螺旋电极式压电驱动器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文就新型的基于螺旋电极结构的压电纤维、压电圆柱和压电圆片扭转驱动器结构进行了深入的理论分析和实验研究,并探索了其在压电旋转马达、光学扫描镜等方面的应用。
     首次提出一种表面缠绕螺旋电极结构的压电纤维扭转驱动器,是已知目前国际上最小的压电扭转驱动器。根据不同坐标系下应变和应力转换关系解释了该驱动器的变形原理,建立了压电纤维驱动器扭转和纵向静态变形和动态振动的理论模型,得到了压电纤维耦合振动的等效电路,对其主要材料参数和结构参数对驱动器扭转角、谐振频率等性能指标的影响作了详细的分析和评估,为结构优化提供了全面的理论依据。
     通过ANSYS有限元仿真研究压电纤维表面螺旋电极结构的电场分布情况,指出实际电场分布存在的缺陷,分析电场集中和弯曲等电场分布不均匀性对压电纤维驱动器性能的影响。总结薄壁、厚壁和实心压电纤维在不同螺旋电极结构参数下的电场分布的变化趋势,进而分析压电纤维内部应变和应力的分布规律,添加系数k以修正扭转位移表达式,分析估算修正系数k随压电纤维厚径比和电极螺旋角的变化规律,从而完善了静态变形理论模型。
     以直径1mm、壁厚0.2mm的压电纤维管为基体加工出螺旋电极式扭转驱动器样品,并测试样品的静动态特性,实验结果体现出该驱动器优良的扭转性能。长度50mm、电极螺旋角43°的样品在1000V电压驱动下,静态扭转角达到1.7°;在10kHz的扭转谐振频率点,500Vp-p正弦电压可激励产生2.5°的扭转振动。通过测试比较不同驱动器样品,验证了相同电场强度下静态扭转变形随电极螺旋角的变化曲线,得出45°左右的螺旋电极可提供最大扭转位移的结论;验证了扭转和纵向谐振频率随电极螺旋角和纤维长度的变化趋势。
     发展了另外两种基于螺旋电极结构的压电扭转驱动器:基于刻槽螺旋电极结构的压电柱型扭转驱动器和基于平面螺旋电极结构的压电圆片扭转驱动器。阐述了两种驱动器的电极结构设计思路和扭转变形原理,分别加工出两种驱动器样品并进行实验测试分析。直径8mm、长度10mm、电极螺距12mm的压电柱型扭转驱动器样品,2200V电压驱动下静态扭转角达到0.035°,一阶扭转谐振频率达到31kHz,一阶纵向谐振频率达到55kHz,5Vp-p正弦压电驱动下扭转谐振振幅达到0.00087°,纵向谐振振幅达到43nm;直径27mm、厚度0.2mm的压电圆片扭转驱动器,1000V电压驱动下静态扭转位移达到0.0052o,变形虽小,但扭转谐振频率高达226.5kHz,且具有很高的机械品质因子。
     探索螺旋电极式压电扭转驱动器在压电冲击旋转马达和光学扫描镜等方面的应用,设计制作了基于压电纤维扭转驱动器和压电柱型扭转驱动器的两种压电冲击旋转马达。压电纤维马达600Vp-p驱动电压下的步进角达到0.063o,1000Vp-p、3kHz电压驱动下的堵转力矩可达到0.08mNm;压电柱马达2200Vp-p电压驱动下的步进角达到0.022°,1400Vp-p电压驱动和1.6mNm负载时仍可保持7.4rpm的转速。微型化压电纤维马达和大力矩压电柱马达可满足多种场合高精度角度定位和驱动的需求。设计加工了基于压电纤维扭转驱动器的微型光学扫描器,阐述了扫描器的驱动原理和扫描特性,加工样品在400Vp-p驱动电压下水平扫描角度达到17.9°,频率6780Hz,竖直扫描角度达到2.6°,频率10330Hz,可实现高频率、大角度的二维光学扫描,在激光扫描显微镜、医学内窥镜探头、条形码阅读器等方面具有一定的应用价值。
In the dissertation, we performed deep analyses and experimental researches to investigate new types of piezoelectric fiber, bulk, and discal torsional actuators based on helical electrode structures and explored their applications in piezoelectric rotary motor and optical scanner.
     A torsional piezoelectric fiber structure with external helical electrodes was first proposed, which was the smallest piezoelectric torsional actuator in the world. Working principle was explained with strain and stress transforming principles in different coordinate systems. Theoretical models of static deformation and dynamic vibration were built and equivalent circuit of coupled vibrations was also obtained. Influences of primary material and structure parameters on the evaluation criteria of the actuator, such as torsional displacement and resonant frequencies, were analyzed and estimated for the optimization of the structure.
     With help of finite element analysis software ANSYS, we simulated distribution of electric field in piezoelectric fiber driven by external helical electrodes and pointed out that the actual distribution of electric field was deficient. Influences of these non-uniformities, such as concentration and distortion of the electric field, on the performance of piezoelectric fiber actuator were analyzed. We concluded the changing trends of electric field distributions with different structure parameters of piezoelectric fiber and helical electrodes, and deduced the distribution of strain and stress among the fiber material. A compensation factor k was defined to regulate the expression of torsional displacemet and the trends of the compensation factor k as functions of piezoelectric fiber thickness and electrode helcal angle were investigated.
     Prototype actuators were manufactured using piezoelectric hollow fibers with an outer diameter of 1 mm and a wall thichness of 0.2 mm and their static and dynamic characteristics were also tested. Experimental results indicated that these actuators have outstanding actuation abilities. Sample with a length of 50 mm and an electrode helical angle of 43°could produce a static torsional angle of 1.7°under a driving voltage of 1000 V. The amplitude of torsional vibration reached up to 2.5°at resonant frequency of 10 kHz under a driving voltage of 500 Vp-p. Through some deliberate comparing experiments, the modified theoretical curve of torsional displacement as a function of electrode helical angle was verified, which indicated that the torsional deformation was maximized with an electrode helical angle around 45°. The trends of the resonant frequencies of torsional and longitudinal vibrations as functions of electrode helical angle and fiber length were also validated in experiment.
     We developed another two types of piezoelectric torsional actuator, which were piezoelectric bulk actuator with grooved helical electrodes and piezoelectric discal actuator with planar spiral electrodes. Designs of electrode structures and principles of torsional derformations in these two actuators were described respectively. Prototype samples of the two actuators were fabricated and tested. Piezoelectric bulk actuator with a diameter of 8 mm, a length of 10 mm, and electrode pitch of 12 mm could produce a static torsional angle of 0.035°under a driving voltage of 2200 Vp-p. Its first-order torsional and longitudinal resonant frequencies reached up to 31 kHz and 55 kHz, respectively. The amplitudes of these two vibrations were 0.00087°and 43 nm, respectively, under a driving voltage of 5 Vp-p. Piezoelectric discal actuator with an outer diameter of 27 mm and a thichness of 0.2 mm produced a static torsional angle of 0.0052°under a 1000 V voltage. In despite of small torsional deformation, it had a high resonant frequency of 226.5 kHz with a large mechanical Q-factor.
     The applications of developed piezoelectric actuators in aspects of piezoelectric impact rotary motor and optical scanner were explored. Two types of piezoelectric impact rotary motors based on piezoelectric fiber actuator and bulk actuator were designed, fabricated and tested. Piezoelectric fiber motor could produce a step angle of 0.063°under a saw driving voltage of 600 Vp-p and had a stall torque of 0.08 mNm under a driving voltage of 1000 Vp-p at 3 kHz. Piezoelectric bulk motor could produce a step angle of 0.022°under a driving voltage of 2200 Vp-p and remained a speed of 7.4 rpm with a braking torque of 1.6 mNm under a driving voltage of 1400 Vp-p at 8 kHz. The miniature piezoelectric fiber motor and large-torque bulk motor could satisfy several requirements in the applications of precision angular positioning and actuation. We also designed and fabricated a novel optical scanner based on torsional piezoelectric fiber actuator. Working principle and scanning characteristics of such miniature scanner were described. Sample with a mirror of 1 mm×1 mm could produce a horizontal scanning angle of 17.9°at 6780 Hz and a vertical scanning angle of 2.6°at 10300 Hz under an applied voltage of 400 Vp-p. The two-dimensional optical scanning with large amplitudes and high frequencies indicated its application potentials in laser scanning microscopes, barcode readers, and medical endoscopic imaging systems.
引文
[1]陶宝祺,刘果,袁慎芳. 1995.智能材料结构的研究进展[J].南京航空航天大学学报, 27(1): 14-26.
    [2]陶宝祺,熊克主编. 1996.智能材料结构[M].北京:国防工业出版社.
    [3]谢建宏,张为公. 2004.智能材料结构的研究与发展[J].传感技术学报,(1): 164-167.
    [4]谢建宏,张为公,梁大开. 2006.智能材料结构的研究现状及未来发展[J].材料导报,20(11): 6-9.
    [5] Niezrecki C, Brei D, et al. 2001. Piezoelectric Actuation: State of the Art [J]. The Shock and Vobration Digest, 33(4): 269-280.
    [6] Krulevitch P, Lee AP, Ramsey PB, et al. 1996. Thin film shape memory alloy microactuators [J]. Journal of Microelectromechanical Systems, 5(4): 260-282.
    [7] Carlson JD, MR Jolly. 2000. MR fluid, foam and elastomer devices [J]. Mechatronics, 10(4-5): 555-569.
    [8] Pelrine R, Lasen PS, et al. 2001. Applications of Dielectric Elastomer Actuators [J]. Smart Structures and Material 2001: Electroactive Polymer Actuators and Devices, Proceeding of SPIE, 4329: 335-349.
    [9] Kornbluh R, Pelrine R, Pei Q, et al. 2000. Ultrahigh strain response of field—actuated elastomeric polymers [J]. Proceedings of SPIE, 3987: 51—64.
    [10] Furukawa E, Mizuno M, Doi T. 1995. Development of a Flexure-Hinged Translation Mechanism Driven by Two Piezoelectric Stacks [J]. JSME International Journal: Series C, 38: 743-748.
    [11] Redmond J, and Barney P. 1997. Vibration Control of Stiff Beams and Plates Using Structurally Integrated PZT Stack Actuators [J]. Journal of Intelligent Material Systems and Structures, 8: 525-535.
    [12] Burleigh Instruments. 1998. The Technology behind Burleigh Inchworm Systems [R]. Burleigh Instruments, Fishers, NY.
    [13] Park SE, Shrout TR. 1997. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers [J]. IEEE Transctions on Ultrasonics, Ferroelectrics and Frequency Control, 44(5): 1140-1147.
    [14] Bent AA, Hagood NW, Rodgers JP. 1995 Anisotropic actuation with piezoelectric fiber composites [J]. Journal of Intelligent material systems and structures, 6(3): 338-349.
    [15] Bent AA, Hagood NW. 1997. Piezoelectric fiber composites with interdigitated electrodes [J].Journal of Intelligent material systems and structures, 8(11): 903-919.
    [16]冯志华,贺竞,刘永斌. 2006.敏捷材料的运动变换及对双螺旋结构的分析[J].压电与声光,28(3): 363-366.
    [17] Chonan S, Jiang ZW, and Koseki M. 1996. Soft-Handling Gripper Driven by Piezoceramic Bimorph Strips [J]. Smart Materials and Structures, 5: 407-414.
    [18] Moskalik AJ, Brei D. 1997. Quasi-Static Behavior of Individual C-Block Piezoelectric Actuators [J]. Journal of Intelligent Material Systems and Structures, 8: 571-587.
    [19] Prechtl EF, Hall, SR. 1997. Design of a High Efficiency Discrete Servo Flap Actuator for Helicopter Rotor Control [J]. Proceedings of the SPIE—The International Society for Optical Engineering, 3041: 158-182.
    [20] Jiunnjye Tsaur, Lulu Zhang, etc. 2002. Design and fabrication of 1D and 2D micro scanners actuated by double layered lead zirconate titanate PZT bimorph beams [J]. Jpn. J. Appl. Phys., 41:4321-4326.
    [21] French JD, Weitz GE, etc. 1996. Production of continuous piezoelectric fibers for sensor/actuator applications [J]. IEEE int. Symp. Appl. Ferroelectr., 2:867-870.
    [22] Andreas Roosen. 2001. New lamination technique to join ceramic green tapes for manufacturing of multilayer devices [J]. Journal of European Ceramic Society, 21: 1993-1996.
    [23] Zhang QM, Wang H, etc. 1995. Piezoelectric tubes and 1-3 type tubular composites as tunable actuators and sensors [J]. SPIE, 1916:244-254.
    [24] Pearce DH, Hooley A, Button TW. 2002. On piezoelectric super-helix actuators [J]. Sensors and Actuators: A Phys., 100: 281-286.
    [25] Pearce DH, Seffen KA., Button TW. 2002. Net shape formed spiral and helical piezoelectric actuators [J]. J. Mater. Sci., 37(15): 3117-3122.
    [26] http://www.1limited.com/tech/cam/xlinea/index.htm.
    [27] Seffen KA. 2007. Theoretical performance of a coiled coil piezoelectric bimorph [J]. Sensors and Actuators: A Phys., 133: 486-492.
    [28] Glazounov AE, Zhang QM, Kim C. 1998. Piezoelectric actuator generating torsional displacement from piezoelectric d15 shear response [J], 72(20): 2526-2528.
    [29] Morita Takeshi, Yoshida Ryuichi, etc. 1999. Smooth impact rotation motor using a multi-layered torsional piezoelectric actuator [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 46(6): 1439-1445.
    [30] Kang BW, Kim JH, etc. 2001, Precision piezoelectric stepping motor using piezoelectric torsional actuator [J]. SPIE, 4235: 63-68.
    [31] Glazounov AE, Wang S, and Zhang QM. 1999. High-efficiency piezoelectric motorcombining continuous rotation with precise control over angular positioning [J]. Applied Physics Letters, 75(6): 862-864.
    [32] James Friend, Kentaro Nakamura, and Sadayuki Ueha. 2004. A torsional transducer through in-plane shearing of paired planar piezoelectric elements [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51(7): 870-877.
    [33] Friend J, Nakamura K, and Ueha S. 2004. A piezoelectric micromotor using in-plane shearing of PZT elements [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 9(3): 467-473.
    [34]刘大伟,刘向锋等. 2008.压电扭转驱动器的有限元分析[J].传感器技术学报, 21(9): 1510-1513.
    [35] Mohammadi F, Kholkin A L, etc. 1999. High-displacement spiral piezoelectric actuators [J]. Applied Physics Letters, 75(16): 2488-2490.
    [36] Allahverdi M, Jadidian B, etc. 2000. Development of Tube Actuators with Helical Electrodes Using Fused Deposition of Ceramics [J]. IEEE Int. Symp. Appl. Ferroelectr., 1:381-384.
    [37] Watson B, Friend J, and Yeo L. 2009. Piezoelectric ultrasonic resonant motor with stator diameter less than 250 um_the proteus motor [J]. J. Micromech. Microeng., 19: 022001.
    [38] Wajchman D, Liu KC, etc. 2006. An ultrasonic piezoelectric motor utilizing axial-torsional coupling in a pretwisted non-circular cross-sectioned prismatic beam [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 55( 4): 832-840.
    [39] Jiromaru Tsujino, Tetugi Ueoka, etc. 2000. One-dimensional longitudinal torsional vibration converter with multiple diagonally slitted parts [J]. Ultrasonics, 38: 72-76.
    [40] Lee SWR., and Li HL. 1998. Development and characterization of a rotary motor driven by anisotropic piezoelectric composite laminate [J]. Smart Mater. Struct., 7: 327-336.
    [41] Zhu Meil-Ling, Lee Shi-wei Ricky, etc. 2000. Modeling of a Rotary Motor Driven by an Anisotropic Piezoelectric Composite Laminate [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47(6): 1561-1574.
    [42] Warkentin DJ. 2000. Modeling and electrode optimization for torsional IDE piezoceramics [J]. In Smart Structures and Material, Proceeding of SPIE, 3985: 840-854.
    [43] Fuda Y, Yoshida T. 1994. Piezoelectric torsional actuator, Ferroelectrics, 160: 323-330.
    [44]张福学主编. 2002.现代压电学(中册)[M].北京:科学出版社.
    [45] IEEE Standard on Piezoelectricity. 1988. The Institute of Electrical and Electronic Engineers, Inc.
    [46]刘鸿文主编. 1991.材料力学(上次)第三版[M].北京:高等教育出版社.
    [47] Belloli A, Castelli B, etc. 2004. Modeling and characterization of active fiber composites [J]. Proc. SPIE Int. Soc. Opt. Eng., 5390: 78-88.
    [48] Bowen CR, Nelson LJ, etc. 2006. Optimisation of interdigitated electrodes for piezoelectric actuators and active fiber composites [J]. J. Electroceram., 16:263-269.
    [49] http://baike.baidu.com/view/667031.htm.
    [50] http://baike.baidu.com/view/70776.htm
    [51] Nelson LJ, Bowen CR, etc. 2003. Modeling and measurement of piezoelectric fibers and interdigitated electrodes for the optimization of piezofiber composites [J]. Proc. SPIE Int. Soc. Opt. Eng., 5053:556-567.
    [52] Wang ZH, Tang TT, etc. 2007. Surface electrical charge and field analysis of single-electrode type interdigital transducers with bus-bar [J]. J. Phys. D: Appl. Phys., 40 (15): 4476-4481.
    [53] He LH and Ye RQ. 2000. Concentration of electric field near electrodes on piezoelectric layer [J], Theor. Appl. Fract. Mech., 33 (2): 101-106.
    [54] Narita F, Shindo Y, and Mikami M. 2007. Electroelastic field concentrations and polarization switching induced by circular electrode at the interface of piezoelectric disk composites [J]. Eur. J. Mech. A: Solids, 26 (3): 394-404.
    [55] Lin SY. 2004. Study on the equivalent circuit and coupled vibration for the longitudinally polarized piezoelectric ceramic hollow cylinders [J]. Journal of Sound and Vibration, 275 (3-5): 859-875.
    [56] Kim JO and Lee JG. 2007. Dynamic characteristics of piezoelectric cylindrical transducers with radial polarization [J]. Journal of Sound and Vibration, 300 (1-2): 241-249.
    [57] Kim JO and Kwon OS. 2003. Vibration characteristics of piezoelectric torsional transducers, Journal of Sound and Vibration [J]. 264 (2): 453-473.
    [58] Vidoli S and Batra BC. 2001. Coupled extensional and torsional deformations of a piezoelectric cylinder [J]. Smart Mater. Struct., 10 (2): 300-304.
    [59]栾贵冬,张金泽等.2005.压电换能器和换能器阵[M].北京:北京大学出版社.
    [60] Meister F, Vorbach D, etc. 2003. Functional high-tech-cellulose materials by the ALCER((R)) process [J]. Materialwissenschaft und Werkstofftechinik, 34(3): 262-266.
    [61] Qiu JH, Tani JJ, etc. 2003. Fabrication of piezoelectric fibers with metal core [J]. Proceeding of SPIE, 5053: 475-483.
    [62] Qiu JH, Tani JJ, etc. 2003. Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr, Ti)O3 powder and Pb(Zr, Ti)O3 sol mixture [J]. Smart Mater. Struct., 12: 331-337.
    [63] Brei D, Connon BJ. 2004. Piezoceramic hollow fiber active composites [J]. Compos. Sci. Technol., 64 (2): 245-261.
    [64] Huber C, Spori DM., etc. Active fiber composites: Optimization of the manufacturing process and their poling behavior [J]. Proc. SPIE Int. Soc. Opt. Eng., 5761: 542-547.
    [65] Granzow T, Kounga AB, etc. 2006. Electromechanical poling of piezoelectrics [J]. Applied Physics Letters, 88: 252907.
    [66] Jaehwan Kim, Byungwoo Kang. 2001. Performance test and improvement of piezoelectric torsional actuators [J]. Smart Mater. Struct., 10: 750-757.
    [67] Woias P. 2005. Micropumps—past, progress and future prospects [J]. Sensors and Actuators, 105: 25-38.
    [68]赵淳生,朱华. 2008.超声电机技术的发展和应用[J].机械制造与自动化,2008年03期,1-9.
    [69] Uchino K, Cagatay S, etc. 2004. Micro piezoelectric ultrasonic motors [J]. Journal of electroceramics, 13: 393-401.
    [70] Hemsel T, Wallaschek J. 2000. State of the art and development trends of ultrasonic linear motor [C]. Proceedings of 2000 IEEE Ultrasonic Symposium, 663-666.
    [71] Kenji Uchino. 1994. Piezoelectric actuators/ ultrasonic motors - their developments and markets [C]. Proceedings of the IX IEEE International Symposium on Applications of Ferroelectrics, 319-324.
    [72]陈维山,赵学涛,刘军考,郝铭. 2006.压电超声波马达发展现状及研究方向[J].电机与控制学报.第10卷,第5期:498-502.
    [73]褚祥诚,李龙士. 2001.国外压电陶瓷声马达的发展近况[J].材料导报,第15卷第6期:24-27.
    [74]褚祥诚,严仁博,董蜀湘,李龙士,桂治轮. 2001.国内压电陶瓷声马达的研究现状[J].材料导报,第15卷第5期:26-29.
    [75]周铁英,张凯等. 2005. 1mm圆柱式超声电机的研制及在OCT内窥镜中的应用[J].科学通报,第50卷第7期:713-716.
    [76] Spanner K. 2006. Survey of the various operating principles of ultrasonic piezomotors [C]. Proc. Actuator conference in Bremen Germany, 2006.
    [77] Takeshi Morita, Minoru K. Kurosawa, Toshiro Higuchi. 2000. A cylindrical micro-ultrasonic motor (stator transducer size: 1.4mm in diameter and 5.0mm long) [J]. Ultrasonics, 38: 33-36.
    [78] Xiangcheng Chu, Li Yang and Longtu Li. 2004. Characteristic analysis of an ultrasonic micromotor using a 3 mm diameter piezoelectric rod [J]. Smart Materials and Structures, 13: 17-23.
    [79] Xiangcheng Chu, Long Ma, Longtu Li. 2006. A disk-pivot structure micro piezoelectric actuator using vibration mode B11 [J]. Ultrasonics, 44: 561-564.
    [80] Oh JH, Jung HE, etc. 2009. Design and performances of high torque ultrasonic motor for application of automobile [J]. J Electroceram., 22: 150-155.
    [81] Roh Y, Kwon J. 2004. Development of a new standing wave type ultrasonic linear motor [J]. Sensors and Actuators: A, 122: 196-202.
    [82] Park SH, Agraz J. etc. 2008. Delta-shaped piezoelectric ultrasonic motor for two-dimensional positioning [J]. Japanese Journal of Applied Physics, 47(1): 313-318.
    [83] Friend J, Yeo L, and Hogg M. 2008. Piezoelectric ultrasonic bidirectional linear actuator for micropositioning fulfilling Feynman’s criteria [J]. Applied Physics Letters, 92: 014107.
    [84] Kim J, Kim JD, and Choi SB. 2002. A hybrid inchworm linear motor [J]. Mechatronics, 12: 525-542.
    [85] Pierre Cusin, Takuhiko Sawai, and Satoshi Konishi. 2000. Compact and precise positioned based on the inchworm principle [J]. J. Micromech. Microeng., 10: 516-521.
    [86] Zhang Y, Zhang WJ, etc. 2006. Development of a two degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement [J]. Review of Scientific Instruments, 77: 035112.
    [87] Ko Hp, Kim S, etc. 2006. A novel tiny ultrasonic linear motor using the radial mode of a bimorph [J]. Sensors and Actuators: A, 125: 477-481.
    [88] Yi YP, Seemann WF, etc. 2005. Development and analysis of a longitudinal and torsional type ultrasonic motor with two stators [J]. Ultrasonics, 43: 629-634.
    [89] Higuchi T, Yamagata Y, Furutani K, and Kudoh K. 1987. Precise positioning mechanism utilizing rapid deformation of piezoelectric elements [C]. IEEE, 222-226.
    [90] Mendes J, Nishimura M, etc. 1996. Printed board positioning system using impact drive mechanism [C]. Proceedings of the SICE Annual Conference, 1123-1128.
    [91] Hyun-Phill Ko, Sangsig Kim, Sergjus N Borodinas, Piotr E Vasilijev, Chong-Yun Kang, Seok-Jin Yoon. 2006. A noval tiny ultrasonic linear motor using the radial mode of a bimorph [J]. Sensors and Actuators A, 125: 477-481.
    [92] H Miyajima, K Murakami, and M Katashiro. 2004. MEMS optical scanners for microscopes [J]. IEEE J. Sel. Top. Quantum Electron, 10 (3): 514-527.
    [93] JH Lee, YC Ko, etc. 2002. Design and fabrication of scanning mirror for laser display [J]. Sens. Actuators: A Phys., 96 (2-3): 223-230.
    [94] AD Yalcinkaya, H Urey, S Holmstrom. 2007. NiFe plated biaxial MEMS scanner for 2-D imaging [J]. IEEE Photon. Technol. Lett., 19 (5-8): 330-332.
    [95] AD Yalcinkaya, O Ergeneman, and H Urey. 2007. Polymer magnetic scanners for bar code applications [J]. Sens. Actuators: A Phys., 135 (1): 236-243.
    [96] JM Zara and PE Patterson. 2006. Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography [J]. Appl. Phys. Lett., 89 (26): 263901.
    [97] J Singh, JHS Teo, etc. 2008. A two axes scanning SOI MEMS micromirror for endoscopic bioimaging [J]. J. Micromech. Microeng., 18 (2): 025001.
    [98] H Schenk, P Durr, etc. 2001. A resonantly excited 2D-micro-scanning-mirror with large deflection [J]. Sens. Actuators: A Phys., 89 (1-2): 104-111.
    [99] T Fujita, K Maenaka, and Y Takayama, 2005. Dual-axis MEMS mirror for large deflection-angle using SU-8 soft torsion beam [J]. Sens. Actuators: A Phys., 121 (1): 16-21.
    [100] A Jain, HW Qu, S Todd, HK Xie. 2005. A thermal bimorph micromirror with large bi-directional and vertical actuation [J]. Sens. Actuators: A Phys., 122 (1): 9-15.
    [101] T Kobayashi, J Tsaur, and R Maeda. 2005. Fabrication of optical micro scanner driven by PZT actuators [J]. Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers, 44(9B): 7078-7082.
    [102] F Filhol, E Defay, etc. 2008. Delaye, Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning [J]. Sens. Actuators: A Phys., 123 (24): 483-489.
    [103] H Urey, S Holmstrom, and AD Yalcinkaya. 2008. Electromagnetically actuated FR4 scanners [J]. IEEE Photon. Technol. Lett., 20 (1-4): 30-32.
    [104] JH Park, J Akedo, and H Sato. 2007. High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method [J]. Sens. Actuators: A Phys., 135 (1): 86-91.
    [105] K Yamada and T Kuriyama. 1998. A novel asymmetric silicon micro-mirror for optical beam scanning display [J]. Proc. IEEE Micro Electro. Mech. Syst., 110-115.
    [106] A Yaakobovitz, S Krylov, and Y Shacham-Diamand. 2008. Large angle SOI tilting actuator with integrated motion transformer and amplifier [J]. Sens. Actuators: A Phys. 148(2): 422-436.
    [107] KE Petersen, Silicon torsional scanning mirror [J]. IBM J. Res. Develop. 24(5): 631-637.