rats as the control group were randomly divided into SKF-81297 and saline control groups respectively. There are twenty-four SHRs and WKYs in group of SKF-81297. The SKF-81297 groups were injected i.p. with SKF-81297 (0.5 mg/kg, 5 mg/kg, 10mg/kg) once daily for 14 days. The control groups were treated by saline according to control principle. We evaluate the motor activity by using open-field environment test on the time after 14day administration of SKF-81297. Spatial learning and memory were test by morris water maze from day 9 to 14 during the treatment.
     3. After 2-weeks treatment with SKF-81297 SHRs and WKYs rats and the controls were divided into two parts. One part was sacrificed by decapitation and the brain was removed on an ice-cold stage. These brains were used in the study of quantitative real-time detection PCR and western blot to observe the effect on immediately early gene(IEG) , dopamine-related receptor(DlR) and protein( calcyon) and neuron plasticity factor (GDNF、arc). The other part that was used in the study of immunohistochemistry.
     Results
     1. Ambulatory and rearing activities in the open-field environment were significantly higher in SHR than in their Wistar-Kyoto (WKY) controls;The behavior in a Lat maze during three consecutive 10-min was monitored, frequency of running across the corners and the rearing activities which is useda sa nin dexo fno n-selectivea tention,w eres ignificantlyh igherin SHR than in WKY during either the 30 minutes or the three consecutive 10-min; In the morris water maze test, there are no significant difference of in the time to find the platform between the SHR and WKY groups. In contrast, on the morris water maze there was siginificant difference in the time spend in objective quadrant between 2 groups. In Y maze test, control rats learned the left-right alternative memory model. Total errors in SHRs group significantly increased compared to WKY rats in both training sessions and retention sessions. So the SHRs had deficits in working memoty.
     2. The effects of SKF-81297 in activity and spatial learing and memory.
     2.1 The effects of SKF-81297 in activity . After the 14 days the administration of SKF-81297, SHR rats were more behaviourally active than WKY rats after injection with vehicle in all course of test. The 0.5 mg/kg dose of SKF-81297 increased locomotion behaviour and the stereotyped behavior in both SHR and WKY rats and stimulate the rearing in 25-40min. The 5 mg/kg dose increase locomotion behaviour only in 25-40min in SHR and WKY rats, at the same time the stereotyped behavior have a significant increase. The rearing behaviour of SHR rats were raise in the test session,however, the rearing behaviour have been reduced in 5-20min in WKY rats. The 10 mg/kg dose of SKF-81297 produced a biphasic effect on locomotion, which was characterized by an initial decrease followed by later stimulation. The latter stimulatory effect was more pronounced in SHR than in WKY rats when compared to their respective vehicle-injected groups. The rearing behaviour of SHR rats were reduced in 5-20min and 25-40min, however, the rearing behaviour of SHR rats were only reduce in 25-40min.
     2.2 The effects of SKF-81297 in spatial learing and memory. After the 14 days the administration of SKF-81297, in morris water maze, the SKF-81297 group spent more time in the target quadrant at all dose levels compared with control rats( P<0.05)but the time in finding the platform has no significant difference at all dose levels (P>0.05).
     3. The effect of SKF-81297 on D1R expression, immediately early gene andneuron plasticity fator in the PFC of SHR/WKY rats.
     3.1 SKF-81297 increase the expression the c-fos,fosB,and calcyon in the PFC of SHR rats by immunohistochemistry and western-blot.
     3.2 DIRmRNA and BDNFmRNA in the PFC of SHR/WKY rats were raised by the
     SKF-81297 dose-dependent in the real-time PCR, no change in expression ofarcmRNA.
     Conclusion
     1. Our findings reveal that juvenile SHR manifest behaviours resembling a developmental disorder of ADHD, such as hyperactivity, attention deficit, and disorder of cognition. Using the open-field experiment, Lat maze, morris water maze and Y-maze, we can evaluate the hyperactivity , attention deficit, learing and memory in the animal model of ADHD. It is important to supply the evidence to further study.
     2. The activity of SHR/WKY rats were effect by different dose of SKF-81297 and the time of test.The SKF-81297 improve the spatial memory of SHR/WKY rats, and have a most significant improvement in the medium dosage . These evidences suggests the activation of the appropriate suitable dopamine receptor is very important to obtain the good cogtion function.
     3. D1R, BDNF,calcyon and c-fos,fosB have been increased in the different degree by SKF-81297. It is suggest that SKF-81297 is very important to regulate the function of PFC,the course were medicated by D1R, BDNF,calcyon, as a result, the behaviour of SHR/WKY have differently change.
引文
1 Davids E, Zhang K, Tarazi FI, Baldessarini RJ. Animal models of attention-deficit hyperactivity disorder [ J ] . Brain Res Brain Res Rev. 2003 ; 42(1):1-21.
    
    2 Ueno K ,Togashi H ,Yoshioka M .Behavioral and pharmacological studies of juveniles troke-prone spontaneously hypertensive rats as an animal model of attention-deficit/hyperactivity disorder [ J ] .Nihon Shinkei Seishin Yakurigaku Zasshi. 2003;23 (1):47-55.
    
    3 Li Q,Lu G, Antonio GE, Mak YT, Rudd JA, Fan M, Yew DT. The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain [ J ] . Neurochem Int. 2007 ;50(6):848-57.
    
    4 Sagvolden T, Russell VA, Aase H, et al. Rodent models of attention-deficit /hyperactivity disorder [ J ] . Biol Psychiatry. 2005 ;1;57(11):1239-47.
    
    5 Johansen EB, Killeen PR, Sagvolden T. Behavioral variability, elimination of responses, and delay-of-reinforcement gradients in SHR and WKY rats [ J ] . Behav Brain Funct. 2007 ; 20(3):60-66.
    
    6 Russell VA, Wiggins TM. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats [ J ] . Metab Brain Dis. 2000;15(4):297-304.
    
    7 Ueno K, Togashi H, Matsumoto M, Ohashi S, Saito H, Yoshioka M. Alpha4beta2 nicotinic acetylcholine receptor activation ameliorates impairment of spontaneous alternation behavior in stroke-prone spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder [ J ] . J Pharmacol Exp Ther. 2002 ;302(1):95-100.
    
    8 Viggiano D, Ruocco LA, Arcieri S, Sadile AG. Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder [ J ] . Neural Plast. 2004;11(1-2):133-49.
    9 Russell V, Allie S, Wiggins T. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder-the spontaneously hypertensive rat [ J ] . Behav Brain Res. 2000;117(l-2):69-74.
    
    10 Russell V, Allie S, Wiggins T.Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat [ J ] . Behav Brain Res. 2000;117(1-2):69-74.
    
    11 Oades RD, Sadile AG, Sagvolden T, et al.The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles [ J ] . Dev Sci. 2005;8(2): 122-31.
    
    12 Van der Kooij MA, Glennon JC.Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder [ J ] . Neurosci Biobehav Rev.2007;31(4):597-618.
    
    13 Russell VA.Neurobiology of animal models of attention-deficit hyperactivity disorder [ J ] . J Neurosci Methods. 2007 ;161(2):185-98.
    
    14 Li Q, Lu G, Antonio GE, Mak YT, Rudd JA, Fan M, Yew DT.The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain [ J ] . Neurochem Int. 2007 ;50(6):848-57.
    
    15 Viggiano D, Vallone D, Sadile A. Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling [ J ] . Neural Plast. 2004; 11(1-2):97-114.
    
    16 Russell VA. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder-the spontaneously hypertensive rat [ J ] . Behav Brain Res. 2002; 130(1 -2): 191-6.
    
    17 Russell V, Allie S, Wiggins T. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder-the spontaneously hypertensive rat[J].Behav Brain Res.2000;117(1-2):69-74.
    18 Carboni E,Silvagni A.Experimental investigations on dopamine transmission can provide clues on the mechanism of the therapeutic effect of amphetamine and methylphenidate in ADHD[J].Neural Plast.2004;11(1-2):77-95.
    19 Bizot JC,Chenault N,Houze B,Herpin A,David S,Pothion S,Trovero F.Methylphenidate reduces impulsive behaviour in juvenile Wistar rats,but not in adult Wistar,SHR and WKY rats[J].Psychopharmacology(Bed).2007;193(2):215-23.
    20 Augustyniak PN,Kourrich S,Rezazadeh SM,et al.Differential behavioral and neurochemical effects of cocaine after early exposure to methylphenidate in an animal model of attention deficit hyperactivity disorder[J].Behav Brain Res.2006;167(2):379-82.
    21 Jerry JB.Methods of behavior analysis in neuroscience[M].CRC Press LLC,2001.55-58.
    22 Aspide R,Fresiello A,de FilippisG,et al.Non-selective attention in a rat model of hyperactivity and attention deficit:subchronic methylphenydate and nitricoxide synthesis inhibitor treatment[J].Neuro sci Biobehav Rev.2000;24(1):59-71.
    23 Ma-Li Jiang,Tai-Zhen Han,Wei Pang,Liang Li.Gender- and age-specific impairment of rat performance in the Morris water maze following prenatal exposure to an MRI magnetic field[J].Brain Research.2004;14(7):140-144.
    24 Angelucci ME,Cesario C,Hiroi RH,Rosalen PL,Da Cunha C.Effects of caffeine on learning and memory in rats tested in the Morris water maze[J].Braz J Med Biol Res.2002;35(10):1201-1208.
    25 Morris R.Developments of a water-maze procedure for studying spatial learning in the rat[J].J Neurosci Methods.1984;11(1):47-60
    26 Scholte EM,van Berckelaer-Onnes IA,van der Ploeg JD.DSM-IV related ADHD symptom ratings by professional caretakers in residential treatment centres[J].J Child Psychol Psychiatry.2001;42(3):341-6.
    27 李建英,杨锰宇,邹小兵,等.注意缺陷多动障碍儿童认知特征的研究[J].中国妇幼保健.2001;16(10):632-634.
    28 Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G. The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations[J] .Neurosci Biobehav Rev. 2003;27(7):639-51.
    
    29 Sagvolden T .Behavioral validaton of the spontaneously hypertensive rat (SHR )as an animal model of attention-deficit/hyperactivity disorder(AD/HD) [ J ] . Neuro sci Bio behave Rev.2000;24(1):31-39.
    
    30 Andersen SL.Changes in the second messenger cyclic AMP during development may underlie motoric symptoms in attention deficit/hyperactivity disorder (ADHD) [ J ] . Behav Brain Res. 2002;130 (1 -2 ):197-201.
    
    31 R. Aspide, U.A. Gironi Carnevale, J.A. Sergeant and A.G Sadile, Non-selective attention and nitric oxide in putative animal models of attention-deficit hyperactivity disorder [ J ] . Behav Brain Res.1998;95(pp-2): 123-133.
    
    32 Buresova O, Krekule I, Zahalka A, Bures J.On-demand platform improves accuracy of the Morris water maze procedure [J] J Neurosci Methods. 1985;15(1):63-72.
    
    33 Nakamura K, Morita C, Saeki S, Moridera K. Study of the callosal function by learning experiments. Experiment on discrimination learning using a Y-maze [J] .Igaku To Seibutsugaku. 1999;79(1):17-21.
    
    34 Sherry A. Ferguson and Amy M. Cada. Spatial learning/memory and social and nonsocial behaviors in the Spontaneously Hypertensive, Wistar-Kyoto and Sprague-Dawley rat strains [J] .Pharmacology Biochemistry and Behavior. 2004;77 (3): 583-594.
    
    35 Clements KM, Wainwright PE. Spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rats differ in performance on a win-shift task in the water radial arm maze [ J ] . Behav Brain Res. 2006;167(2):295-304.
    
    36 Johansen EB, Sagvolden T. Response disinhibition may be explained as an extinction deficit in an animal model of attention-deficit/hyperactivity disorder (ADHD) [ J ] .Behav Brain Res. 2004; 149(2): 183-96.
    1 American Psychiatric Association,Diagnostic and Statistical Manual of Mental Disorders(DSM IV)[M].4th Ed.,1994.
    2 Faraone SV,Sergeant J,Gillberg C and Biederman J.The worldwide prevalence of ADHD:Is it an American condition?[J].World Psychiatry.2003;2(10):104-113.
    3 Brown RT,Freeman WS,Perrin JM,et al.Prevalence and assessment of attention-deficit/hyperactivity disorder in primary care settings[J].Pediatrics.2001;12(8):43-49.
    4 Scahill and M.Schwab-Stone.Epidemiology of ADHD in school-age children [J].Child Adolesc Psychiatr Clin N Am.2000;9(1):541-555.
    5 Barkley RA and Biederman J.Toward a broader definition of the age-of-onset criterion for attention-deficit hyperactivity disorder[J].J Am Acad Child Adolesc.Psychiatry.1997;36(pp):1204-1210.
    6 Barkley RA.Attention-deficit hyperactivity disorder:a handbook for diagnosis and treatment(2 ed)[M].The Guilford Press,New York(1998).
    7 Gordon N.Dyslexia-why can't I learn to read?.In:K.Whitmore,H.Hart and G.Willems,Editors,A neurodevelopmental approach to specific learning disorders,Mac Keith Press,London 1999;pp.76-95.
    8 Shaywitz SE,Shaywitz BA,Fletcher JM and Escobar MD.Prevalence of reading disability in boys and girls:results of the Connecticut Longitudinal Study[J].JAMA.1990;264(pp):998-1002.
    9 李雪荣,主编。现代儿童精神医学[M]。湖南科学技术出版社。1994,228-226.
    10 Hu Y.Subtyping and inquiring for etiology of children ADHD aged 6 to 12years[J].Chin J School Doctor 12(1998),pp.321-324 Chinese.
    11 Shen YC,Wang YF and Yang XL.An epidemiological investigation of minimal brain dysfunction in six elementary schools in Beijing[J].J Child Psychol.Psychiatry.1985;26(9):777-787.
    12 Wilens TE,Biederman J and Spencer TJ.Attention-deficit/hyperactivity disorder across the lifespan[J].Annu Rev Med.2002;53(5):113-131.
    13 Silver LB.Attention-deficit/hyperactivity disorder in adult life[J].Child Adolesc.Psychiatr.Clin N Am.2000;9(4):511-523.
    14 Shaywitz SE, Fletcher JM and Shaywitz BA. Issues in definition and classification of attention deficit disorders [ J ]. Top Lang Disord. 1994; 14 (3): 1-25.
    
    15 Greenhill LL. Pharmacological treatment of ADHD [ J ] . Psych Clinics North Am 1992; 15(5): 1-27.
    
    16 Barkley RA, McMurray MD, Edelbrock CS and Robbins K. Side effects of methylphenidate in children with ADHD: a systemic placebo controlled evaluation [ J ] . Pediatrics. 1990; 86(7): 184-192.
    
    17 Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes [ J ] . Nat Rev Neurosci. 2002; 3(6):617-628.
    
    18 Volkow ND, Wang GJ, Fowler JS, Ding YS. Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit /hyperactivity disorder [ J ] . Biol Psychiatry. 2005; 57(14):10-15.
    
    19 El-Ghundi M, Fletcher PJ, Drago J. Spatial learning deficit in dopamine D1 receptor knockout mice [ J ] . Eur J Pharacol.l999;383(2):95-106
    
    20 Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function [ J ] . Physiol Rev. 1998;78(13): 189-225.
    
    21 Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions [ J ] . Biol Psychiatry. 2005; 57(13):77-84.
    
    22 Chudasama Y, Robbins TW. Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans [ J ] . Biol Psychol. 2006;42(4) :112-118.
    
    23 Addington JL, OTuathaigh C, O'sullivan G, Tomiyama K, Koshikawa N, Croke DT. Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology-molecular biology interface [ J ] . Psychopharmacology (Berl).2005;181(17):611-638.
    
    24 Cohen C, Perrault G, Sanger DJ. Effects of Dl dopamine receptor agonists on oral ethanol self-administration in rats: comparison with their efficacy to produce grooming and hyperactivity [ J ] . Psychopharmacology (Berl). 1999;142(11):102-110.
    25 Molloy AG, Waddington JL. Dopaminergic behaviour stereospecific promoted by the D1 agonist R-SK & F 38393 and selectively blocked by the D1 antagonist SCH 23390[J]. Psychopharmacology (Berl). 1984;82(12):409-410.
    
    26 Diaz HR, Beraki S, Scott L, Aperia A, Forssberg H. Sex differences in the motor inhibitory and stimulatory role of dopamine D1 receptors in rats[ J ]. Eur J Pharmacol. 2002;445(7):97-104.
    
    27 Cromwell HC, Berridge KC. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax [ J ] . J Neurosci. 1996;16(34):44-58.
    
    28 Linthorst AC, Broekhoven MH, de JW, Van Wimersma Greidanus TB, Versteeg DH. Effect of SCH 23390 and quinpirole on novelty-induced grooming behaviour in spontaneously hypertensive rats and Wistar-Kyoto rats [ J ] . Eur J Pharmacol. 1992;219(13):23-28.
    
    29 Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M. Rodent models of attention-deficit/hyperactivity disorder [ J ] . Biol Psychiatry. 2005;57 (31):1239-1247.
    
    30 Ruskin DN, Rawji SS, Walters JR. Effects of full D1 dopamine receptor agonists on firing rates in the globus pallidus and substantia nigra pars compacta in vivo: tests for D1 receptor selectivity and comparisons to the partial agonist SKF 38393 [ J ] . J Pharmacol Exp Ther. 1998;286(9):272-281.
    
    31 Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, Tonegawa S. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses [ J ] . Cell. 1994;79(41):729-742.
    
    32 Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL, Newbury DF, Crawford LR, Palmer CG, Woodward JA, Del'Homme M, Cantwell DP, Nelson SF, Monaco AP, Smalley SL: A genomewide scan for loci involved in attention-deflcit/hyperactivity disorder [ J ] .Am J Hum Genet 2002, 70(8):1183-1196.
    
    33 Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, Clasen LS, Sharp WS, Inoff-Germain G, Wavrant-De VF, rcos-Burgos M, Straub RE, Hardy JA, Castellanos FX, Rapoport JL: Support for association between ADHD and two candidate genes: NET1 and DRD1 [ J ] . Am J Med Genet B Neuropsychiatr Genet 2005, 134(19):67-72.
    34 Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ: Dopamine transporter density in patients with attention deficit hyperactivity disorder [J ] . Lancet. 1999; 354(21):32-33.
    
    35 Volkow ND, Wang GJ, Newcorn J, Telang F, Solanto MV, Fowler JS, Logan J, Ma Y, Schulz K, Pradhan K, Wong C, Swanson JM. Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder [ J ] .Arch Gen Psychiatry. 2007 ;64(8):932-40.
    
    36 Kozlov AP and Druzin MY.The role of D1 -dopaminergic mechanisms of the frontal cortex in delayed responding in rats [ J ] . Neurosci Behav Physiol. 2001;31(4):405-411.
    
    37 Chudasama Y and Robbins TW. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans [J ] .Biol Psychol. 2006;73(23): 19-38.
    
    38 Biederman J and Faraone SV. Attention-deficit hyperactivity disorder [ J ] . Lancet. 2005;366(17): 237-248.
    
    39 Castellanos FX and Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes [ J ] . Nat Rev Neurosci .2002;3(12): 617-628.
    
    40 Volkow ND, Wang GJ, Fowler JS and Ding YS. Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder [ J ] . Biol Psychiatry ,2005;57(14): 10-15.
    
    41 Missale C, Nash SR, Robinson SW, Jaber M and Caron MG. Dopamine receptors: from structure to function [ J ] . Physiol Rev .1998;78(20): 189-225.
    
    42 Sawaguchi T. The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task [ J ] .Neuro sci Res, 2001, 41(2):115-128.
    
    43 Cohen C, Perrault G and Sanger DJ. Effects of Dl dopamine receptor agonists on oral ethanol self-administration in rats: comparison with their efficacy to produce grooming and hyperactivity C J ] .Psychopharmacology.1999; 142 (33):102-110.
    
    44 Molloy AG and Waddington JL. Dopaminergic behaviour stereospecific promoted by the D1 agonist R-SK & F 38393 and selectively blocked by the D1 antagonist SCH 23390 [ J ] .Psychopharmacology.l984;82(17): 409-410.
    
    45 Abrahams BS, Rutherford JD, Mallet PE and Beninger RJ.Place conditioning with the dopamine D1-like receptor agonist SKF 82958 but not SKF 81297 or SKF 77434 [ J ] . Eur J Pharmacol .1998;343(20): 111-118.
    
    46 Cohen C, Perrault G, Sanger DJ. Effects of Dl dopamine receptor agonists on oral ethanol self-administration in rats: comparison with their efficacy to produce grooming and hyperactivity. Psychopharmacology (Berl). 1999;142(11):102-110.
    
    47 Isacson R, Kull B, Wahlestedt C, Salmi P. A 68930 and dihydrexidine inhibit locomotor activity and d-amphetamine-induced hyperactivity in rats: a role of inhibitory dopamine D(1/5) receptors in the prefrontal cortex? [ J ] . Neuroscience. 2004;124(5):33-42.
    
    48 Salmi P, Ahlenius S. Sedative effects of the dopamine D1 receptor agonist A 68930 on rat open-field behavior [ J ] . Neuroreport. 2000;11(12):69-72.
    
    49 Chudasama Y and Robbins TW. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex [ J ] . Neuropsychopharmacology. 2004; 29(16)28-36.
    
    50 Heijtz RD, Beraki S, Scott L,et al. Sex differences in the motor inhibitory and stimulatory role of dopamine Dl receptors in rats [ J ]. Eur J Pharmacol. 2002; 445(45)97-104.
    
    51 Diaz HR, Scott L, Forssberg H. Alteration of dopamine Dl receptor-mediated motor inhibition and stimulation during development in rats is associated with distinct patterns of c-fos mRNA expression in the frontal-striatal circuitry [ J ] . Eur J Neurosci. 2004;19(3):945-956.
    
    52 Diaz HR, Castellanos FX. Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats [ J ] . Behav Brain Funct. 2006 ;2 (12):18-19.
    
    53 Isacson R, Kull B, Wahlestedt C and Salmi P. A 68930 and dihydrexidine inhibit locomotor activity and d-amphetamine-induced hyperactivity in rats: a role of inhibitory dopamine D(1/5) receptors in the prefrontal cortex? [ J ] . Neuroscience. 2004; 124(5):33-42.
    54 柯尊记,姚志彬.空间学习记忆的行为模式及其分子神经生物学基础[J].解剖科学进展,1998,4(1):1.
    55 Aguirre GK,D'Esposito M.Topographical disorientation:a synthesis and tax onomy[J].B rain,19 99,122(16):13-28.
    56 Arnsten AF and Li BM.Neurobiology of executive functions:catecholamine influences on prefrontal cortical functions[J].Biol Psychiatry.2005;57(13)77-84.
    57 Granon S,Passetti F,Thomas KL,Dalley JW,Everitt BJ and Robbins TW.Enhanced and impaired attentional performance after infusion of Dl dopaminergic receptor agents into rat prefrontal cortex[J],J Neurosci.2000;20(12)08-15.
    58 Jerry J.Buccafusco,ed.Methods of behavior analysis in neuroscience[M].CRC Press LLC,2001.55-58.
    59 Brahams BS,Rutherford JD,Mallet PE,Beninger RJ.Place conditioning with the dopamine D1-like receptor agonist SKF 82958 but not SKF 81297 or SKF 77434[J].Eur J Pharmacol.1998;343(23):111-118.
    60 Ohen C,Perrault G,Sanger DJ.Effects of D1 dopamine receptor agonists on oral ethanol self-administration in rats:comparison with their efficacy to produce grooming and hyperactivity[J].Psychopharmacology(Berl).1999;142(11):102-110.
    61 Molloy AG,Waddington JL.Dopaminergic behaviour stereospecific promoted by the D1 agonist R-SK & F 38393 and selectively blocked by the D1antagonist SCH 23390[J].Psychopharmacology(Berl).1984;82(9):409-410.
    62 Salmi P,Ahlenius S.Sedative effects of the dopamine D1 receptor agonist A 68930 on rat open-field behavior[J].Neuroreport.2000;11(5):126.9-1272.
    63 Diaz HR,Beraki S,Scott L,Aperia A,Forssberg H.Sex differences in the motor inhibitory and stimulatory role of dopamine D1 receptors in rats[J].Eur J Pharmacol.2002;445(16):97-104.
    1 Mccracjebn JT, Smalley SL, Mcgough JJ. Evidence for linkage of a tandem duplication polymorphism upstream of the dopamine D4 receptorgene(DRD4)with attention deficit hyperactivity disorder (ADHD) [ J ] .Mol Psychiatry. 2000;5(5):531-536.
    
    2 Roman T, Schmita M, Polanczyk G. Attention-deficit hyperactivity disorder: A study of association with the dopamine transporter gene and the dopamine D4 receptor gene [ J ] .Am J Med Genet. 2001;105(5):471-478.
    
    3 Faraone SV and Doyle AE. Genetic influences on attention deficit hyperactivity disorder [ J ] . Curr Psychiatry Rep.2000; 2(pp): 143-146.
    
    4 Retz W, Thome J, Blocher D,et al. Association of attention deficit hyperactivity disorder-related psychopathology and personality traits with the serotonin transporter promoter region poly-morphima [ J ] .Neurosci Lett. 2002;319(3):133-136.
    
    5 Strous RD, Spivak B, Yoran HR, et al .Analysis of netlrosteroid levels in attention deficit hyperactivity disorder [ J ] . Int J Neuropsychopharmaeol. 2001 ;4(3): 259-264.
    
    6 Kirley A, Hawi Z, Daly G, et al. Dopaminergic system genes in ADHD: toward a biological hypothesis [ J ] . Neuropsychopharmacology. 2002;27(pp): 607-619.
    
    7 Biederman J and Faraone SV. Current concepts on the neurobiology of attention-deficit/hyperactivity disorder. J Atten Disord. 2002;6 (Suppl) :S7-S16.
    
    8 Solanto MV. Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research [ J ] . Behav Brain Res.2002;130(pp):65-71.
    
    9 Langleden DD, Austin G, Krikorian G, et al.Interhemispheric asymmetry of regional cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder [ J ] .Nucl Med Commun.2001;22(12):1333-1340.
    
    10 Overmeyer S, Bullmore ET, Suckling J, et al. Distributed grey and white matter deficits in hyperkinetie disorder: MRI eviden ce for anatomical abnormalityin an atten tional network [ J ] . Psyehol Med.2001; 31(8):1425-1435.
    
    11 Bagwell CL, Molina BS. Attention-deficit hyperactivity disorderan d problemsin peer relations: predictions from childhood to adolcscence [ J ] . J Am Acad Child Adolesc Psychiatry.2001;40(11):1285-1292.
    
    12 Brito GN, Pereira CC, Santos MTR. Behavioral and neuropsychological correhtes of hyperactivity and inatention in Brazilian school children[J]. Dev Med Neurol.1999;41(11):732-739.
    
    13 Mick E, Biederman J, Prince J, et al. Impact of low birth weight on attention-deficit hyperactivity disorder [ J ] . J Dev Behav Bediatr. 2002;23(1):16-22.
    
    14 Ornoy A,Segal J,Bar HR,et al .Develolmaental outcome of achool-age children bom to mothers wi th heroin dependency: importance of environmental factors [ J ] . Dev Med Child Neurol.2001;43(10):668-675.
    
    15 Levin ED. Nicotinic receptor subtypes and cognitive function [ J ] . J Neurobiol. 2002;53(8):633-640.
    
    16 Lindstrom J. Nicotini cacetylcholine receptors in health and disease [ J ] .Mol Neurobiology. 1997; 15(4): 193-222.
    
    17 Sharon M, Joseph B, Stephen V, et al. Prgnancy, delivery and infancy complications and attention deficit hyperactivity disorder: issues of gene-environment interaction [ J ] . Biol Psychiatry. 1997; 41(11):65-75.
    
    18 Milberger S ,Biederman J, Faraone SV, et al. ADHD is associated with early initiation of cigarette smoking in children and adolescents [ J ] .J Am Acad Child Adolesc Psychiatry.1997;36(1):37-44.
    
    19 Rosa Neto P, Lou H, Cumming P, et al. Methylphenidate-evoked potentiation of extracellular dopamine in the brain of adolescents with premature birth: correlation with attentional deficit [ J ] . Ann N Y Acad Sci.2002; 9(65):434-439.
    
    20 Madras BK, Miller GM, Fischman AJ. The dopamine transporter: relevance to attention deficit hyperactivity disorder (ADHD) [ J ] . Behav BrainRes.2002 ;130(1-2):57-63.
    
    21 Vles JS, Feron FJ, Hendriksen JG, et al. Methylphenidate down-regulates the dopamine receptor and transporter system in children with atention deficit hyperkinetic disorder (ADHD) [ J ] .Neuropediatrics.2003;34 (2):77-80.
    
    22 Giros B, Jaber M, Jones SR, et al. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter [ J ] .Nature. 1996;379(65):606-612.
    
    23 Zhuang X, Oosting RS, Jones SR, et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice [ J ] .Proc Natl Acad Sci USA.2001; 98(4):1982-1987.
    
    24 Sagvolden T .Behavioral validation of the spontaneouslyh ypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder(AD/HD) [ J ] . Neurosci Biobehav Rev.2000;24 (1):31-39.
    
    25 Adriani W, Caprioli A, Granstrem O, et al. The spontaneously hypertensive-rat as an animal model of ADHD:evidence for impulsive and non-impulsive subpopulations [ J ] . Neuro sci Biobehav Rev.2003;2 7(7): 639-651.
    
    26 韩济生.神经科学原理2版,1999.95 3-956.
    
    27 Mitchell DG, Rhodes RA, Pine DS, Blair RJ.The contribution of ventrolateral and dorsolateral prefrontal cortex to response reversal [ J ] .Behav Brain Res. 2008; 187(1):80-87.
    
    28 Sullivan RM, Brake WG. What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder:the critial role of early developmental events on prefrontal function[J].Behav Brain Res.2003;146(1-2):43-55.
    29 Russell V A.Hypodoparninergic and hypernoradrenergic activity in Prefrontal cortex slices of an animal model for atention-deficit hyperactivity disorder—the spontaneously hypertensiver rat[J].Behav Brain Res.2002;130(1-2):191-196.
    30 Lou HC,Henriksen L,Bruhn P.Focal cerebral hypoperfusion in children with Dysphasia and/or attention deficit disorder[J].Arch Neurol.1984;41(8):825-829.
    31 李敏,黎海蒂,沈政.多巴胺受体与前额叶皮层的认知功能[J].临床精神医学杂志.2001;11(6):370-371.
    32 Hyman SE,Kosofsky BE,Nguyen TV,et al.Everything activates c-fos:how can it matter?[J].NIDA Res Monogr.1993;125(10):25-38.
    33 Hughes P and Dragunow M.Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system[J].Pharmacol Rev.1995;47(17):133-178.
    34 Kosofsky BE,Genova LM and Hyman SE.Postnatal age defines specificity of immediate early gene induction by cocaine in developing rat brain[J].J.Comp.Neurol.1995;351(41):27-40.
    35 Sumner BE,Cruise LA,Slattery DA,et al.Testing the validity of c-fos expression profiling to aid the therapeutic classification of psychoactive drugs [J].Psychopharmacology(Berl).2004;171(11):306-321.
    36 McClung CA,Ulery PG,Perrotti LI,et al.FosB:a molecular switch for long-term adaptation in the brain[J].Brain Res.Mol.Brain Res.2004;132(12):146-154.
    37 Yin Y,Edelman G.M and Vanderklish PW.The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes[J].Proc Natl Acad Sci USA.2002;99(21):2368-2373.
    38 Alder J, Thakker-Varia S, Bangasser DA, et al.Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity [ J ] .J Neurosci .2003;23(9):10800-10808.
    
    39 Bramham CR and Messaoudi E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis [ J ] .Prog Neurobiol.2005;76(7) : 99-125.
    
    40 Figurov A, Pozzo-Miller LD, Olafsson P, et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus [J] .Nature.l996;381(12):706-709.
    
    41 Porritt MJ, Batchelor PE and Howells DW. Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons [ J ] . Exp Neurol.2005;192(8): 226-234.
    
    42 Hyman C, Hofer M, Barde YA, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra [ J ] . Nature. 1991; 350(6):230-232.
    
    43 Meredith GE, Callen S and Scheuer DA. Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration [ J ] Brain Res.2002;949(65):218-227.
    
    44 Kuppers E and Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells [ J ] . Neuroreport. 2001,12(11): 75-79.
    
    45 Zhang D, Zhang L, Lou DW, et al. The dopamine D1 receptor is a critical mediator for cocaine-induced gene expression[J]. J Neurochem.2002;82(14): 53-64.
    
    46 Fang H, Chartier J, Sodja C, et al. Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signaling in NT2/N neurons [ J ] . J Biol Chem.2003;278(26) :401-409.
    47 Thomas DM, Francescutti-Verbeem DM, Liu X and Kuhn DM. Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment: an oligonucleotide microarray approach [ J ] . J Neurochem. 2004;88(13):380-393.
    
    48 Le Foll B, Diaz J and Sokoloff P. A single cocaine exposure increases BDNF and D3 receptor expression: implications for drug-conditioning [ J ] .Neuroreport. 2005; 16(2):175-178.
    
    49 Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system [ J ] . Prog Neurobiol. 1980;14(8):69-97.
    
    50 Missale C, Nash SR, Robinson SW, Jaber M, Caron MG Dopamine receptors: from structure to function [ J ] . Physiol Rev. 1998;78(7): 189-225.
    
    51 Wang JQ, McGinty JF. Scopolamine augments c-fos and zip/268 messenger RNA expression induced by the full D(1) dopamine receptor agonist SKF-82958 in the intact rat striatum [ J ] . Neuroscience. 1996;72 (15):601-616.
    
    52 Moratalla R, Xu M, Tonegawa S, Graybiel AM. Cellular responsest psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the Dl dopamine receptor [ J ] . Proc Natl Acad Sci U S A. 1996;93(14):928-933.
    
    53 Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, Tonegawa S. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses [ J ] . Cell. 1994;79(4):729-742.
    
    54 Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG. A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system [ J ] . Behav Brain Res. 2002;130(14):171-179.
    55 Kirouac GJ, Ganguly PK. Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis [ J ] . Neuroscience. 1993;52(8):135-141.
    
    56 Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T. Brain dopamine transporter in spontaneously hypertensive rats [ J ] . J Nucl Med. 1997;38(8):470-474.
    
    57 Russell VA, Sagvolden T, Johansen EB. Animal models of attention-deficit hyperactivity disorder [ J ] . Behav Brain Funct. 2005;1(8):9-14.
    
    58 Rochellys Diaz Heijtz and F Xavier Castellanos.Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats [ J ] . Behav Brain Funct. 2006; 2(6): 18-21.
    
    59 Zhuang X, Belluscio L, Hen R. G(olf)alpha mediates dopamine D1 receptor signaling [ J ] . J Neurosci. 2000;20(11): 91-96.
    
    60 Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL, Newbury DF, Crawford LR, Palmer CG, Woodward JA, Del'Homme M, Cantwell DP, Nelson SF, Monaco AP, Smalley SL: A genomewide scan for loci involved in attention-deficit/hyperactivity disorder[J]. Am J Hum Genet. 2002;70(11)83-96.
    
    61 Lezcano N, Bergson C. D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons [ J ] . J Neurophysiol. 2002;87(21):67-75.
    
    62 Lezcano N, Mrzljak L, Eubanks S, et al. Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein [ J ] . Science. 2000;287(16):60-64.
    
    63 Lidow MS, Roberts A, Zhang L, Koh PO, Lezcano N, Bergson C. Receptor crosstalk protein, calcyon, regulates affinity state of dopamine Dl receptors [ J ] . Eur J Pharmacol. 2001;427(14): 187-193.
    64 Laurin N, Misener VL, Crosbie J, et al. Association of the calcyon gene (DRD1IP) with attention deficit/hyperactivity disorder [ J ] . Mol Psychiatry. 2005;10(11):17-25.
    
    65 Zelenin S, Aperia A, Diaz Heijtz R. Calcyon in the rat brain: cloning of cDNA and expression of mRNA [ J ] . J Comp Neurol. 2002;446(14):37-45.
    
    66 Kent L, Green E, Hawi Z, et al. Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD [ J ] . Mol Psychiatry.2005;10(6). 939-943.
    
    67 Lanktree M, Muglia P, Squassina A, et al. A potential role for brain-derived neurotrophic factor (BDNF) in adult adhd (Abstracts for the XIIth World Congress of Psychiatric Genetics) [J] . Am J Med Gent .2004; 130(12) : 96-97.
    
    68 Xu X, Mill J, Zhou K, et al. Family-based association study between brain-derived neurotrophic factor gene polymorphisms and attention-deficit hyperactivity disorder [ j ] . Am J Med Gent. 2005; 138(8): 53-58.
    
    69 Meredith G, Callen S and Scheuer D. Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration [ J ] . Brain Res. 2002; 949:218-227.
    
    70 Nibuya M, Morinobu S and Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments [J ] . J Neurosci. 1995;15(75):39-47.
    
    71 Nibuya M, Nestler EJ and Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus [ J ] . J Neurosci. 1996;16( pp):2365-2372.
    
    72 Hyman C, Hofer M, Barde YA, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra [ J ] .Nature .1991;350(11): 230-232.
    
    73 Knusel B, Winslow JW, Rosenthal A, et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3 [ J ] . Proc Natl Acad Sci USA. 1991 ;88 (34):961-965.
    
    74 Spina MB, Squinto SP, Miller J, et al. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system [ j ] . J Neurochem. 1992;59(8): 99-106.
    
    75 Biederman J and Faraone SV. Attention-deficit hyperactivity disorder, Lancet .2005;366(8): 237-248.
    
    76 Gainetdinov RR and Caron MG. Genetics of childhood disorders: XXIV. ADHD, part 8: hyperdopaminergic mice as an animal model of ADHD [ J ]. J Am Acad Child Adolesc Psy .2001;40(15):380-382.
    
    77 Gainetdinov RR, Wetsel WC, Jones SR, et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity [ J ] . Science .1999;283 (6):397-401.
    
    78 Fumagalli F, Racagni G, Colombo E and Riva MA. BDNF gene expression is reduced in the frontal cortex of dopamine transporter knockout mice [ J ]. Mol Psychiatry .2003;8(4): 898-899.
    
    79 Kernie SG, Liebl DJ and Parada LF.BDNF regulates eating behavior and locomotor activity in mice [ J ] . EMBOJ. 2000; 19(8): 1290-1300.
    
    80 Rios M, Fan G, Fekete C, et al.Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity [ J ] .Mol Endocrinol. 2001; 15(17): 48-57.
    
    81 Sagvolden T, Russell VA, Aase H, Johansen EB and Farshbaf M. Rodent models of attention -deficit /hyperactivity disorder [ J ] . Biol Psychiatry .2005;57(12) :39-47.
    
    82 Xu M, Mratalla R, Gold LH et al . Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine2mediated behavioral responses [ J ] . Cell, 1994 ; 79 (4) :729-742.
    
    83 Chase TD, Carrey N, Brown RE and Wilkinson M. Methylphenidate regulates c-fos and fosB expression in multiple regions of the immature brain[ J 1 Brain Res Dev Brain Res.2005;(7) 1-12.
    
    84 Chase TD, Carrey N, Brown RE and Wilkinson M. Methylphenidate differentially regulates c-fos and fosB expression in the developing rat striatum [ J ] . Brain Res Dev Brain Res .2005;157 (12): 181-191.
    
    85 Pinaud R, Penner MR, Robertson HA and Currie RW. Upregulation of the immediate early gene arc in the brains of rats exposed to environmental enrichment: implications for molecular plasticity [ J ] . Brain Res Mol Brain Res.2001;91(4)50-56.
    
    86 Steward O and Worley PF. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation [ J ] . Neuron.2001;30(4): 227-240.
    
    87 Felder CC, Blecher M, Jose PA. Dopamine-1 mediated stimulation of phospholipase C activity in rat renal cortical membranes [ J ] . J Biol Chem 1989;264(87): 39-45.
    
    88 Undie AS, Friedman E. Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain [ J ] . J Pharmacol Exp Ther. 1990;253(9): 87-92.
    
    89 Undie AS, Friedman E. Selective dopaminergic mechanism of dopamine and SKF38393 stimulation of inositol phosphate formation in rat brain [ J ] . Eur J Pharmacol Mol .1992;226(5): 297-302.
    
    90 Wang H-Y, Undie AS, Friedman E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation [ J ] . Mol Pharmacol. 1995;48(9): 988-994.
    
    91 Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions [ J ] . Biol Psychiatry. 2005;57(13):77-84.
    
    92 Chudasama Y, Robbins TW. Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans [ J ] . Biol Psychol. 2006;42(4) :112-118.
    
    93 Bobb AJ, Addington AM, Sidransky E, et al. Support for association between ADHD and two candidate genes: NETl and DRD1 [ J ] . Am J Med Genet B Neuropsychiatr Genet. 2005; 134(24):67-72.
    
    94 Misener VL, Luca P, Azeke O, et al. Linkage of the dopamine receptor D1 gene to attention-deficit/hyperactivity disorder [ J ] . Mol Psychiatry. 2004;9(7):500-509.
    
    95 Laurin N, Misener VL, Crosbie J, et al. Association of the calcyon gene (DRD1IP) with attention deficit/hyperactivity disorder [ J ] . Mol Psychiatry. 2005;10(11):17-25.
    [1] Swanson J, Castellanos FX, Murias M. Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder. Curr Opin Neurobiol 1998; 8:263-71.
    [2] Biederman, J. Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 2005; 57:1215-20.
    [3] Gitten JG, Winer JL, Festa EK, Heindel WC. Conditional associative learning of spatial and objective information in children with attention deficit/hyperactivity disorder. Child Neuropsychol 2006;12(1):39-56.
    [4] Sagvolden T . Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neuroscience Biobehavi Rev 2000;24: 31-9.
    [5] Russel VA . Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder -the spontaneously hypertensive rat. Behavioural Brain Research 2002;130:191-6.
    [6] Prediger RD, Pamplona FA, Fernandes D, Takahashi RN . Caffeine improvespatial learning deficits in an animal model of attention deficit hyperactivity disorder(ADHD)-the spontaneously hypertensive rat(SHR). Int J Neuropsychopharmacol 2005;8(4):583-94.
    [7] Wyss JM, Chambless BD, Kadish I, van Groen T . Age-related decline in water maze learning and memory in rats: Strain differences. Neurobiology of Aging 2000; 21:671-681.
    [8] De Bruin NM, Kiliaan AJ, De Wilde MC, Broersen LM . Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiology of Learning and Memory 2003 ;80(1) :63-79.
    [9] NakamuEC. Deficits of spatial learning and working memory in spontaneously hypertensive rats. Behavioural Brain Research 1996 ;74: 217-27.
    
    [10] Sutterer JR, Perry J, DeVito W. Two-way shuttle box and lever-press avoidance in the spontaneously hypertensive and normotensive rat. Journal of Comparative Physiology and Psychology1980; 94:155-63.
    [11] Pliszka SR, McCracken JT, Maas JW. Catecholamines in attention deficit hyperactivity disorder: current perspectives. J. Am. Acad. Child Adolesc. Psychiatry 1996;35:264-72.
    [12] Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Neurosci Rev 2003;4:121-130.
    [13] Dai H, Kaneko K, Kato H. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neuroscience Research 2007; 57:306-13.
    [14] Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AFT, Kelley AE, Schmeichel B, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006;60:1111 -20.
    [15] Craig W, Berridge, David M, et al. Methylphenidate Preferentially Increases Catecholamine Neurotransmission within the Prefrontal Cortex at Low Doses that Enhance Cognitive Function. Biol Psychiatry 2006;60: 1111-20.
    [16] Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev 2004;28:771-784.
    [17] Arnsten AF, Steere JC, Hunt RD. The contribution of alpha-2 noradrenergic mechanisms of prefrontal cortical cognitive function: potential significance for attention deficit hyperactivity disorder. Arch.Gen. Psychiatry 1996;53:448-55.
    [18] Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF. Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci 2002;22:8771-7.
    [19] Arnsten AFT. Fundamentals of Attention-Deficit/Hyperactivity Disorder: circuits and pathways. J Clin Psychiatry 2006; 67(suppl 8): 7-12.
    [20] Castellanos FX, Tannock R. Neuroscience of attentiondeficit/hyperactivity disorder : the search for endophenotypes. Nature Reviews Neuroscience 2002;3, 617 - 628.
    [21] Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18] fluorodopa positron emission tomographic study. Journal of Neuroscience 1998;75: 5901-7.
    [22] Solanto MV. Dopamine dysfunction in ADHD:integrating clinical and basic neuroscience research. Behac Brain Res 2002;130:65-71.
    [23] Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002;27: 699-711.
    [24] Gerard B Fox , Jia Bao Pan, Timothy A Esbenshade, Youssef L Bennani, Lawrence A Black, Ramin Faghih et al. Effects of histamine H3 receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup. Behavioural Brain Research 2002;131:151-61.
    [25] Witkin JM, Nelson DL . Selective histamine H3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. Pharmacology & Therapeutics 2004;103:1-20.
    [26] Swanson JM, Flodman P, Kennedy J, Spence MA, Moyzis R, Schuck S, et al. Dopamine genes and ADHD. Neuroscience Biobehavioral Reviews 2000;24:21 - 25.
    [27] Hancock AA, and Brune ME. Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists.Expert Opin Investig Drugs 2005;14(3), 223-41.
    [28] Leurs R, Bakker RA, Timmerman H, De Esch IJP. The histamine H3 receptor from gene cloning to H3 receptor drugs. Nat. Med 2005 ;4:107-20.
    [29] Homer WE , Johnson DE, Schmidt AW, Rollema H. Methylphenidate and atomoxetine increase histamine release in rat prefrontal cortex. Eur J Pharmacol 2007;558:96-7.
    [30] Roof RL and Stein DG Gender differences in Morris water maze performance depend on task parameters. Physiol Behav 1999;68:81-6.
    [31] Li XM, Perry KW, Wong DT, Bymaster FP. Olanzapine increases in vivo dopamine and norepinephrine release in rat prefrontal cortex, nucleus accumbens and striatum. Psychopharmacol 1998; 136:153-61.
    [32] Zhang W, Perry KW, Wong DT, Potts B, Tollefson GD, By-master FP. Synergistic effects of olanzapine and other antipsychotic agents in combination with fluoxetine on norepinephrine and dopamine release in rat prefrontal cortex. Neuropsychopharmacology 2000; 23:250-262.
    [33] Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York; 1997.
    [34] Westerink BHC, Cremers TIFH, De Vries JB, Liefers H, Tran N, De Boer P. Evidence for activation of histamine H3 autoreceptors during handling stress in the prefrontal cortex of the rat. Synase 2002 ;43: 238-43.
    [35] Papa M, Diewald L, Carey MP, Esposito FJ, Girondi Carnevale UA, Sadile AG A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and posterior hyperfunctioning mesocorticolimbic system. Behavioural Brain Research 2002; 130:171 - 9.
    [36] Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog. Neurobiol 2001 ;63, pp. 637-672.
    [37] Krause KH, Dresel SH, Krauser J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder : effects of methylphenidate as measured by single photon emission computed tomography. Neuroscience Letters 2000;255:107 - 110.
    [38] Ligneau X, Lin J-S, Vanni-Mercier G, Jouvet M, Muir JL, Ganellin CR, et al. Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J. Pharmacol. Exp. Ther 1998;287:658-66.
    [39] Onodera K, Miyazaki S, Imaizumi M, Stark H and Schunack W. Improvement by FUB 181, a novel histamine H3-receptor antagonist, of learning and memory in an elevated plus-maze test in mice. Naunyn-Schmiedeberg's. Arch. Pharmacol 1998;357:508-13.
    [40] Passini MB, Bacciottini L, Mannaioni PF and Blandina P.Central histaminergic system and cognition. Neurosis. Biobehav. Rev 2000 24:07-13.
    [41] Doreulee N, Yanovsky Y, Flagmever I, Stevens DR, Hass HL and Brown RE. Histamine H3 receptors depress synaptic transmission in the corticostriatal pathway. Neuropharmacology 2001 ;40:106-13.
    [42] Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P. Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual probe microdialysis study in the freely moving rat. Eur J Neurosci 2001 ;13:68-78.
    [43] Dringenberg H, Kuo M. Histaminergic facilitation of electrocorticographic activation: role of basal forebrain, thalamus, and neocortex. Eur J Neurosci 2003;18:2285-91.
    
    [44] Gabriele C, Patrizio B, Ken M, Daniele N. Differential effect of cannabinoid agonists and endocannabinoids on histamine release from distinct regions of the rat brain. Eur J Neucrosci 2006;24(6):1633-44.
    [45] Swanson CJ, Perry KW, Koch-Krueger S , Katner J, Svensson KA and Bymaster FP. Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 2006;50(6): 755-60.
    [46] Viggiano D, Ruocco LA, Arcieri S, Sadile AG Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder. Neural Plast 2004;72(1-2): 133-49.
    [47] Gibson AP, Bettinger TL, Patel NC, Crismon ML. Atomoxetine versus stimulants for treatment of attention deficit/hyperactivity disorder. The Annals of Pharmacotherapy 2006;40(6):1134-42.
    [48] Jan KB, David M, Marina D, Christopher G A Randomized, Double-Blind Study of Continuation Treatment for Attention-Deficit/Hyperactivity Disorder After 1 Year. Biological Psychiatry 2007;61(5):694-9.
    [49] Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF. Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci 2002 ;22: 8771-7.
    [50] Arnsten AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways.J Clin Psychiatry 2006; 67(8) :7-12.
    [51] V.A. Russell, Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder-the spontaneously hypertensive rat. Neurosci. Behav. Rev 2003; 27:671-682.
    [52] GB. Fox, J.B. Pan, T.A. Esbenshade, Y.L. Bennani, L.A. Black, R. Faghih et al., Effects of histamine H3 receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup. Behav. Brain Res 2002; 131: 151-161.
    [1] Swanson J, Castellanos FX, Murias M. Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder. Curr Opin Neurobiol 1998; 8:263-71.
    [2] Biederman, J. Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 2005; 57:1215-20.
    [3] Gitten JG, Winer JL, Festa EK, Heindel WC. Conditional associative learning of spatial - and objective information in children with attention deficit/hyperactivity disorder. Child Neuropsychol 2006;12(1):39-56.
    [4] Leurs R., Blandina P, Tedford C and Timmerman H. Therapeutic potential of histamine H3 receptor agonists and antagonists. Trends in Pharmacological Sciences 1998;19(5):177-184.
    [5] Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Neurosci Rev 2003;4:121-130.
    [6] Dai H, Kaneko K, Kato H. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neuroscience Research 2007; 57:306-13.
    [7] Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AFT, Kelley AE, Schmeichel B, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006;60:1111 -20.
    [8] Craig W, Berridge, David M, et al. Methylphenidate Preferentially Increases Catecholamine Neurotransmission within the Prefrontal Cortex at Low Doses that Enhance Cognitive Function. Biol Psychiatry 2006;60:1111-20.
    [9] Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev 2004;28:771-784.
    
    [10] Arnsten AF, Steere JC, Hunt RD. The contribution of alpha-2 noradrenergic mechanisms of prefrontal cortical cognitive function: potential significance for attention deficit hyperactivity disorder.Arch.Gen.Psychiatry 1996;53:448-55.
    [11]Franowicz JS,Kessler LE,Borja CM,Kobilka BK,Limbird LE,Arnsten AF.Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine.J Neurosci 2002;22:8771-7.
    [12]Arnsten AFT.Fundamentals of Attention-Deficit/Hyperactivity Disorder:circuits and pathways.J Clin Psychiatry 2006;67(suppl 8):7-12.
    [13]Pliszka SR,McCracken JT,Maas JW.Catecholamines in attention deficit hyperactivity disorder:current perspectives.J..Am.Acad.Child Adolesc.Psychiatry 1996;35:264-72.
    [14]Biederman J,Faraone SV.Current concepts on the neurobiology of attention-deficit/hyperactivity disorder.J Atten Disord 2002;6(Suppll):S7-S16.
    [15]Kirley A,Hawi Z,Daly G,McCarron M,Mullins C,Millar N,Waldman I,Fitzgerald M,Gill M.Dopamine system genes in ADHD:toward a biological hypothesis.Neuropsychopharmacology 2002;27:607-19.
    [16]Solanto MV.Dopamine dysfunction in ADHD:integrating clinical and basic neuroscience research.Behac Brain Res 2002;130:65-71.
    [17]Prediger RD,Pamplona FA,Fernandes D,Takahashi RN.Caffeine improves spatial learning deficits in an animal model of attention deficit hyperactivity disorder(ADHD-the spontaneously hypertensive rat(SHR).Int J Neuropsychopharmacol 2005;8(4):583-94.
    [18]Bymaster FP,Katner JS,Nelson DL,Hemrick-Luecke SK,Threlkeld PG,Heiligenstein JH,et al.Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat:a potential mechanism for efficacy in attention deficit/hyperactivity disorder.Neuropsychopharmacology 2002;27:699-711.
    [19] Fox GB, Pan JB, Timothy A Esbenshade, Youssef L Bennani, Lawrence A Black, Ramin Faghih et al. Effects of histamine H3 receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup. Behavioural Brain Research 2002;131:151-61.
    [20] Witkin JM, Nelson DL . Selective histamine H3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. Pharmacology & Therapeutics 2004;103:1-20.
    [21 ] Watanabe T, Yanai K. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography. Tohoku J Exp Med 2001;195(4):197-217.
    [22] Hancock AA, and Brune ME. Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists.Expert Opin Investig Drugs 2005;14(3), 223-41.
    [23] Leurs R, Bakker RA, Timmerman H, De Esch UP. The histamine H3 receptor from gene cloning to H3 receptor drugs. Nat. Med 2005;4:107-20.
    [24] Homer WE , Johnson DE, Schmidt AW, Rollema H. Methylphenidate and atomoxetine increase histamine release in rat prefrontal cortex. Eur J Pharmacol 2007;558:96-7.
    [25] Roof RL and Stein DG Gender differences in Morris water maze performance depend on task parameters. Physiol Behav 1999;68:81-6.
    [26] Li XM, Perry KW, Wong DT, Bymaster FP. Olanzapine increases in vivo dopamine and norepinephrine release in rat prefrontal cortex, nucleus accumbens and striatum. Psychopharmacol 1998;136:153-61.
    [27] Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York; 1997.
    [28] Westerink BHC, Cremers TIFH, De Vries JB, Liefers H, Tran N, De Boer P. Evidence for activation of histamine H3 autoreceptors during handling stress in the prefrontal cortex of the rat. Synase 2002;43: 238-43.
    [29] Boix F, Qiao S-W, Kolpus T and Sagvolden T. Chronic 1-deprenyl treatment alters brain monoamine levels and reduces impulsiveness in an animal model of attention-deficit/hyperactivity disorder. Behav. Brain Res 1998; 94: 153-162.
    
    [30] Sagvolden T . Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neuroscience Biobehavi Rev 2000;24: 31-9.
    [31] Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog. Neurobiol 2001;63, pp. 637-672.
    [32] Coge F, Guenin S-P, Rique H, Boutin JA and Galizzi J-P. Structure and expression of the human histamine H4-receptor gene. Biochem. Biophys. Res. Commun 2001 ;284:301-309.
    [33] Ligneau X, Lin J-S, Vanni-Mercier G, Jouvet M, Muir JL, Ganellin CR, et al. Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J. Pharmacol. Exp. Ther 1998;287:658-66.
    [34] Onodera K, Miyazaki S, Imaizumi M, et al. Improvement by FUB 181, a novel histamine H3-receptor antagonist, of learning and memory in an elevated plus-maze test in mice. Naunyn-Schmiedeberg's. Arch. Pharmacol 1998;357:508-13.
    
    [35] Passani MB, Bacciottini L, Mannaioni PF and Blandina P. Central histaminergic system and cognition. Neurosis. Biobehav. Rev 2000 24:07-13.
    [36] Doreulee N, Yanovsky Y, Flagmever I, Stevens DR, Hass HL and Brown RE. Histamine H3 receptors depress synaptic transmission in the corticostriatal pathway. Neuropharmacology 2001;40:106-13.
    [37] Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P. Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual probe microdialysis study in the freely moving rat. Eur J Neurosci 2001;13:68-78.
    [38] Dringenberg H, Kuo M. Histaminergic facilitation of electrocorticographic activation: role of basal forebrain, thalamus, and neocortex. Eur J Neurosci 2003;18:2285-91.
    [39] Cenni G, Blandina P, Mackie K, Nosi D, Ballini C. Differential effect of cannabinoid agonists and endocannabinoids on histamine release from distinct regions of the rat brain. Eur J Neucrosci 2006;24(6):1633-44.
    [40] Swanson CJ, Perry KW, Koch-Krueger S , Katner J, Svensson KA and Bymaster FP. Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 2006;50(6): 755-60.
    [41] Tzavara ET, Bymaster FP, Overshiner CD, Davis RJ et al. Procholinergic and memory enhancing properties of the selective norepinephrine uptake inhibitor atomoxetine. Molecular Psychiatry 2006;11:187-95.
    [42] Gibson AP, Bettinger TL, Patel NC, Crismon ML. Atomoxetine versus stimulants for treatment of attention deficit/hyperactivity disorder. The Annals of Pharmacotherapy 2006;40(6): 1134-42.
    [43] Buitelaar JK, Michelson D, Danckaerts M, Gillberg C, Spencer TJ, Zuddas A. A Randomized, Double-Blind Study of Continuation Treatment for Attention-Deficit/Hyperactivity Disorder After 1 Year. Biological Psychiatry 2007;61(5):694-9.