非线性发展方程的平衡态模式和解的渐近性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年中,非线性偏微分方程理论的研究得到了极大的发展,而这些发展大多都是出于对生物学,物理学和化学等自然科学中的应用.本文主要讨论来自于生物学,物理学和化学中的几类发展方程的平衡态模式和解的渐近性质,包括解的周期性、爆破性及衰减性.全文分为三部分:
     第一部分(本文第二章至第四章)主要讨论来自于生态学和化学中的几类反应扩散和分次扩散模型的平衡态模式.对于齐次Neumann边界条件,重点是研究一般扩散和分次扩散对模式生成(即非常数正平衡解)的影响;对于齐次Dirichlet边界条件,重点是分析正平衡解(共存解)的存在性、稳定性和渐近性.本部分的具体安排如下:
     在第二章中,我们研究了two-cell Brusselator模型的模式生成问题.模式生成问题是现代科学技术中一个具有重要理论意义和实际应用背景的研究课题.它描述了自然界(如生态学、化学反应、基因生成)中几种物质相互作用时的结构变化.对于该模型,我们建立了正平衡解上下界的精确估计,得到了非常数正平衡解的存在性和不存在性条件.所得结果表明:在一定条件下,扩散能够导致模式. (本章的主要结果发表于J. Math. Anal. Appl., 2010 (366): 679–693)
     在第三章中,我们考虑了一个带有齐次Dirichlet边界条件的捕食模型的平衡态模式.我们主要关心当参数变化时,共存解的存在性.众所周知,这些问题的研究是很有趣但通常是非常困难和具有挑战性的.通过细致分析解的渐近性态并借助拓扑度理论和分支理论,我们完全确定了该模型共存解存在的充要条件. (本章的主要结果发表于J. Math. Anal. Appl., 2010 (369): 555–563)
     在第四章中,我们讨论了一个具有分次扩散的捕食模型的平衡态模式.我们首先对平衡态解作了一些先验估计,接着利用这些估计我们讨论了共存解不存在的条件,最后,利用分支理论,我们获得了共存解存在的充分条件并刻画了共存解的共存区域. (本章的主要结果已投往Math. Model Anal.)
     第二部分(本文第五章至第七章)主要讨论非线性抛物方程解的周期性和爆破性.我们首先讨论的是周期问题.昼夜更替,日月变迁,生命繁衍,自然界许多状态或过程周而复始地有规律地变化着,因此对周期解的讨论有着重要的意义;其次,我们讨论非线性抛物方程解的爆破问题,对该问题的研究具有重要的理论意义和实际意义.这方面的研究是当今非线性发展方程理论研究中的前沿和热点问题之一.本部分的具体安排如下:
     在第五章中,我们讨论了一个logistic型的多孔介质方程的周期解.利用Leray-Schauder不动点理论,我们首先建立了非平凡周期解的存在性,接着我们利用Moser迭代技术证明了这些周期解的支集和时间无关,最后利用单调性方法我们建立了极大周期解的吸引性. (本章的主要结果发表于Math. Meth. Appl. Sci., 2010 (33): 1942-1954)
     在第六章中,我们讨论了齐次Dirichlet边界条件下的具有局部化源的弱耦合的退化、奇异抛物方程组解的爆破性质.我们首先证明了该方程组经典解的存在性,接着研究了解整体存在或有限时间爆破的充分条件,最后我们研究了爆破解的爆破集和爆破速率. (本章的主要结果发表于Z. Ange. Math. Phy., 2011 (62): 47-66)
     在第七章中,我们研究了一类具有非局部源的非牛顿多方渗流方程解的整体存在性和爆破性.在一定的假设下,我们得到了解的整体存在或有限时间爆破的充分条件.最后,在临界条件下,我们同样讨论了该问题整体存在性和爆破性. (本章的主要结果发表于ANZIAM J., 2008 (50): 13-29)
     第三部分(本文第八章至第九章)主要讨论非线性双曲方程解的爆破性、生命跨度和衰减性.由于双曲方程有着重要的物理背景,长期以来一直是数学工作者研究的热点.自从John引入生命跨度(局部解存在的最大时间)的概念以来,许多数学工作者在这方面做了大量的工作.他们主要讨论生命跨度与非线性项形式及空间维数之间的关系.本部分将讨论两类非线性双曲方程解的爆破性、生命跨度和衰减性.本部分的具体安排如下:
     在第八章中,我们研究了一类含有非线性阻尼项的双曲系统的初边值问题.在一定的假设下,我们得到了全局解的不存在性并估计了解的生命跨度.我们的结果改进了Agre和Rammaha (Diff. Inte. Equation, 2006)的结果. (本章的主要结果已投往Nonlinear Anal.)
     在第九章中,我们研究了一类具有阻尼项的非线性高阶波动方程.我们首先给出了整体解存在的充分条件,接下来,在一些初始能量的假设下,我们研究了局部解的爆破性质.对于整体解,我们研究了它的衰减性质,对于爆破解,我们研究了它的生命跨度.这些结果推广了Ye (J. Inequa. Appl., 2010)的结果. (本章的主要结果已投往Nonlinear Anal.)
Substantial progress had been made in the last two decades in the theory of nonlinear systems of partial differential equations. Much of the developments are motivated by applications to the natural sciences of biology, physics and chemistry. In this dissertation, we main discuss the stationary patterns, periodic, blowup and decay properties of some kinds of evolution equations which are came from biology, physics and chemistry. We divide the dissertation into three parts:
     In the first part (Chapter 2-Chapter 4), we are concerned with the stationary patterns of some reaction-diffusion equations or fraction-diffusion equations. For the problem of Neumann boundary condition, we mainly study the effects of diffusion on the pattern formation (namely, positive non-constant steady-state solutions). When the boundary condition is of Dirichlet type, we mainly investigate the existence of coexistence solutions and stability of positive steady-state solutions (PSS), and determine the asymptotic behavior of PSS. The specific arrangements are as follows:
     In Chapter 2, we consider the pattern formation of two-cell Brusselator model. Pattern formation now becomes an important research aspect of modern science and technology. It can be used to describe the structure changes of interacting species or reactants of ecology, chemical reaction and gene formation in nature. For the cited model, we establish the fine upper and lower bounds of PSS and then study the existence and non-existence of non-constant PSS. As a consequence, our results show that, under some cases, diffusion can create pattern formation. (The main results of this chapter are published in J. Math. Anal. Appl., 2010 (366): 679–693)
     In Chapter 3, we consider the stationary patterns of a prey-predator model with Dirichlet boundary condition, and are mainly concerned about the existence of coexistence solutions. As it is known, such problems are very interesting in both mathematics and application, although they are usually quite difficult and full of challenges. By meticulously analyzing the asymptotic behaviors of solutions, we find the necessary and sufficient conditions to the existence of coexistence solutions by the classical Leray-Schauder degree theory and bifurcation theory. (The main results of this chapter are published in J. Math. Anal. Appl., 2010 (369): 555–563)
     In Chapter 4, we discuss the stationary patterns of a Lotka-Volterra model with nonlinear diffusion of fraction type. First, we give some priori estimates for the steady state solutions. Second, we give some conditions for the non-existence of coexistence solutions by using the priori estimates. At last, we give some sufficient conditions for the existence of coexistence solutions by using the bifurcation theory. (The main results of this chapter are submitted to Math. Model Anal.)
     In the second part (Chapter 5-Chapter 7), we discuss the periodic properties and blowup properties of nonlinear parabolic equations. We first discuss the periodic solutions, and then we study the blowup solutions. The specific arrangements are as follows:
     In Chapter 5, we discuss the periodic solutions to a porous medium equation of logistic type. We establish the existence of nontrivial periodic solution by Leray- Schauder fixed point theory. We also show that the supports of these solutions are independent of time by providing a priori estimates for their upper bounds by using Moser iteration. Furthermore, we establish the attractivity of the maximal periodic solution by using the monotonicity method. (The main results of this chapter are published in Math. Meth. Appl. Sci., 2010 (33): 1942-1954)
     In Chapter 6, we deal with the weakly coupled degenerate and singular parabolic equations with localized source. The existence of a unique classical non-negative solution is established and the sufficient conditions for the solution that exists globally or blows up in finite time are obtained. Furthermore, under certain conditions, we study the blowup set. At last, we also obtain the blowup rate under appropriate assumptions. (The main results of this chapter are published in Z. Ange. Math. Phy., 2011 (62): 47-66)
     In Chapter 7, we deal with the global existence and blowup properties of the non-Newton polytropic filtration system with nonlocal source. Under appropriate hypotheses, we prove that the solution either exists globally or blows up in finite time depending on the initial data and the parameters; we also give a criterion for the solution exists globally or blows up in finite time in the critical case. (The main results of this chapter are published in ANZIAM J., 2008 (50): 13-29)
     In the third part (Chapter 8-Chapter 9), we discuss the blowup, life-span and decay properties of hyperbolic equations. Since hyperbolic equations have strong physical background, many mathematic works focus on them for a long time. They study the relationship between the life-span and nonlinear terms or spatial dimensions since John introduced the concept of life-span (the existence time of local solution). In this part, we will discuss the the blowup, life-span and decay properties of two kinds of hyperbolic equations. The specific arrangements are as follows:
     In Chapter 8, we study the initial-boundary value problem for a system of nonlinear hyperbolic equations, involving nonlinear damping terms, in a bounded domain ?. The nonexistence of global solutions is discussed under some conditions on the given parameters. Estimates on the lifespan of solutions are also given. Our results extend and generalize the recent results of Agre and Rammaha (Diff. Inte. Equation, 2006), specially, the blowup of weak solutions in the case of non-negative energy. (The main results of this chapter are submitted to Nonlinear Anal)
     In Chapter 9, we consider a class of nonlinear higher-order wave equation with nonlinear damping in ?. We show that the solution is global in time under some conditions. We also show that the local solution blows up in finite time with some assumptions on the initial energy. The decay estimate of the energy function for the global solution and the lifespan for the blowup solution are given. These extend the recent results of Ye (J. Inequa. Appl., 2010). (The main results of this chapter are submitted to Nonlinear Anal)
引文
[1] A. Turing, The chemical basis of morphogenesis [J]. Philos. Trans. Roy. Soc. Ser. B, 1953 (237): 37-72.
    [2] A. Gierer and H. Meinhard, A theory of biological pattern formation [J]. Kybernetik, 1972 (12): 30-39.
    [3] D.Iron,M. J. Ward and J. C. Wei, The stability of spike solution to the one-dimensional Gierer-Meinhardt model [J]. Phys. D, 2001 (150): 25-62.
    [4] M. J. Ward and J. C. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability [J]. Euro. J. Appl. Math., 2002 (13): 283-320.
    [5] P. Gray and S. K. Scott, Autocatalutic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability [J]. Chem. Eng. Sci., 1981 (38): 29-43.
    [6] J. K. Hale, L. A. Peletier and W. C. Troy, Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocalysis [J]. SIAM J. Appl. Math., 2000 (61): 102-130.
    [7] T. Kolokolnikov, M. J. Ward and J. C. Wei, The existence and stability of spike equilibria in the one-dimensional Gray–Scott model on a finite domain [J]. Appl. Math.Letters, 2005 (18): 951–956.
    [8] J. S. McGough and K. Kiley, Pattern formation in the Gray-Scott model [J]. Nonlinear Anal. Real Word Appl., 2004 (5): 105-121.
    [9] C. B. Muratov and V. V. Osipov, Static spike autosolution in the Gray-Scott model [J]. J. Phys. A, Math. Gen., 2000 (33): 8893-8916.
    [10] R. Peng and M. X. Wang, On pattern formation in the Gray-Scott model [J]. Science in China Ser. A: Math., 2007 (50): 377-386.
    [11] J. C. Wei and M. Winter, Existence and stability of multiple-spot for the Gray-Scott model in 2 [J]. Phys. D, 2003 (176): 147-180.
    [12] F. A. Davidson and B. P. Rynne, A priori bounds and global existence of solutions of the steady-state Sel'kov model [J]. Pro. Roy. Soc. Edinburgh A, 2000 (130): 507-516.
    [13] M. X. Wang, Non-constant positive steady-states of the Sel'kov model [J]. J. Differential Equations, 2003 (190): 600-620.
    [14] T. Erneux and E. Reiss, Brusselator isolas [J]. SIAM J. Appl. Math., 1983 (43): 1240-1246.
    [15] A. A. Golovin, B. J. Matkowsky and V. A. Volpert, Turing pattern formation in the Brusselator model with superdiffusion [J]. SIAM J. Appl. Math. , 2009 (69): 251-272.
    [16] G. Nicolis, Patterns of spatio-temporal organization in chemical and biochcemical kinetics [J]. SIAM AMS Proc., 1974 (8): 33-58.
    [17] R. Peng and M. X. Wang, Pattern formation in the Brusselator system [J]. J. Math. Anal. Appl., 2005 (309): 151-166.
    [18] R. Peng and M. X. Wang, On steady-state solutions of the Brusselator-type system [J]. Nonlinear Anal., 2009 (71): 1389-1394.
    [19] I. Prigogine and R. Lefever, Symmetry-breaking instabilities in dissipative systems [J]. J. Chem. Physics, 1968 (48): 1665-1700.
    [20] J. Zhou and C. L. Mu, Pattern formation of a coupled two-cell Brusselator model [J]. J. Math. Anal. Appl., 2010 (366): 679-693.
    [21] C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotais system [J]. J. Diff. Equations, 1988 (72): 1-27.
    [22] M. Delgado, M. Montenegro, and A. Suarez, A Lotka–Volterra symbiotic model with cross-diffusion [J]. J. Differential Equations, 2009 (246): 2131-2149.
    [23] Y. Kan-on, Instability of stationary solutions for a Lotka-Volterra competition model with diffusion [J]. J. Math. Anal. Appl., 1997 (208): 158-170.
    [24] Y. Kan-on and M. Mimura, Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics [J]. SIAM J. Math. Anal., 1998 (29): 1519-1536.
    [25] Y. Kan-on, Existence and instability of Neumann layer solutions for a 3-component Lotka-Volterra model with diffusion [J]. J. Math. Anal. Appl., 2000 (243): 357-372.
    [26] Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion [J]. J. Differential Equations, 1996 (131): 79-131.
    [27] Y. Lou, S. Mattinez and W. M. Ni, On 3×3 Lotka-Volterra competition systems with cross-diffusion [J]. Discrete contin. Dynam. Systems, 2000 (6): 175-190.
    [28] P. Y. H. Pang and M. X. Wang, Qualitative analysis of a radio-dependent predator-prey system with diffusion [J]. Pro. Roy. Soc. Edinburgh A, 2003 (13): 919-942.
    [29] P. Y. H. Pang and M. X. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion [J]. Proc. London Math. Soc., 2004 (88): 135-157.
    [30] P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model [J]. J. Differential Equations, 2004 (202): 245-273.
    [31] R. Peng and M. X. Wang, Positive steady-state solutions of the Noyes-Field model forBelousov-Zhabotinskii reaction [J]. Nonlinear Anal., 2004 (56): 451-464.
    [32] R. Peng and J. P. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: strong interaction case [J]. J. Differential Equations, 2009 (247): 866-886.
    [33] M. X. Wang, Stationary patterns for a prey-predator model with prey-dependent and radio-dependent functional responses and diffusion [J]. Phys. D, 2004 (196): 172-192.
    [34] F. Q. Yi, J. C. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system [J]. J. Differential Equations, 2009 (246): 1944-1977.
    [35] A. Leung and B. Bendjilali, N species competition for a spatially heterogeneous prey with Neumann boundary conditions: steady states and stability [J]. SIAM J. Appl. Math., 1986 (46): 81-98.
    [36] Y. Lou and W. M. Ni, Diffusion vs. cross-diffusion: an elliptic approach [J]. J. Differential Equations, 1999 (154): 157-190.
    [37] R. Peng and M. X. Wang, Note on a ration-dependent predator-prey system with diffusion [J]. Nonlinear Anal. Real Word Appl., 2006 (7): 1-11.
    [38] X. F. Wang and Y. P. Wu, Qualitative analysis on a chemotactic diffusion model for two species competing for limited resource [J]. Quart. Appl. Math., 2002 (LX): 505-531.
    [39] K. J. Brown and F. A. Davidson, Global bifurcation in the Brusselator system [J]. Nonlinear Anal., 1995 (12): 1713-1725.
    [40] X. F. Chen, W. M. Ni, Y. W. Qi and M. X. Wang, Steady states of a strongly coupled prey-predator model [J]. Discrete contin. Dynam. Systems, 2005 (suppl.): 173-180.
    [41] X. F. Chen, W. M. Ni, Y. W. Qi and M. X. Wang, A strongly coupled predator-prey system with non-monotonic functional response [J]. Nonlinear Anal., 2007 (67): 1966-1979.
    [42] W. Y. Chen and R. Peng, Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model [J]. J. Math. Anal. Appl., 2004 (291): 550-564.
    [43] B. Ermentrout, Strips or spots? Nonlinear effects in bifurcation of reaction diffusion equation on the square [J]. Proc. Roy. Soc. London, 1991 (434): 413-417.
    [44] J. A. Leach and J. C. Wei, Pattern formation in a simple chemical system with general orders of autocatalysis and decay, I: stability analysis [J]. Phys. D, 2003 (180): 185-209.
    [45] S. Martinez, The effect of diffusion for the multispecies Lotka-Volterra competition model [J]. Nonlinear Anal. Real Word Appl., 2003 (4): 409-436.
    [46] M. Mimura and Y. Nishiura, Pattern formatiopn in coupled reaction-diffusion systems [J]. Japan J. Indust. Appl. Math., 1995 (12): 385-424.
    [47] K. Nakashima and Y. Yamada, On positive steady-states for some reaction-diffusion system [J]. Adv. Math. Sci. Appl., 1996 (6): 279-289.
    [48] W. M. Ni, Diffusion, cross-diffusion and their spike-layer steady-states [J]. Notices Amer. Math. Soc., 1998 (45): 9-18.
    [49] M. X. Wang, Stationary patterns of stongly coupled prey-predator models [J]. J. Math. Anal. Appl., 2004 (292): 484-505.
    [50] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics [M]. Oxford Univ. Press, New York, 1998.
    [51] J. F. G. Auchmuty and G. Nicolis, Bifurcation analysis of nonlinear reaction-diffusion equations I: Evolution equations and the steady state solutions [J]. Bull. Math. Biology, 1995 (37): 323-365.
    [52] S. H. Strogatz, Nonlinear Dynamics and Chaos [M]. Westview Press, 1994.
    [53] T. K. Callahan and E. Knobloch, Pattern formation in three-dimensional reaction-diffusion systems [J]. Phys. D, 1999 (132): 339-362.
    [54] T. Erneux and E. Reiss, Brusselator isolas [J]. SIAM J. Appl. Math., 1983 (43): 1240-1246.
    [55] R. H. Rabinowitz, Some global results for nonlinear eigenvalue problems [J]. J. Funct. Anal., 1971 (7): 487-513.
    [56] P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations [M]. Wiley-Interscience, New York, 1971.
    [57] G. Jetschke, Multiple Stable Steady States and Chemical Hysteresis in a Two-Box Model of the Brusseiator [J]. J. Non-Equilib. Thermo Dyn., Vol. 4, 1979, No.2.
    [58] H. Klic, Period doubling bifurcations in a two-box model of the Brusselator [J]. Aplikace Matemat., 1983 (28): 335-343.
    [59] L. Schreiber and M. Marek, Transition to chaos via two-torus in coupled reaction-diffusion cells [J]. Phy. Letters, Vol. 91, No. 6, 1982, p. 263.
    [60] J. J. Tyson, Some further studies of nonlinear oscillations in chemical systems [J]. J. Chem. Physics Vol. 18, No. 9, 1973.
    [61] Y. C. You, Global attractor of a coupled two-cell Brusselator model [J]. E. J. Differential Equations, 2011 (25): 1-28.
    [62] X. Chen and Y. Qi, Sharp estimates on minimum traveling wave speed of reaction-diffusion systems modeling autocatalysis [J]. SIAM J. Math. Anal., 2007 (39): 437-448.
    [63] I. Karafyllis, P. D. Christofides and P. Daoutidis, Dynamical analysis of a reaction-diffusion system with Brusselator kinetics under feedback control [J]. Proc. Amer. Control Conference,Albuquerque, NM, June 1997, 2213-2217.
    [64] T. Kolokolnikov, T. Erneux and J. Wei, Mesa-type patterns in one-dimensional Brusselator and their stability [J]. Phy. D, 2006 (214): 63-77.
    [65] Y. Qi, The development of traveling waves in cubic auto-catalysis with different rates of diffusion [J]. Phy. D, 2007 (226): 129-135.
    [66] J. J. Tyson, K. Chen and B. Novak, Network dynamics and cell physiology [J]. Nature Reviews: Molecular Cell Biology, 2001 (2): 908-916.
    [67] L. Yang, A. M. Zhabotinsky, and I. R. Epstein, Stable squares and other oscillatory Turing patterns a reaction-diffusion model [J]. Phy. Rev. Letters, 2004 (92): 1-4.
    [68] Y. C. You, Global dynamics of the Brusselator equations [J]. Dynamics of PDE, 2007 (4): 167-196.
    [69] J. Blat and K. J. Brown, Bifurcation of steady-state solutions in predator-prey and competition systems [J]. Pro. Roy. Soc. Edinburgh A, 1984 (97): 21-34.
    [70] A. Leung, Equilibria and stabilities for competing-species reaction diffusion equations with Dirichlet boundary data [J]. J. Math. Anal., 1980 (73): 204-218.
    [71] A. Leung, Monotone schemes for semilinear elliptic systems related to ecology [J]. Math. Meth. Appl. Sci., 1982 (4): 272-285.
    [72] L. Li, Coexistence theorems of steady states for predator-prey interacting systems [J]. Trans. Amer. Math. Soc, 1998 (305): 143-166.
    [73] L. Li and R. Logan, Positive solutions to general elliptic competition models [J]. Diff. Inte. Equation, 1991 (4): 817-834.
    [74] J. Lopez-Gomez and R. Pardo, Coexistence regions in Lotka-Volterra models with diffusion [J]. Nonlinear Anal., 1992 (19): 11-28.
    [75] W. H. Ruan and C. V. Pao, Positive steady-state solutions of a competing reaction-diffusion system [J]. J. Differential Equations, 1995 (117): 411-427.
    [76] W. Ko and K. Ryu, Positive solutions for ratio-dependent predator–prey interaction systems [J]. J. Differential Equations, 2005 (218): 117-135.
    [77] W. Ko and K. Ryu, Coexistence states of a predator-prey system with non-monotonic functional reponse [J]. Nonlinear Anal. Real Word Appl., 2007 (8): 769-786.
    [78] M. X. Wang and X. B. Wang, Existence, uniqueness and stability of positive ssteady states for a prey-predator diffusion system [J]. Science in China Ser. A: Math., 2009 (52): 1031-1041.
    [79] M. X. Wang and Q. Wu, Positive solutions of a prey-predator model with predator saturation and competition [J]. J. Math. Anal. Appl., 2008 (345): 708-718.
    [80] J. Lopez-Gomez, The steady states of a non-cooperative model of nuclear reactors [J]. J. Differential Equations, 2009 (246): 358-372.
    [81] R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion [J]. Houston J. Math., 1987 (13): 337-352.
    [82] E. N. Dancer, On positive solutions of some pairs of differential equations [J]. Trans. Amer. Math. Soc., 1884 (284): 729-743.
    [83] E. N. Dancer, On positive solutions of some pairs of differential equations, II [J]. J. Differential Equations, 1985 (60): 236-258.
    [84] Y. H. Du and K. J. Brown, Bifurcation and monotonicity in competition reaction-diffusion systems [J]. Nonlinear Anal., 1994 (23): 1-13.
    [85] Y. H. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solution to a predator-prey model [J]. J. Differential Equations, 1998 (144): 390-440.
    [86] J. C. Eilbeck, J. E. Furter and J. Lopez-Gomez, Coexistence in the competition model with diffusion [J]. J. Differential Equations, 1994 (107): 96-139.
    [87] J. E. Furter and J. Lopez-Gomez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model [J]. Proc. Roy. Soc. Edinburgh A, 1997 (127): 281-336.
    [88] C. H. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model [J]. Comm. Pure. Appl. Math., 1994 (47): 1571-1594.
    [89] J. Lopez-Gomez, Nonlinear eigenvalues and global bifurcation to the search of positive solutions for general Lotka-Volterra reaction diffusion systems with two species [J]. Diff. Inte. Equation, 1994 (7): 1427-1452.
    [90] E. N. Dancer, On uniqueness and stability for solutions of singularly perturbed predator-prey type equations with diffusion [J]. J. Differential Equations, 1993 (102): 1-32.
    [91] L. Li, On positive solutions of a nonlinear equilibrium boundary value problem [J]. J. Math. Anal. Appl., 1989 (138): 537-549.
    [92] Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions [J]. SIAM J. Math. Anal., 1990 (21): 327-345.
    [93] W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients [J]. J. Math. Anal. Appl., 1996 (197): 558-578.
    [94] K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics [J]. J. Math. Anal. Appl., 2003 (283): 46-65.
    [95] T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlineardiffusion terms [J]. J. Math. Anal. Appl., 2006 (323): 1387-140l.
    [96] K. Kuto, Stability of steady state solutions to a prey-predator system with cross-diffusion [J]. J. Differential Equations, 2004 (197): 297-314.
    [97] K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion [J]. J. Differential Equations, 2004 (197): 315-348.
    [98] K. Kuto and Y. Yamada, Coexistence problem for a prey-predator model with density-dependent diffusion [J]. Nonlinear Anal., 2009 (71): e2223-e2232.
    [99] C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion [J]. Nonlinear Anal., 2005 (60): 1197-1217.
    [100] Y. Yamada, Positive Solution for Lotka-Volterra Systems with Cross-diffusions [M]. Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 6 (Edited by M. Chipot), 411-501, Elsevier/North-Holland, Amsterdam, 2008.
    [101] S. Cano-Casanova and J. Lopez-Gomez, Properties of the principle eigenvalues of a general class if non-classical mixed boundary value problems [J]. J. Differential Equations, 2002 (178): 123-211.
    [102] F. Q. Yi, J. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system [J]. J. Differential Equations, 2009 (246): 1944-1977.
    [103] S. Cano-Casanova, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems [J]. Nonlinear Anal., 2002 (49): 361-430.
    [104] C. V. Pao, Nonlinear Parabolic and Eliptic Equations [M]. Plenum Press, New York and London, 1992.
    [105] H. Amann, Periodic solutions of semilinear parabolic equations [J]. in: Cesari, Kannan, Weinberger (Eds.), Nonlinear Analysis (Collection of papers in honor of Erich Rothe), Academic Press, New York, 1978 1-29.
    [106] K. J. Brown and P. Hess, Positive periodic solutions of predator-prey reaction-diffusion systems [J]. Nonlinear Anal., 1991 (16): 1147-1158.
    [107] D. Daners and J. Lopez-Gomez, The singular perturbation problem for the periodic parabolic logistic equation with indefinite weight functions [J]. J. Dynam. Differential Equations, 1994 (6): 659-670.
    [108] D. Daners, Existence and perturbation of principle eigenvalues for a periodic-parabolic problem [J]. E. J. Differential Conference, 2000 (5): 51-67.
    [109] Y. Giga and N. Mizoguchi, Existence of periodic solutions for equations of evolving cures [J].SIAM J. Math Anal. , 1996 (27): 5-39.
    [110] P. Hess, Periodic-parabolic Boundary Value Problems and Positivity [M]. in: Pitman research notes in mathematics, vol. 247, Longman Sci. Tech, Harlow, 1991.
    [111] P. Hess, On the asymptotic periodic fisher equation, in: Progress of partial differential equations: Elliptic and parabolic problems [M]. in: Pitman research notes in mathematics, vol. 266, Longman Sci. Tech, Harlow, 1992, 24-33.
    [112] P. Hess, M. A. Pozio and A. Tesei, Times periodic solutions for a class of degenerate parabolic problems [J]. Houston J. Math., 1995 (21): 367-395.
    [113] N. Mizoguchi, Periodic solutions for degenerate diffusion equations [J]. Indiana Univ. Math. J., 1995 (44): 413-432.
    [114] M. Nakao, Periodic solutions of some nonlinear degenerate parabolic equations [J]. J. Math. Anal. Appl., 1984 (104): 554-567.
    [115] M. N. Nkashama, Semilinear periodic-parabolic equations with nonlinear boundary conditions [J]. J. Differential Equations, 1996 (130): 377-405.
    [116] C. V. Pao, Periodic solutions of parabolic systems with nonlinear boundary conditions [J]. J. Math. Anal. Appl., 1999 (234): 695-716.
    [117] T. I. Seidman, Periodic solutions of a nonlinear parabolic equation [J]. J. Differential Equations, 1975 (19): 242-257.
    [118] A. Okubo, Diffusion and Ecological Problems: Mathematical Models [M]. Bio. Math., 10, Springer, 1975.
    [119] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species [J]. J. Theoret. Bio., 1979 (79): 83-99.
    [120] Y. Wang, Z. Wu and J. Yin, Time periodic solution of a class of degenerate parabolic equations [J]. Acta. Math. Appl. Sinica (English Ser.), 2000 (16): 180-187.
    [121] P. Y. H. Pang, Y. F. Wang and J. X. Yin, Periodic solutions for a class of reaction-diffusion equations with p-Laplacian [J]. Nonlinear Anal. Real Word Appl., 2010 (11): 323-331.
    [122] J. R. Cannon and H. M. Yin, A class of non-linear non-classical parabolic equations [J]. J. Differential Equations, 1989 (79): 266-288.
    [123] J. M. Chadam, A. Pierce and H. M. Yin, The blowup properties of solutions to some diffusion equations with localized nonlinear reactions [J]. J. Math. Anal. Appl., 1992 (169): 313-328.
    [124] P. Souplet, Uniformly blowup profile and boundary behavior for diffusion equations with nonlocal nonlinear siurce [J]. J. Differential Equations, 1999 (153): 374-406.
    [125] M. X. Wang, Global existence and finite time blowup for a reaction-diffusion system [J]. Z.Ange. Math. Phy., 2000 (51): 160-167.
    [126] L. W. Wang and Q. Y. Chen, The asymptotic behavior of blowup solution of localized nonlinear equation [J]. J. Math. Anal. Appl., 1996 (200): 315-321.
    [127] H. L. Li and M. X. Wang, Blowup properties for parabolic systems with localized nonlinear sources [J]. Appl. Math.Letters, 2004 (17): 771-778.
    [128] H. L. Li and M. X. Wang, Uniform blowup profiles and boundary layer for a parabolic system with localized nonlinear reaction terms [J]. Science in China Ser. A: Math., 2005 (48): 185-197.
    [129] Z. Y. Xiang, X. G. Hu and C. L. Mu, Neumann problem for reaction-diffusion systems with nonlocal nonlinear sources [J]. Nonlinear Anal., 2005 (61): 1209-1224.
    [130] Z. Y. Xiang, Q. Chen and C. L. Mu, Blowup properties for several diffusion systems with localized sources [J]. ANZIAM J., 2006 (48): 37-56.
    [131] J. Zhou and C. L. Mu, Uniform blowup profiles and boundary layer for a parabolic system with localized sources [J]. Nonlinear Anal., 2008 (69): 24-34.
    [132] C. Budd, V. A. Galaktionov and J. Chen, Focusing blowup for quasilinear parabolic equations [J]. Pro. Roy. Soc. Edinburgh A, 1998 (128): 965-992.
    [133] C. Y. Chan and J. Yang, Complete blowup for degenerate semilinear parabolic equations [J]. J. Comput. Appl. Math., 2000 (113): 353-364.
    [134] M. S. Floater, Blowup at boundary for degenerate semilinear parabolic equations [J]. Arch Rat. Mech. Anal., 1991 (114): 57-77.
    [135] H. Ockendon, Channel flow with temperature-dependent viscosity and internal viscous dissipation [J]. J. Fluid Mechanics, 1979 (93): 737-746.
    [136] A. Friedman and B. Mcleod, Blowup of positive solutions of semilinear heat equations [J]. Indiana Univ. Math. J., 1985 (34): 425-447.
    [137] C. Y. Chan and W. Y. Chan, Existence of classical solutions for degenerate semilinear parabolic problems [J]. Appl. Math. Comput., 1999 (101): 125-149.
    [138] Y. P. Chen, Q. L. Liu and C. H. Xie, The blowup properties for a degenerate semilinear parabolic equation with nonlocal source [J]. Appl. Math. J. Chinese Univ. Ser. B, 2002 (17): 413-424.
    [139] Q. L. Liu, Y. P. Chen and C. H. Xie, Blowup for a degenerate parabolic equation with a nonlocal source [J]. J. Math. Anal. Appl., 2003 (285): 487-505.
    [140] J. Zhou and C. L. Mu, Blowup for a degenerate and singular parabolic equation with nonlocal source and absorption [J]. Glasgow Math. J., 2010 (52): 209-225.
    [141] J. Zhou, C. L. Mu and Z. P. Li, Blowup for degenerate and singular parabolic system with nonlocal source [J]. Boundary Values Problems 2006 (20006), Article ID 21830 1-19.
    [142] J. Li, Z. J. Cui and C. L. Mu, Global existence and blowup for degenerate and singular parabolic system with localized sources [J]. Appl. Math. Comput., 2008 (199): 292-300.
    [143] F. C. Li and C. H. Xie, Global existence and blowup for a nonlinear porous medium equation [J]. Appl. Math. Letters, 2003 (16): 185-192.
    [144] L. L. Du, Blowup for a degenerate reaction–diffusion system with nonlinear nonlocal sources [J]. J. Comput. Appl. Math., 2007 (202): 237-247.
    [145] F. C. Li and C. H. Xie, Global and blowup solutions to a p-Laplacian equation with nonlocal source [J]. J. Comput. Math. Appl., 2003 (46): 1525-1533.
    [146] W. J. Sun and S. Wang, Nonlinear degenerate parabolic equation with nonlinear boundary condition [J]. Acta. Math. Appl. Sinica (English Ser.), 2005 (21): 847-854.
    [147] S. Wang, Doubly Nonlinear Degenerate parabolic Systems with coupled nonlinear boundary conditions [J]. J. Differential Equations, 2002 (182): 431-469.
    [148] M. F. Bidanut-Veon and M. Garcia-Huidobro, Regular and singular solutions of a quasilinear equation with weights [J]. Asymptotic Anal., 2001 (28): 115-150.
    [149] J. I. Diaz, Nonlinear partial differential equations and free boundaries, in: Elliptic equations [M]. Vol 1, Pitman, London, 1985.
    [150] M. Reed, Abstract Nonlinear Wave Equations [M]. Springer-Verlag, 1976.
    [151] I. Segal, Nonlinear partial differential equations in quantum field theory [J]. Proc. Symp. Appl. Math. A. M. S., 1965 (17): 210-226.
    [152] K. Jorgens, Nonlinear Wave Equations [M]. University of Colordo, Department of Mathematics, 1970.
    [153] V. G. Makhankov, Dynamics of classical solutions in integrable systems [J]. Phy. Reports (Section C of Phy. Letters), 1978 (35): 1-128.
    [154] L. A. Medeiros, G. P. Menzala, On a mixed problem for a class of nonlinear Klein-Gordon equations [J]. Acta Math. Hungarica, 1988 (52): 61-69.
    [155] K. Agre and M. A. Rammaha, Global solutions to boundary value problems for a nonlinear wave equation in high space dimensions [J]. Diff. Inte. Equation, 2001 (14): 1315-1331.
    [156] K. Agre and M. A. Rammaha, System of nonlinear wave equations with damping and source terms [J]. Diff. Inte. Equation, 2006 (19): 1235-1270.
    [157] C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source [J]. Calc. Var. Partial DifferentialEquations, 2009 (34): 377-411.
    [158] V. Barbu, I. Lasiecka and M. A. Rammaha, Existence and uniqueness of solutions to wave equations with nonlinear degenerate damping and source terms [J]. Control Cybernet., 2005 (34): 665-687.
    [159] V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source [J]. Trans. Amer. Math. Soc., 2005 (357): 2571-2611.
    [160] V. Barbu, I. Lasiecka and M. A. Rammaha, Blowup of generalized solutions to wave equation with nonlinear degenerate damping and source terms [J]. Indiana Univ. Math. J., 2007 (56): 995-1021.
    [161] M. Cavalcanti, V. Domingos Cavalcanti and P. Martinez, Existence and decay rate estimates for the nonlinear boundary damping and source term [J]. J. Differential Equations, 2004 (203): 119-158.
    [162] M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction [J]. J. Differential Equations, 2007 (236): 407-459.
    [163] M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. A. Soriano, Asymptotic stability of the wave equation on compact surfaces and locally distributed damping-a sharp result [J]. Trans. Amer. Math. Soc., S 0002-9947(09)04763-1 (published on April 13, 2009).
    [164] M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. A. Soriano, Uniform stabilization of the wave equation on compact manifolds and locally distributed damping-a sharp result [J]. J. Math. Anal. Appl., 2009 (351): 661-674.
    [165] V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms [J]. J. Differential Equations, 1994 (109): 295-308.
    [166] X. S. Han and M. X. Wang, Global existence and blowup of solutions for a system of nonlinear viscoelastic wave equations with damping and source [J]. Nonlinear Anal., 2009 (71): 5427-5450.
    [167] M. Kafini and S. A. Messaoudi, A blowup result for a viscoelastic system in N [J]. J. Differential Equations, 2007 (113): 1-7.
    [168] M. Kafini and S. A. Messaoudi, A blowup results in a Cauchy viscoelastic problem [J]. Appl. Math. Letters, 2008 (21): 549-553.
    [169] H. Koch and I. Lasiecka, Hadamard well-posedness of weal solutions in nonlinear dynamic elasticity-full von Karman systems [M]. Evolution equations, semigroup and functional analysis (Milano, 2000), 197-216, Progr. Nonlinear Differential Equations Appl., 50,Birkhuser, Basel, 2002.
    [170] H. A. Levine, S. R. Park and J.M. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation [J]. J. Math. Anal. Appl., 1998 (228): 181-205.
    [171] H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation [J]. Arch Rat. Mech. Anal., 1997 (137): 341-361.
    [172] M. r. Li and L. Y. Tsai, Existence and nonexistence of global solutions of some systems of semilinear wave equations [J]. Nonlinear Anal., 2003 (54): 1397-1415.
    [173] S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky [J]. J. Math. Anal. Appl., 2002 (2650: 296-308.
    [174] M. A. Rammaha and T.A. Strei, Global existence and nonexistence for nonlinear wave equations with damping and source terms [J]. Trans. Amer. Math. Soc., 2002 (354): 3621-3637.
    [175] M. A. Rammaha, his influence of damping and source terms on solutions of nonlinear wave equations [J]. Bol. Soc. Parana. Math., 2007 (25): 77-90.
    [176] J. Serrin, G. Todorova and E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms [J]. Diff. Inte. Equation, 2003 (16): 13-50.
    [177] S. Sawanya, Global well-posedness for Systems of Nonlinear Wave Equations [M]. Proquest Dissertations and Theses, 2008, AAT 3297658.
    [178] G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms [J]. Nonlinear Anal., 2000 (41): 891-905.
    [179] H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form Dut t= Au + f (u )[J]. Trans. Amer. Math. Soc., 1974 (192): 1-21.
    [180] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations [J]. SIAM J. Math. Anal., 1974 (5): 138-146.
    [181] R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms [J]. Nonlinear Anal., 1996 (10): 1165-1175.
    [182] M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation [J]. Funkcialaj Ekvacioj, 1995 (38): 417-431.
    [183] M. Aassila, Global existence and global nonexistence of solutions to a wave equation with nonlinear damping and source terms [J]. Asymptotic Anal., 2002 (30): 301-311.
    [184] A. Guesmia, Existence globale etstabilisation interne non lineaire d'un systeme de Petrovsky [J]. Bell. Belg. Math. Soc., 1998 (5): 583-594.
    [185] A. Guesmia, Energy decay for a damped nonlinear coupled system [J]. J. Math. Anal. Appl., 1999 (239): 38-48.
    [186] M. Aassila and A. Guesmia, Energy decays for a damped nonlinear hyperbolic equation, [J]. Appl. Math. Letters, 1999 (12): 49-52.
    [187] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method [M]. Masson, Paris, 1994.
    [188] W. Y. Chen and Y. Zhou, Global nonexistence for a semilinear Petrovsky equation [J]. Nonlinear Anal., 2009 (70): 3203-3208.
    [189] S. T. Wu and L. Y. Tsai, On global solutions and blowup of solutions for a nonlinearly damped Petrovsky system [J]. Taiwanese J. Math., 2009 (13): 545-558.
    [190] Y. J. Ye, Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation [J]. J. Inequa. Appl., 2010, Article ID 394859.
    [191] R. A. Adams, Sobolev Space [M]. Academic Press, 1975.
    [192] P. Gormley, K. Li and G. W. Irwin, Modeling molecular interaction pathways using a two-stage identification algorithm [J]. Systems and Synthetic Biology, 2007 (1): 145-160.
    [193] M. Kawato and R. Suzuki, Two coupled neural oscillators as a model of the circadian pacemaker [J]. J. Theor. Biol., 1980 (86): 547-575.
    [194] I. Schreiber and M. Marek, Strange attractors in coupled reaction-diffusion cells [J]. Phy.D, 1982 (5): 258-272.
    [195] S. K. Scott and K. Showalter, Simple and complex reaction-diffusion fronts, in”Chemical Waves and Patterns”[J]. R. Kapral and K. Showalter (Eds), Kluwer Acad. Publ., Dordrecht, 1995, 485-516.
    [196] S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation [J]. Math. Nachr., 2003 (260): 58-66.
    [197] H. Kitano, Systems biology: a brief overview [J]. Science, 2002 (295): 1662-1664.
    [198] D. Henry, Geometric Theory of Semilinear Parabolic Equation [M]. Lecture notes in Math., vol. 840, Springer-Verlag, Berlin, 1993.
    [199] Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equation [M]. Science Press, Beijing, 1990.
    [200] J. Lopez-Gomez, Spectral Theory and Nonlinear Functional Analysis [M]. Research Notes in Mathematics, 426, Chapman and Hall/CRC, Boca Raton, FL, 2001.
    [201] J. Lopez-Gomez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators [M]. Oper. Theory Adv. Appl., vol. 177, Birkhauser/Springer, Basel, Boston, Berlin,2007.
    [202] A. Casal, J. C. Eilbeck and J. Lopez-Gomez, Existence and uniqueness of coexistence states for a predator–prey model with diffusion [J]. Diff. Inte. Equation, 1994 (7): 411-439.
    [203] Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model [J]. Trans. Amer. Math. Soc., 1997 (349): 2443-2475.
    [204] Y. Liu, Positive solutions to general elliptic systems [J]. Nonlinear Anal., 1995 (25): 229-246.
    [205] J. Lopez-Gomez and M. Molina-Meyer, Bounded component of positive solution of abstract fixed point equation: Mushrooms, loops and isolas [J]. J. Differential Equations, 2005 (209): 416-441.
    [206] T. Ma and S. Wang, Bifurcation theory and applications [M]. Nonlinear Science Ser. A, Vol. 53. World Scientific, 2005.
    [207] R. Peng and M. X. Wang, On multiplicity and stability of positive solutions of a diffusive prey-predator model [J]. J. Math. Anal. Appl., 2006 (316): 256-268.
    [208] J. Lopez-Gomez and R. Pardo, Coexistence regions in Lotka-Volterra models with diffusion [J]. Nonlinear Anal., 1992 (19): 11-28.
    [209] H. Amann and J. Lopez-Gomez, A priori bounds and multiples solutions for superliner indefinite elliptic problems [J]. J. Differential Equations, 1998 (146): 336-347.
    [210] J. Smoller, Shock waves and reaction-diffusion equations [M]. Second edition, in "Grundkehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]", 258, Spring-Verlag New York, 1994.
    [211] W. H. Ruan and W. Feng, On the fixed point index and multiple steady states of reaction-diffusion system [J]. Diff. Inte. Equation, 1995 (8): 371-391.
    [212] J. Lopez-Gomez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications [J]. Diff. Inte. Equation, 1994 (7): 383-398.
    [213] J. Lopez-Gomez, The maximum principle and the existence of principle eigenvalues for some linear weighted boundary value problems [J]. J. Differential Equations, 1996 (127): 263-294.
    [214] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues [J]. J. Funct. Anal., 1971 (8): 321-340.
    [215] A. Okubo and L. A. Levin, "Diffusion and Ecological Problems: Modern Perspective" [M]. 2th edition, Interdisciplinary Applied Mathematics, 14, Spring-Verlag, New York, 2001.
    [216] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order [M]. Reprint of the 1998 edtion. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
    [217] Z. Wu, J. Zho, Y. Yin and H. Li, Nonlinear Diffusion Equations [M]. Word Scientific, RiverEdge, NJ. 2001.
    [218] Y. Giga and N. Mizoguchi, On time periodic solutions of Dirichlet problem for degenerate diffusion problems [J]. Houston J. Math., 1995 (21): 367-395.
    [219] P. Souplet, Blowup in nonlocal reaction-diffusion equations [J]. SIAM J. Math. Anal., 1998 (29): 1301-1334.
    [220] M. X. Wang and Y. M. Wang, Properties of positive solution for nonlocal reaction-diffusion problems [J]. Math. Meth. Appl. Sci., 1996 (19): 1141-1156.
    [221] N. Dunford and J. T. Schwartz, Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space [M]. JohnWiley & Sons, New York, 1963.
    [222] N. W. Mclachlan, Bessel functions for engineers, 2nd ed. [M]. Claredon Press, Oxford University Press, London, 1955.
    [223] J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation [J]. Proc. Edin. Math. Soc., 1997 (40): 437-456.
    [224] F. C. Li, S. X. Huang and C. H. Xie, Global existence and blowup of solutions with nonlocal reaction-diffusion system [J]. Discrete contin. Dynam. Systems, 2003 (9): 1519-1532.
    [225] A. S. Kalashnikov, Some Problems of the qualitative theory of nonlinear degenerate parabolic equations of second order [J]. Russian Math. Surveys, 1987 (42): 169-222.
    [226] J. L. Vazquez, The Porous Medium Equations: Mathematical Theory [M]. Oxford Univ. Press, 2008.
    [227] K. Deng and H. A. Levine, The role of critical exponents in blowup theorems: The sequel [J]. J. Math. Anal. Appl., 2000 (243): 85-126.
    [228] V. A. Galaktionov and J. L. Vazquez, The problem of blowup in nonlinear parabolic equations [J]. Discrete contin. Dynam. Systems, 2002 (8): 399-433.
    [229] H. A. Levine, The role of critical exponents in blow up theorems [J]. SIAM Rev., 1990 (32): 262-288.
    [230] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blowup in Quasilinear Parabolic Equations [M]. Walter de Gruyter, Berlin, 1985.
    [231] F. Quiros and J. D. Rossi, Blowup sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions [J]. Indiana Univ. Math. J., 2001 (50): 629-654.
    [232] S. N. Zheng, X. F. Song and Z. X. Jiang, Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux [J]. J. Math. Anal. Appl., 2004 (298): 308-324.
    [233] W. B. Deng, Global existence and finite time blow up for a degenerate reaction-diffusion system [J]. Nonlinear Anal., 2005 (60): 977-991.
    [234] V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii, A parabolic system of quasi-linear equations I [J]. Diff. Equations, 1983 (19): 1558-1571.
    [235] V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii, A parabolic system of quasi-linear equations II [J]. Diff. Equations, 1985 (21): 1049-1062.
    [236] J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a non-local forcing [J]. Math. Meth. Appl. Sci., 1997 (20): 1069-1087.
    [237] W. B. Deng, Y. X. Li and C. H. Xie, Blowup and global existence for a nonlocal degenerate parabolic system [J]. J. Math. Anal. Appl., 2003 (277): 199-217.
    [238] Z. W. Duan, W. B. Deng and C. H. Xie, Uniform blowup profile for a degenerate parabolic system with nonlocal source [J]. Comput. Math. Appl., 2004 (47): 977-995.
    [239] V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J]. Israel J. Math., 1996 (94): 125-146.
    [240] J. Zhou and C. L. Mu, On critical Fujita exponent for degenerate parabolic system coupled via nonlinear boundary flux [J]. Proc. Edin. Math. Soc., 2008 (51): 785-805.
    [241] H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations [J]. J. Differential Equations, 1997 (26): 291-319.
    [242] H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions for the porous medium equation backward in time [J]. J. Differential Equations, 1974 (16): 319-334.
    [243] M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations [J]. Publ. Res. Inst. Math. Sci., 1972 (8): 221-229.
    [244] J. N. Zhao, Existence and nonexistence of solutions for ut ??? (| ?u | p?2?u ) = f (? u , u, x, t) [J]. J. Math. Anal. Appl., 1993 (173): 130-146.
    [245] J. Zhou and C. L. Mu, The critical curve for a non-Newtonian polytropic filtration system coupled via nonlinear boundary flux [J]. Nonlinear Anal., 2008 (68): 1-11.
    [246] E. Dibenedetto, Degenerate Parabolic Equations [M]. Springer-Verlag, Berlin, New York 1993.
    [247] M. Nako, A difference inequality and its application to nonlinear evolution equations [J]. J. Math. Soc. Japan, 1978 (30): 747-762.