黄颡鱼与蓝鳃太阳鱼性别控制及性别决定机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类性别控制与性别决定机制的研究相辅相成,性别控制的结果有助于深入进行性别决定机制的研究,而性别决定机制的阐明将有利于更好的进行性别控制。鱼类性别决定机制的多样性和性别分化的可塑性,是众多具有性别特异性(如生长差异、观赏价值差异、性腺价值差异、繁殖价值差异等)鱼类单性种群生产的理论基础和前提条件,比如用三系配套法(正常XY雄鱼、XY雌鱼和YY超雄鱼)生产全雄鱼种群便是利用性别决定机制生产单性种群最好的例子。鱼类性别决定机制的原始性(异形性染色体与非异形性染色体)、多样性(遗传型性别决定与温度依赖型性别决定、雌核发育、雌雄同体与雌雄异体等)和易变性(受温度、外源激素及其他环境条件等的影响)也突显鱼类在脊椎动物性别决定机制进化、性别选择、种群性比适应性等研究领域的重要性。从另一方面来讲,鱼类性别控制是性别决定机制研究最重要的手段,外源激素、性激素生成酶抑制剂(如芳香化酶抑制剂)、性激素受体拮抗剂、温度等处理诱导鱼类性逆转是研究性激素或温度等条件在性别决定及性别分化过程中作用的极好方法,也是研究性别决定基因、性别分化相关基因及性别决定分子路径的重要手段,同时性激素诱导性逆转的个体(比如雌性)与正常发育的、相反生理性别的个体(比如正常雄性)交配产生的后代性比是初步认定性染色体类型的重要手段(比如XX/XY、ZW/ZZ等),温度处理诱导性逆转也是研究及区分温度依赖型性别决定、遗传型性别决定及遗传型性别决定加温度影响机制的唯一方法。
     本论文主要研究黄颡鱼和蓝鳃太阳鱼的性别控制及性别决定机制。黄颡鱼不仅在国内,在亚洲其他国家如韩国、日本、越南等地亦是受市场欢迎的重要经济鱼类。蓝鳃太阳鱼则是北美地区最受欢迎的垂钓鱼类之一,也是美国北部五大水产养殖种类之一,其作为重要的经济食用及休闲鱼类,也已引入国内,在江浙一带、广州等地形成初具规模的养殖。黄颡鱼和蓝鳃太阳鱼在生长上都表现性别二态性,雄性都比雌性生长快,较雌性达到更大规格,而且性成熟时间早,能在养殖条件下自然繁殖,特别是蓝鳃太阳鱼,属于一年多次产卵鱼类,这给大规模生产带来了一系列问题。鱼类生理性别的可塑性使得单性养殖成为可能,单性养殖也是解决性成熟早、繁殖快、密度大、生长缓慢、规格不均匀等一系列阻碍大规模生产问题的理想方法。蓝鳃太阳鱼具有极为特别的性别决定机制及繁殖生物学,比如遗传型性别决定与温度依赖型性别决定同时存在,存在选择性繁殖策略(两种雄性:亲本型雄鱼与卫星型雄鱼)。本论文借鉴前人在性别控制方面的研究,对黄颡鱼雄性化药物及其浓度进行了筛选;在蓝鳃太阳鱼性别控制的研究基础上,以及在其性别决定机制极其复杂的背景下,阐明了蓝鳃太阳鱼温度依赖型性别决定机制,并通过分子生物学手段研究了性别分化过程中与性分化相关基因的表达特性。主要研究成果简要如下:
     (1)17α-甲基睾丸酮或芳香化酶抑制剂Letrozole诱导黄颡鱼雄性化研究
     研究了两种雄性诱导药物:17α-甲基睾丸酮或芳香化酶抑制剂Letrozole不同浓度口服处理对黄颡鱼性逆转、存活和生长的影响及药物处理停止后性腺组织结构的变化。在10-59日龄进行17α-甲基睾丸酮口服处理并没有显著改变黄颡鱼幼鱼性比,但所有处理组都诱导了一定比例的间性性腺;三种浓度的17α-甲基睾丸酮处理以浓度依赖性的方式抑制了黄颡鱼幼鱼的生长,但这种生长抑制作用在药物处理结束后45天时消失。三种浓度的Letrozole口服处理分别生产了75%、83.3%和75%的雄性,显著高于对照组37%的雄性率,说明Letrozole具有诱导黄颡鱼雄性化的潜力,但处理浓度可能还需进一步优化。低浓度的Letrozole处理显著地促进了黄颡鱼幼鱼的生长,但在两个高浓度处理组并未发现生长促进作用;Letrozole处理还促进了精巢的发育,如较对照组大的精小叶,在两月龄幼鱼性腺中发现大量精子细胞。药物处理停止后性比的显著改变说明黄颡鱼雌性性腺细胞在性分化完成之后仍然具有双性分化的潜力。
     (2)芳香化酶抑制剂诱导黄颡鱼性逆转的研究
     在前面研究结果的基础上,我们进一步研究了各种浓度Letrozole处理对黄颡鱼性逆转的影响,试图诱导100%黄颡鱼性逆转,同时研究了各处理浓度对黄颡鱼幼鱼生长的影响。四种浓度的Letrozole处理诱导了浓度依赖型的性逆转,分别生产了68.3%、80.00%、88.3%和96.7%的雄性,都显著高于对照组38.3%的雄性率。Letrozole处理促进了精子生成,在60日龄时的性腺中发现大量精子细胞。性比数据结合组织学的研究表明,芳香化酶在卵巢分化中起重要作用,芳香化酶的抑制可能是诱导鱼类雄性化的必要条件之一。
     (3)蓝鳃太阳鱼温度依赖型性别决定研究
     越来越多的证据表明,温度对鱼类性比的影响是极为普遍的。蓝鳃太阳鱼隶属于鲈形目,棘臀鱼科,太阳鱼属,分布于北美各大水系、湖泊和水库,属广温性鱼类,繁殖季节水温19-33℃。本实验室之前的研究表明,温度处理影响蓝鳃太阳鱼的性别比例。本研究在前面研究结果的基础上,使用了四个蓝鳃太阳鱼地理种群,即Hebron, Jones, Hocking和Missouri,开展了基因型-温度交互作用对其性别决定的影响。我们发现了三种性比对温度反应类型,其中两种正好相反:一种是高温产生更多雄性,一种是低温产生更多雄性,还有一种是性比对温度不敏感类型,即温度处理没有显著改变性比。Hebron种群中,6-90日龄之间高温处理(24℃和32℃)相对低温处理(17℃)产生了更多的雄鱼;而在Jones种群中,相同处理时间内低温处理却相对两个高温处理产生了更多的雄鱼。其他两个种群的性比却对温度处理不敏感,即三个温度处理组之间性比无显著差异。结果还发现,在幼鱼1-90、6-90和25-90日龄进行温度处理显著影响Hebron种群性比,但40-90日龄的温度处理并没有显著改变性比,表明蓝鳃太阳鱼性分化的温度敏感期位于40日龄之前。结合存活率数据及性比结果,本研究表明温度依赖型性别决定与遗传型性别决定同时存在于蓝鳃太阳鱼。因此,如果能通过选育,选择温度能诱导高雄性率的种群,便能开发一条环境友好型、消费者友好型的全雄鱼生产方法。本研究结果结合前人研究成果也说明蓝鳃太阳鱼是研究性别决定机制和性别选择进化的极好材料。
     (4)蓝鳃太阳鱼性分化相关基因的表达研究
     很多与性别分化相关的基因先于组织形态学性分化最早标志表达,而且这些基因的表达通常是性别特异性的。对性分化相关基因表达的研究,有助于开发能在早期发育阶段鉴定个体性别或种群性比的分子标记,而且能进一步阐明鱼类性分化过程的分子机制。我们研究了与雌性性分化相关的基因foxl2和cypl9ala及与雄性性分化相关的基因dmrtl在性分化前及性分化过程中不同温度条件下的表达特性,发现这些与性分化相关的基因早在蓝鳃太阳鱼7日龄时就已开始表达,远早于其形态学性分化的最早标志。幼鱼7-17日龄时,与雌性性分化相关基因foxl2的表达急剧升高,27-37日龄维持高表达水平,之后稍有下降,表明雌性个体在7-27日龄之间发生性分化。foxl2基因的表达也呈现极大的个体差异,表明foxl2基因有潜力成为性别鉴定的分子标记。foxl2的表达在27日龄时还受到温度的影响,说明该基因可能在温度诱导性逆转过程中起作用。
     本论文开展了两种雄性化药物对黄颡鱼性逆转的影响研究,并对浓度和药物进行了筛选,获得全雄鱼种群,研究结果为黄颡鱼全雌种群、全雄种群生产和进一步阐明黄颡鱼性别决定机制提供了材料,也为鱼类性别决定机制增添了内容。研究结果还发现,黄颡鱼性分化完成后雌性生殖细胞仍然具有双性分化潜能,这为今后鱼类单性种群的生产提供了新的思路和指导。
     本论文研究了蓝鳃太阳鱼温度依赖型性别决定机制,以及与性分化相关基因的表达特性,第一次报道了在同一种鱼类中存在不同的子代性比对温度敏感类型,为蓝鳃太阳鱼性别决定机制增添了新的内容,为鱼类温度依赖型性别决定机制提供了材料和新的研究方向,也为开展环境友好型、消费者友好型单性种群生产提供了借鉴。
Generally, in teleost fish, production of mono-sex population and investigation of sex-determining mechanism supplement each other. The results during the mono-sex production will be beneficial for the investigation of sex-determining mechanism, meanwhile clear sex-determining mechanism will provide theoretical guide for sex control. The diversity of sex-determining mechanism and lability of sex differentiation of fish are theoretical basis and prerequisite for mono-sex production in the fish species which display sexual specificity, e.g. different in growth, ornamental value, gonadal value, and reproductive value. Applying three mating strains (normal XY male, sex reversed XY female, and YY super-male) produce all-male population is the best example of using the knowledge of sex-determining mechanism to produce mono-sex population. Primitiveness (heteromorphic and homomorphic sex chromosomes), diversity (genetic sex determination and temperature-dependent sex determination, gynogenesis, hermaphrodite and gonochorism), and lability (affected by temperature, exogenous hormones, and other environmental factors) of sex-determining mechanism in fish highlight the importance of fish in the research field of sex-determining mechanism evolution, sexual selection, population sex ratio adaptability in vertebrate. In the other hand, sex control is one of the most important methods to study sex-determining mechanism. For example, sex reversal induction by exogenous hormones, hormonogenic enzyme inhibitor (aromatase inhibitor), antagonist of sex hormone receptor, and temperature etc., are unexceptionable approach to investigate the function of sex hormones or temperature conditions in the processes of sex determination and sex differentiation, and are important method to explore the sex-determining genes, sex differentiation related genes, and molecular pathway in sex determination. Meanwhile, offspring sex ratio result by mating sex reversed individual (e.g. phenotypic female) and normally developed, opposite phenotypic sex individual (e.g. male) is important approach to preliminarily distinguish the type of sex chromosome (e.g. XX/XY, ZW/ZZ). Sex inversion induced by temperature treatment is the single way to differentiate temperature-dependent sex determination, genetic sex determination, and genetic sex determination plus temperature effects.
     The present dissertation are mainly focus on the sex control and sex determination mechanism in yellow catfish and bluegill sunfish. Yellow catfish is a popular and economically important fish species in China, but in other Asian countries, e.g. North Korea, Japan, and Vietnam as well. Bluegill sunfish is one of the most popular sport fish in North America, as well as one of the five aquaculture species in northern Unite State; as important food fish, it has been introduced into China. The growth pattern of yellow catfish and bluegill shows sexual dimorphism, that the males grow faster and reach bigger ultimate size than females. Both of them reach sexual maturation early and could propagate in rearing conditions. Bluegill, especially, could reproduce multiple times during spawning season in a single year. Plasticity or lability of phenotypic sex allow us to produce mono-sex population of fish. A series of problems in large-scale industry of yellow catfish and bluegill, e.g. early sexual maturation, high reproductive ability, high density, slow growth rate, and high size variation could be solved theoretically and practically by mono-sex production. Bluegill sunfish display extraordinary sex determination mechanism and reproductive biology, e.g. coexist of genetic sex determination and temperature-dependent sex determination, displaying alternative mating tactics (two types of male:parental males and cuckolder males).
     In the present study, we investigated the effects of different concentrations of two masculinizing chemicals on sex reversion of yellow catfish; base on previous results of sex control in bluegill, and in the background of complicated sex-determining mechanism in bluegill, we clarified temperature-dependent sex determination in bluegill, and studied sex differentiation related genes prior to and during sex differentiation in different rearing temperatures. Main results are shown as follows.
     (1) Effects of17a-methyltestosterone or aromatase inhibitor Letrozole on masculinization in yellow catfish
     The masculinization of yellow catfish (Pelteobagrus fulvidraco) by oral administration of various doses of17a-methyltestosterone (MT) and aromatase inhibitor letrozole (LZ) was investigated and their effects on the survival, growth performance, sex ratio and changes of gonadal structure were evaluated. Three doses of MT treatments from10days post-hatching (DPH) to59DPH failed to alter the male percentage; however, a certain proportion of intersex were detected in all MT treatments. Growth performance in MT treatments was depressed significantly compared with control group in a dose-dependent manner at the end of the masculinization experiment, and the suppression effect discontinued45days after the termination of treatments. LZ treated groups produced75.0%,83.3%, and75.0%male respectively, which were significantly higher than the control (37.5%). Low dose LZ treatment significantly advanced growth performance compared with the control, with no advancement in two high-dose treatments. Enlarged lobule lumens and a large amount of spermatozoa in male histological sections suggested the promoting potential of testicular development in early gonad development stage following the treatments of LZ in male yellow catfish. The changes of sex ratios after the termination of LZ treatments indicated that female germ cells possess some degree of bipotentiality. The present study demonstrated that LZ possesses the ability of masculinization in yellow catfish, and LZ treatment at low levels could promote growth performance and advance testicular development. Oral MT administration (from20to100mg kg-1) did not reverse the sex from phenotypic female to male, but repressed growth during treatments.
     (2) Effects of non-steroidal aromatase inhibitor Letrozole on sex inversion in yellow catfish
     The effects of Letrozole (LZ), a potent non-steroidal aromatase inhibitor (AI), on growth performance, sex inversion and sex changes after the termination of the treatments were investigated in yellow catfish which displays sexual dimorphic growth. Growth performance was promoted significantly in the low dose LZ treatment compared with the control. Four LZ treatments produced dose-dependent male proportions, which were significantly higher than the control. Histological examination of testes treated by LZ displayed a large amount of spermatozoa and enlarged lobule lumens, indicating that LZ treatments have the stimulation potential in the process of spermatogenesis. Changes of sex proportions45days after the end of the LZ treatment prove that the female germ cells possess a certain extent of bipotentiality. These results suggest that aromatase activity plays a vital role in sex differentiation with inhibition of aromatase activity by AI bringing about sex inversion.
     (3) Temperature-dependent sex determination in bluegill sunfish
     Increasing evidence shows that temperature effects on sex ratio in fish species are ubiquitous. In the present study, effects of genotype-temperature interactions on sex determination in bluegill sunfish (Lepomis macrochirus) were investigated using four geographic strains, Hebron, Jones, Hocking, and Missouri. Two opposite sensitive response patterns of sex ratio to temperature and non-sensitive pattern were found in a single fish species for the first time. In the Hebron strain, higher temperature treatment groups (24℃and32℃) produced more males compared with the low temperature group (17℃) from6days post-hatching (dph) to90dph. On the contrary, low temperature treatment produced more males than that of the other two higher temperature treatments in the Jones strain during the same treatment period as Hebron strain. No significant effects of temperature on sex ratio were detected in the other two strains. Combining sex ratio and survival data, it is strongly suggested that both temperature-dependent sex determination and genetic sex determination exist in this fish species, meanwhile, genotype-temperature interactions influence sex determination in bluegill. Therefore, a consumer-and environment-friendly approach to significantly increase the proportion of males could be achieved through selection of temperature sensitivity in bluegill. The evolutionary implications of our findings on sex determining mechanisms were discussed. Results suggested bluegill could be a unique candidate model species for investigations of sex-determining mechanisms and evolution of sexual selection.
     (4) Expression of foxl2during early gonadal development in bluegill sunfish
     Many genes associated to sex differentiation express prior to the first sign of morphological sex differentiation. Expression of some of these genes are sex specific. Investigation of these genes allow us to develop molecular markers for identification of individual sex or population sex ratio in early development stage, and will unveil molecular mechanisms of sex differentiation. We investigated the expression profiles of ovary differentiation related genes foxl2and cyp19a1a, as well as testis differentiation related gene dmrtl during early gonadal development. Results show that these sex differentiation related genes expressed as early as7days post-hatching (dph). The mRNA level of foxl2increased sharply during7to17dph, and kept high during17to27dph, then decreased slightly thereafter, suggesting ovary differentiation of bluegill occurred between7and27dph. The expression of foxl2displayed huge individual difference, indicating this gene could be a molecular marker for identification of sex. The expression of foxl2was modulated by temperature on27dph of bluegill, indicating that this gene may involve in temperature induced sex reverse.
     We studied the effects of two masculinizing chemicals on sex inversion, and optimized the concentrations, produced all-male population of yellow catfish. Results of the present dissertation will provide guidance for mono-sex production, be beneficial for further clarification of sex-determining mechanisms of yellow catfish, as well as increase content of sex-determining mechanism in teleost fish. We also found that female germ cells of yellow catfish possess a certain degree of bipotentiality after the completion of sex differentiation, which will offer new ideas and guidance for future mono-sex production.
     We investigated temperature-dependent sex determination mechanism in bluegill sunfish, analyzed expression profiles of sex differentiation related genes. We found different response patterns of sex ratio to temperature in a single fish species. These results will enrich sex-determining mechanism of bluegill, provide materials and new research field for temperature-dependent sex determination of fish, and be a reference for environment-and customer-friendly mono-sex production.
引文
1. 陈伟兴,范兆廷,杨洁.黄颡鱼性腺的组织学观察.东北农业大学学报,2006,37:194-198
    2. 丁淑荃,万全,刘磊,边家荣,甘小顺,张汉勤.不同温度下精子保存液对黄颡鱼精子活力的影响.水利渔业,2007,27:10-12
    3. 高泽霞.蓝鳃太阳鱼性控和性决定机制以及性别相关分子标记的研究.[博士学位论文].中国武汉:华中农业大学图书馆,2010
    4. 刘汉勤,陈宏溪,徐江,侯昌春.超雄鱼与生理雌鱼交配建立超雄黄颡鱼繁育种的方法.中国专利,200810197519.8.2009-03-25
    5. 刘汉勤,崔书勤,侯昌春,徐江,陈宏溪.从XY雌鱼雌核发育产生YY超雄黄颡鱼.水生生物学报,2007,31:718-725
    6. 尹洪滨,贾中贺,姚道霞,孙中武,于波,孙德志.黄颡鱼性腺分化的组织学观察.动物学杂志,2008,43:103-108
    7. Afonso LOB, Iwama GK, Smith J, Donaldson EM:Effects of the aromatase inhibitor Fadrozole on reproductive steroids and spermiation in male coho salmon (Oncorhynchus kisutch) during sexual maturation. Aquaculture,2000,188:175-187
    8. Akiyama H, Lefebvre V:Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab,2011,29:390-395
    9. Ankley GT, Jensen KM, Kahl MD, Korte JJ, Makynen EA:Description and evaluation of a short-term reproduction test with the fathead minnow (Pimephales promelas). Environ Toxicol Chem SETAC,2001,20:1276-1290
    10. Ankley GT, Kahl MD, Jensen KM, Hornung MW, Korte JJ, Makynen EA, Leino RL:Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicol Sci Off J Soc Toxicol,2002,67:121-130
    11. Arslan T, Phelps RP, Osborne JA:Effects of oestradiol-17β or 17a-methyltestosterone administration on gonadal differentiation of largemouth bass Micropterus salmoides (Lacepede). Aquac Res,2009,40:1813-1822
    12. Arslan T:Sex determination mechanisms and techniques to control sex differentiation in selected species of sunfishes (Centrarchidae). PhD. Auburn University; 2001
    13. Baker M:A study of the chromosome numbers of some centrarchid fishes. Master. North Carolina State College; 1956
    14. Baras E, Jacobs B, Melard C:Effect of water temperature on survival, growth and phenotypic sex of mixed (XX-XY) progenies of Nile tilapia Oreochromis niloticus. Aquaculture,2001,192:187-199
    15. Baras E, Mpo'n'tcha A, Driouch H, Prignon C, Melard C:Ontogenetic variations of thermal optimum for growth, and its implication on thermolabile sex determination in blue tilapia. J Fish Biol,2002,61:645-660
    16. Baroiller JF, Chourrout D, Fostier A, Jalabert B:Temperature and sex chromosomes govern sex ratios of the mouthbrooding Cichlid fish Oreochromis niloticus. JExp Zool,1995,273:216-223
    17. Baroiller JF, D'Cotta H, Saillant E:Environmental effects on fish sex determination and differentiation. Sex Dev,2009,3:118-135
    18. Baroiller JF, D'Cotta H:Environment and sex determination in farmed fish. Comp Biochem Physiol Toxicol Pharmacol,2001,130:399-409
    19. Baroiller J-F, Guiguen Y, Fostier A:Endocrine and environmental aspects of sex differentiation in fish. Cell Mol Life Sci CMLS,1999,55:910-931
    20. Baron D, Cocquet J, Xia X, Fellous M, Guiguen Y, Veitia RA:An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol,2004,33:705-715
    21. Baron D, Houlgatte R, Fostier A, Guiguen Y:Expression profiling of candidate genes during ovary-to-testis trans-differentiation in rainbow trout masculinized by androgens. Gen Comp Endocrinol,2008,156:369-378
    22. Baron D, Houlgatte R, Fostier A, Guiguen Y:Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol Reprod,2005,73:959-966
    23. Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, Scherer G: Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod,2006,74:195-201
    24. Beard TD:Population Dynamics of Young-of-the-Year Bluegills. Madison: Wisconsin Department of Natural Resources; 1982:3-21. [Technical Bulletin]
    25. Berbejillo J, Martinez-Bengochea A, Bedo G, Vizziano-Cantonnet D:Expression of dmrtl and sox9 during gonadal development in the Siberian sturgeon (Acipenser baerii). Fish Physiol Biochem,2013,39:91-94
    26. Bezault E, Clota F, Derivaz M, Chevassus B, Baroiller J-F:Sex determination and temperature-induced sex differentiation in three natural populations of Nile tilapia (Oreochromis niloticus) adapted to extreme temperature conditions. Aquaculture, 2007,272, Supplement 1:S3-S16
    27. Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harrison WR, Behringer RR, Overbeek PA:A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet,2000,26:490-494
    28. Blazquez M, Gonzalez A, Papadaki M, Mylonas C, Piferrer F:Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol,2008,158:95-101
    29. Bolnick DI:Hybridization and speciation in centrarchids. In Centrarchid Fishes Divers Biol Conserv. Cooke S and Philipp DP. Chichester, U.K.:Wiley-Blackwell; 2009
    30. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M, Le Bourhis D, Daniel N, Richard C, Cotinot C, Ghyselinck NB, Pailhoux E:FOXL2 Is a Female Sex-Determining Gene in the Goat. Curr Biol,2014,24:404-408
    31. Brunner B, Hornung U, Shan Z, Nanda I, Kondo M, Zend-Ajusch E, Haaf T, Ropers HH, Shima A, Schmid M, Kalscheuer VM, Schartl M:Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics,2001,77:8-17
    32. Brunson MW, Robinette HR:Reproductive Isolation between a Hybrid Sunfish and Its Parental Species. Progress Fish-Cult,1987,49:296-298
    33. Bull J:Evolution of environmental sex determination from genotypic sex determination. Heredity,1981,47:173-184
    34. Bull J:Evolution of Sex Determining Mechanisms. Menlo Park, CA: Benjamin/Cummings Pub. Co.; 1983
    35. Burtis KC, Baker BS:Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell,1989,56:997-1010
    36. Butlin R:The costs and benefits of sex:new insights from old asexual lineages. Nat Rev Genet,2002,3:311-317
    37. Callard GV, Tchoudakova A:Evolutionary and functional significance of two CYP19 genes differentially expressed in brain and ovary of goldfish. J Steroid Biochem Mol Biol,1997,61:387-392
    38. Callard GV, Tchoudakova AV, Kishida M, Wood E:Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. J Steroid Biochem Mol Biol,2001,79:305-314
    39. Cardone A, Comitato R, Bellini L, Angelini F:Effects of the aromatase inhibitor fadrozole on plasma sex steroid secretion, spermatogenesis and epididymis morphology in the lizard, Podarcis sicula. Mol Reprod Dev,2002,63:63-70
    40. Cargnelli LM, Gross MR:The temporal dimension in fish recruitment:birth date, body size, and size-dependent survival in a sunfish (bluegill:Lepomis macrochirus). Can JFish Aquat Sci,1996,53:360-367
    41. Chaboissier M-C, Kobayashi A, Vidal VIP, Lutzkendorf S, van de Kant HJG, Wegner M, de Rooij DG, Behringer RR, Schedl A:Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Dev Camb Engl,2004,131:1891-1901
    42. Charlesworth B:The evolution of chromosomal sex determination and dosage compensation. Curr Biol CB,1996,6:149-162
    43. Charnov EL, Bull J:When is sex environmentally determined? Nature,1977, 266:828-830
    44. Chiang EF, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B:Two sox9 genes on duplicated zebrafish chromosomes:expression of similar transcription activators in distinct sites. Dev Biol,2001,231:149-163
    45. Chiang EF, Yan YL, Guiguen Y, Postlethwait J, Chung Bc:Two Cypl9 (P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain. Mol Biol Evol,2001,18:542-550
    46. Childers WF, Bennett GW:Hybridization between Three Species of Sunfishes (Lepomis). Urbana; 1961:1-15. [Illinois Natural History Survey Biology Notes]
    47. Childers WF:Hybridization of Four Species of Sunfishes (Centrarchidae). Urbana; 1967:159-214. [Illinois Natural History Survey Bulletin]
    48. Christoffels A, Koh EGL, Chia J-M, Brenner S, Aparicio S, Venkatesh B:Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol,2004,21:1146-1151
    49. Conover DO, DeMond SB:Absence of temperature-dependent sex determination in northern populations of two cyprinodontid fishes. Can J Zool,1991,69:530-533
    50. Conover DO, Heins SW:Adaptive variation in environmental and genetic sex determination in a fish. Nature,1987,326:496-498
    51. Conover DO, Heins SW:The Environmental and Genetic Components of Sex Ratio in Menidia menidia (Pisces:Atherinidae). Copeia,1987:732-743
    52. Conover DO, Kynard BE:Environmental Sex Determination:Interaction of Temperature and Genotype in a Fish. Science,1981,213:577-579
    53. Conover DO, Voorhees DAV, Ehtisham A:Sex Ratio Selection and the Evolution of Environmental Sex Determination in Laboratory Populations of Menidia menidia. Evolution,1992,46:1722-1730
    54. Conover DO, Voorhees DAV:Evolution of a Balanced Sex Ratio by Frequency-Dependent Selection in a Fish. Science,1990,250:1556-1558
    55. Conover DO:Temperature-dependent sex determination in fishes. In Temp-Depend Sex Determ Vertebr. Valenzuela N and Lance V. Washington DC:Smithsonian Books; 2004:11-20
    56. Cotton S, Wedekind C:Control of introduced species using Trojan sex chromosomes. Trends Ecol Evol,2007,22:441-443
    57. Cotton S, Wedekind C:Population consequences of environmental sex reversal. Conserv Biol,2009,23:196-206
    58. Crandall PS, Durocher PP:Comparison of growth rates, sex ratio, reproductive success and catchability of three sunfish hybrids.In Annu Proc Tex Chapter Am Fish Soc. Volume 2. Taxas, U.S.A.; 1980:88-104
    59. Cresko WA, Yan Y-L, Baltrus DA, Amores A, Singer A, Rodriguez-Mari A, Postlethwait JH:Genome duplication, subfunction partitioning, and lineage divergence:Sox9 in stickleback and zebrafish. Dev Dyn,2003,228:480-489
    60. Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, Bisceglia L, Zelante L, Nagaraja R, Porcu S, Ristaldi MS, Marzella R, Rocchi M, Nicolino M, Lienhardt- Roussie A, Nivelon A, Verloes A, Schlessinger D, Gasparini P, Bonneau D, Cao A, Pilia G:The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet,2001,27:159-166
    61. D'Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF:Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus. Mol Reprod Dev,2001,59:265-276
    62. D'Cotta H, Pepey E, Pfennig F, Bienvenu D, Gutzeit H, Volff J:Sox9a, Sox9b and Amh are up-regulated in the gonads during natural and temperature-induced tilapia male differentiation. In Proc 8th Int Symp Reprod Physiol Fish. Saint-Malo, France.: University of Rennes; 2007
    63. Deloffre LAM, Martins RST, Mylonas CC, Canario AVM:Alternative transcripts of DMRT1 in the European sea bass:Expression during gonadal differentiation. Aquaculture,2009,293:89-99
    64. Devlin RH, Nagahama Y:Sex determination and sex differentiation in fish:an overview of genetic, physiological, and environmental influences. Aquaculture, 2002,208:191-364
    65. Drummond AE:TGFβ signalling in the development of ovarian function. Cell Tissue Res,2005,322:107-115
    66. Dunham RA:Production and use of monosex or sterile fishes in aquaculture. Rev Aquat Sci,1990,2:1-17
    67. Ellison DG, Heidinger RC:Dynamics of hybrid sunfish in southern Illinois farm ponds.In Proc Annu Conf Southeast Assoc Fish Wildl Agencies. Montgomery, Alaska; 1976:82-87
    68. Fan Y-S, Hu Y-J, Yang W-X:TGF-β superfamily:how does it regulate testis development. Mol Biol Rep,2012,39:4727-4741
    69. Ferguson-Smith M:The evolution of sex chromosomes and sex determination in vertebrates and the key role of DMRT1. Sex Dev Genet Mol Biol Evol Endocrinol Embryol Pathol Sex Determ Differ,2007,1:2-11
    70. Fernandino JI, Hattori RS, Kimura H, Strussmann CA, Somoza GM:Expression profile and estrogenic regulation of anti-Mullerian hormone during gonadal development in pejerrey Odontesthes bonariensis, a teleost fish with strong temperature-dependent sex determination. Dev Dyn Off Publ Am Assoc Anat,2008, 237:3192-3199
    71. Fernandino JI, Hattori RS, Shinoda T, Kimura H, Strobl-Mazzulla PH, Strussmann CA, Somoza GM:Dimorphic expression of dmrtl and cypl9al (ovarian aromatase) during early gonadal development in pejerrey, Odontesthes bonariensis. Sex Dev, 2008,2:316-324
    72. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, Brook JD, Schafer AJ: Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature,1994,372:525-530
    73. Gao F, Maiti S, Alam N, Zhang Z, Deng JM, Behringer RR, Lecureuil C, Guillou F, Huff V:The Wilms tumor gene, Wtl, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci USA,2006,103:11987-11992
    74. Gao Z, Wang H-P, Rapp D, O'Bryant P, Wallat G, Wang W, Yao H, Tiu L, MacDonald R:Gonadal sex differentiation in the bluegill sunfish Lepomis macrochirus and its relation to fish size and age. Aquaculture,2009,294:138-146
    75. Gao ZX, Wang H-P, Wallat G, Yao H, Rapp D, O'Bryant P, MacDonald R, Wang W-M:Effects of a nonsteroidal aromatase inhibitor on gonadal differentiation of bluegill sunfish Lepomis macrochirus. Aquac Res,2010,41:1282-1289
    76. Gao ZX, Wang HP, Yao H, Tiu L, Wang WM:No sex-specific markers detected in bluegill sunfish Lepomis macrochirus by AFLP. J Fish Biol,2010,76:408-414
    77. Garner SR, Neff BD:Alternative male reproductive tactics drive asymmetrical hybridization between sunfishes(Lepomis spp.). Biol Lett,2013,9:20130658
    78. Garvey JE, Herra TP, Leggett WC:Protracted Reproduction in Sunfish:The Temporal Dimension in Fish Recruitment Revisited. Ecol Appl,2002,12:194-205
    79. Gorelick R:Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet. Biol J Linn Soc,2003,80:353-368
    80. Gross MR:Evolution of Alternative Reproductive Strategies:Frequency-Dependent Sexual Selection in Male Bluegill Sunfish. Philos Trans R Soc Lond B Biol Sci, 1991,332:59-66
    81. Gross MR:Sneakers, satellites, and parentals:polymorphic mating strategies in North American sunfishes. Z Tierpsychol,1982,60:1-26
    82. Grossen C, Neuenschwander S, Perrin N:Temperature-Dependent Turnovers in Sex-Determination Mechanisms:A Quantitative Model. Evolution,2011,65:64-78
    83. Guiguen Y, Baroiller JF, Ricordel MJ, Iseki K, Mcmeel OM, Martin SA, Fostier A: Involvement of estrogens in the process of sex differentiation in two fish species: the rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus). Mol Reprod Dev,1999,54:154-162
    84. Guiguen Y, Fostier A, Piferrer F, Chang C-F:Ovarian aromatase and estrogens:a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol,2010,165:352-366
    85. Gutierrez J:Mathematical Analysis of the Use of Trojan Sex Chromosomes as Means of Eradication of Invasive Species. Electron Theses Treatises Diss,2009
    86. Gutierrez JB, Teem JL:A model describing the effect of sex-reversed YY fish in an established wild population:The use of a Trojan Y chromosome to cause extinction of an introduced exotic species. J Theor Biol,2006,241:333-341
    87. Hacker A, Capel B, Goodfellow P, Lovell-Badge R:Expression of Sry, the mouse sex determining gene. Dev Camb Engl,1995,121:1603-1614
    88. Haffray P, Lebegue E, Jeu S, Guennoc M, Guiguen Y, Baroiller JF, Fostier A: Genetic determination and temperature effects on turbot Scophthalmus maximus sex differentiation:An investigation using steroid sex-inverted males and females. Aquaculture,2009,294:30-36
    89. Hattori RS, Fernandino JI, Kishii A, Kimura H, Kinno T, Oura M, Somoza GM, Yokota M, Strussmann CA, Watanabe S:Cortisol-Induced Masculinization:Does Thermal Stress Affect Gonadal Fate in Pejerrey, a Teleost Fish with Temperature-Dependent Sex Determination? PLoS ONE,2009,4:e6548
    90. Hattori RS, Gould RJ, Fujioka T, Saito T, Kurita J, Strussmann CA, Yokota M, Watanabe S:Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes:gender sensitivity, thermal threshold, critical period, and DMRT1 expression profile. Sex Dev,2007,1:138-146
    91. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA:A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci,2012, 109:2955-2959
    92. Hawkes LA, Broderick AC, Godfrey MH, Godley BJ:Investigating the potential impacts of climate change on a marine turtle population. Glob Change Biol,2007, 13:923-932
    93. Hayashi Y, Kobira H, Yamaguchi T, Shiraishi E, Yazawa T, Hirai T, Kamei Y, Kitano T:High temperature causes masculinization of genetically female medaka by elevation of cortisol. Mol Reprod Dev,2010,77:679-686
    94. Haynes BP, Dowsett M, Miller WR, Dixon JM, Bhatnagar AS:The pharmacology of letrozole. J Steroid Biochem Mol Biol,2003,87:35-45
    95. Hayward RS, Wang H-P:Rearing Male Bluegills Indoors May Be Advantageous for Producing Food-size Sunfish. J World Aquac Soc,2006,37:496-508
    96. He Y, Luo M, Yi M, Sheng Y, Cheng Y, Zhou R, Cheng H:Identification of a testis-enriched heat shock protein and fourteen members of hsp70 family in the swamp eel. PloS One,2013,8:e65269
    97. Hett AK, Pitra C, Jenneckens I, Ludwig A:Characterization of Sox9 in European Atlantic sturgeon (Acipenser sturio). JHered,2005,96:150-154
    98. Hoegg S, Brinkmann H, Taylor JS, Meyer A:Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol,2004,59:190-203
    99. Hong C-S, Saint-Jeannet J-P:Sox proteins and neural crest development. Semin Cell Dev Biol,2005,16:694-703
    100. Hornung MW, Jensen KM, Korte JJ, Kahl MD, Durhan EJ, Denny JS, Henry TR, Ankley GT:Mechanistic basis for estrogenic effects in fathead minnow (Pimephales promelas) following exposure to the androgen 17a-methyltestosterone: conversion of 17a-methyltestosterone to 17a-methylestradiol. Aquat Toxicol,2004, 66:15-23
    101. Hubbs CL, Hubbs LC:The increased growth, predominant maleness, and apparent infertility of hybrid sunfishes. Pap Mich Acad Sci,1933,17:613-641
    102. Hunter GA, Donaldson EM:Hormonal sex control and its application to fish culture. In Fish Physiol. W. S. Hoar, D. J. Randell, and E. M. Donaldson. New York: Academic Press; 1983:223-291
    103. Hurley MA, Matthiessen P, Pickering AD:A model for environmental sex reversal in fish. J Theor Biol,2004,227:159-165
    104. Ijiri S, Berard C, Trant JM:Characterization of gonadal and extra-gonadal forms of the cDNA encoding the Atlantic stingray(Dasyatis sabina) cytochrome P450 aromatase (CYP19). Mol Cell Endocrinol,2000,164:169-181
    105. Ijiri S, Kaneko H, Kobayashi T, Wang D-S, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y:Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod, 2008,78:333-341
    106. Jakob S, Lovell-Badge R:Sex determination and the control of Sox9 expression in mammals. FEBS J,2011,278:1002-1009
    107. Janssen J:Competition and growth of bluegill, green sunfish and their hybrids and the possible role of aggressive behavior. PhD. Michigan State University; 1974
    108. Janzen FJ, Krenz J:Phylogenetics:Which was first, TSD or GSD? In Temp-Depend Sex Determ Vertebr. Valenzuela N and Lance V. Washington DC:Smithsonian Books; 2004:121-130
    109. Janzen FJ:Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci,1994,91:7487-7490
    110. Jeng S-R, Dufour S, Chang C-F:Differential expression of neural and gonadal aromatase enzymatic activities in relation to gonadal development in Japanese eel, Anguilla japonica. J Exp Zoolog A Comp Exp Biol,2005,303:802-812
    111. Jennings MJ, Philipp DP:Alternative Mating Tactics in Sunfishes (Centrarchidae): A Mechanism for Hybridization? Copeia,2002:1102-1105
    112. Jolley JC, Edwards KR, Willis DW:Bluegill (Lepomis macrochirus) Spawning Periodicity and Hatching Duration in the Northern Great Plains, USA. J Freshw Ecol,2009,24:29-38
    113. Josso N, Clemente N di:Transduction pathway of anti-Mullerian hormone, a sex-specific member of the TGF-beta family. Trends Endocrinol Metab TEM,2003, 14:91-97
    114. Josso N, di Clemente N, Gouedard L:Anti-Mullerian hormone and its receptors. Mol Cell Endocrinol,2001,179:25-32
    115. Kajiura-Kobayashi H, Kobayashi T, Nagahama Y:Estrogen-induced and suppressed gene expression during XY sex reversal in a teleost fish, tilapia. Fish Physiol Biochem,2003,28:153-153
    116. Kallivretaki E, Eggen RIL, Neuhauss SCF, Kah O, Segner H:The zebrafish, brain-specific, aromatase cyp19a2 is neither expressed nor distributed in a sexually dimorphic manner during sexual differentiation. Dev Dyn,2007,236:3155-3166
    117. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K:A Trans-Species Missense SNP in Amhr2 Is Associated with Sex Determination in the Tiger Pufferfish, Takifugu rubripes (Fugu). PLoS Genet,2012, 8:e1002798
    118. Kanaiwa M, Harada Y:Genetic risk involved in stock enhancement of fish having environmental sex determination. Popul Ecol,2002,44:7-15
    119. Keenleyside MHA, Misra RK, Bateson DW:Extended Analysis of Hybridization in Sunfishes (Centrarchidae) Using an Adjusted Hybrid Index Method. J Fish Res Board Can,1973,30:1901-1904
    120. Kettlewell JR, Raymond CS, Zarkower D:Temperature-dependent expression of turtle Dmrtl prior to sexual differentiation. Genes N Y N,2000,26:174-178
    121. Kikuchi K, Hamaguchi S:Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn,2013,242:339-353
    122. Kim DS, Nam YK, Jo J-Y:Effect of oestradiol-17β immersion treatments on sex reversal of mud loach, Misgurnus mizolepis (Gunther). Aquac Res, 1997,28:941-946
    123. Kitano T, Takamune K, Kobayashi T, Nagahama Y, Abe SI:Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder9Paralichthys olivaceus). J Mol Endocrinol,1999,23:167-176
    124. Kitano T, Takamune K, Nagahama Y, Abe SI:Aromatase inhibitor and 17alpha-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev,2000,56:1-5
    125. Kluver N, Kondo M, Herpin A, Mitani H, Schartl M:Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Dev Genes Evol,2005,215:297-305
    126. Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y:Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn, 2004,231:518-526
    127. Kondo M, Nanda I, Hornung U, Schmid M, Schartl M:Evolutionary origin of the medaka Y chromosome. Curr Biol CB,2004,14:1664-1669
    128. Kondo M:Genomic organization of the sex-determining and adjacent regions of the sex chromosomes of medaka. Genome Res,2006,16:815-826
    129. Koopman P, Schepers G, Brenner S, Venkatesh B:Origin and diversity of the SOX transcription factor gene family:genome-wide analysis in Fugu rubripes. Gene, 2004,328:177-186
    130. Kwon JY, Haghpanah V, Kogson-Hurtado LM, McAndrew BJ, Penman DJ: Masculinization of genetic female Nile tilapia (Oreochromis niloticus) by dietary administration of an aromatase inhibitor during sexual differentiation. J Exp Zool, 2000,287:46-53
    131. Laarman PW:Reproduction of F1 Hybrid Sunfishes in Small Ponds. Progress Fish-Cult,1979,41:145-147
    132. Lagomarsino Ⅳ, Conover DO:Variation in Environmental and Genotypic Sex-Determining Mechanisms Across a Latitudinal Gradient in the Fish, Menidia menidia. Evolution,1993,47:487-494
    133. Lane CE Jr:Age and Growth of the Bluegill, Lepomis m. macrochirus (Rafinesque), in a New Missouri Impoundment. J Wildl Manag,1954,18:358-365
    134. Lee KH, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M:Germ cell degeneration in high-temperature treated pufferfish, Takifugu rubripes. Sex Dev Genet Mol Biol Evol Endocrinol Embryol Pathol Sex Determ Differ,2009,3:225-232
    135. Lewis WM, Heidinger R:Supplemental Feeding of Hybrid Sunfish Populations. Trans Am Fish Soc,1971,100:619-623
    136. Li L, Wang HP, Givens C, Czesny S, Brown B:Isolation and characterization of microsatellites in yellow perch (Perca flavescens). Mol Ecol Notes,2007,7:600-603
    137. Lincoln J, Kist R, Scherer G, Yutzey KE:Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol,2007,305:120-132
    138. Liu H, Guan B, Xu J, Hou C, Tian H, Chen H:Genetic Manipulation of Sex Ratio for the Large-Scale Breeding of YY Super-Male and XY All-Male Yellow Catfish (Pelteobagrus fulvidraco (Richardson)). Mar Biotechnol,2013,15:321-328
    139. Liu ZH, Zhang YG, Wang DS:Studies on feminization, sex determination, and differentiation of the Southern catfish, Silurus meridionalis-a review. Fish Physiol Biochem,2010,36:223-235
    140. Livak KJ, Schmittgen TD:Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif, 2001,25:402-408
    141. Lo KH, Hui MNY, Yu RMK, Wu RSS, Cheng SH:Hypoxia Impairs Primordial Germ Cell Migration in Zebrafish (Danio rerio) Embryos. PLoS ONE,2011, 6:e24540
    142. Lou B, Xu D, Xu H, Zhan W, Mao G, Shi H:Effect of high water temperature on growth, survival and antioxidant enzyme activities in the Japanese flounder Paralichthys olivaceus. Afr JAgric Res,2011,6:2875-2882
    143. Lozano C, Gjerde B, Bentsen HB, Dionisio EE, Rye M:Estimates of strain additive genetic, heterosis and reciprocal effects for male proportion in Nile tilapia, Oreochromis niloticus L. Aquaculture,2011,312:32-42
    144. Luckenbach JA, Borski RJ, Daniels HV, Godwin J:Sex determination in flatfishes: Mechanisms and environmental influences. Semin Cell Dev Biol,2009,20:256-263
    145. Magerhans A, Horstgen-Schwark G:Selection experiments to alter the sex ratio in rainbow trout (Oncorhynchus mykiss) by means of temperature treatment. Aquaculture,2010,306:63-67
    146. Magerhans A, Miiller-Belecke A, Horstgen-Schwark G:Effect of rearing temperatures post hatching on sex ratios of rainbow trout (Oncorhynchus mykiss) populations. Aquaculture,2009,294:25-29
    147. Mank JE, Promislow DEL, A vise JC:Evolution of alternative sex-determining mechanisms in teleost fishes. Biol J Linn Soc,2006,87:83-93
    148. Mankiewicz JL, Godwin J, Holler BL, Turner PM, Murashige R, Shamey R, Daniels HV, Borski RJ:Masculinizing effect of background color and cortisol in a flatfish with environmental sex-determination. Integr Comp Biol,2013,53:755-765
    149. Marchand O, Govoroun M, D'Cotta H, McMeel O, Lareyre JJ, Bernot A, Laudet V, Guiguen Y:DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss. Biochim Biophys Acta,2000, 1493:180-187
    150. Marin I, Baker BS:The evolutionary dynamics of sex determination. Science,1998, 281:1990-1994
    151. Marshall D:General effects of temperature on animal biology. In Temp-Depend Sex Determ Vertebr. Washington DC:Smithsonian Books; 2004
    152. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M:DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature,2002,417:559-563
    153. Matsuda M, Shinomiya A, Kinoshita M, Suzuki A, Kobayashi T, Paul-Prasanth B, Lau E-1., Hamaguchi S, Sakaizumi M, Nagahama Y:DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci,2007, 104:3865-3870
    154. Matsumoto Y, Buemio A, Chu R, Vafaee M, Crews D:Epigenetic control of gonadal aromatase (cypl9al) in temperature-dependent sex determination of red-eared slider turtles. PloS One,2013,8:e63599
    155. Meyer A, Van de Peer Y:From 2R to 3R:evidence for a fish-specific genome duplication (FSGD). BioEssays News Rev Mol Cell Dev Biol,2005,27:937-945
    156. Misra RK, Bateson DW, Keenleyside MHA:Statistical methods for analysis of hybrid indices, with an example from fish populations. J Stat Res,1970,4:50-70
    157. Miura T, Miura C, Ohta T, Nader MR, Todo T, Yamauchi K:Estradiol-17beta stimulates the renewal of spermatogonial stem cells in males. Biochem Biophys Res Commun,1999,264:230-234
    158. Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R: Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet,1996,14:62-68
    159. Morris J, Mischke C:A White Paper on the Status and Needs of Sunfish Aquaculture in the North Central Region. North Central Regional Aquaculture Center; 2003
    160. Murdock C, Wibbels T:Dmrtl expression in response to estrogen treatment in a reptile with temperature-dependent sex determination. J Exp Zoolog B Mol Dev Evol,2006,306:134-139
    161. Murdock C, Wibbels T:Expression of Dmrtl in a turtle with temperature-dependent sex determination. Cytogenet Genome Res,2003,101:302-308
    162. Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M:Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics,2012,191:163-170
    163. Nakamoto M, Matsuda M, Wang D-S, Nagahama Y, Shibata N:Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochem Biophys Res Commun,2006,344:353-361
    164. Nakamoto M, Suzuki A, Matsuda M, Nagahama Y, Shibata N:Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochem Biophys Res Commun,2005, 333:729-736
    165. Nakamura M, Bhandari RK, Higa M:The role estrogens play in sex differentiation and sex changes of fish. Fish Physiol Biochem,2003,28:113-117
    166. Nakamura S, Watakabe I, Nishimura T, Toyoda A, Taniguchi Y, Tanaka M: Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PloS One,2012,7:e29982
    167. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M:A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci,2002,99:11778-11783
    168. Navara KJ:Hormone-mediated adjustment of sex ratio in vertebrates. Integr Comp Biol,2013,53:877-887
    169. Navarro-Martin L, Blazquez M, Piferrer F:Masculinization of the European sea bass (Dicentrarchus labrax) by treatment with an androgen or aromatase inhibitor involves different gene expression and has distinct lasting effects on maturation. Gen Comp Endocrinol,2009,160:3-11
    170. Navarro-Martin L, Vinas J, Ribas L, Diaz N, Gutierrez A, Di Croce L, Piferrer F: DNA Methylation of the Gonadal Aromatase (cypl9a) Promoter Is Involved in Temperature-Dependent Sex Ratio Shifts in the European Sea Bass. PLoS Genet, 2011,7:e1002447
    171. Neff BD, Fu P, Gross MR:Microsatellite evolution in sunfish (Centrarchidae). Can J Fish Aquat Sci,1999,56:1198-1205
    172. Oreal E, Pieau C, Mattei MG, Josso N, Picard JY, Carre-Eusebe D, Magre S:Early expression of AMH in chicken embryonic gonads precedes testicular SOX9 expression. Dev Dyn,1998,212:522-532
    173. Ospina-Alvarez N, Piferrer F:Temperature-Dependent Sex Determination in Fish Revisited:Prevalence, a Single Sex Ratio Response Pattern, and Possible Effects of Climate Change. PLoS ONE,2008,3:e2837
    174. Otake H, Shinomiya A, Matsuda M, Hamaguchi S, Sakaizumi M:Wild-derived XY sex-reversal mutants in the Medaka, Oryzias latipes. Genetics,2006,173:2083-2090
    175. Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, Forabosco A, Pilia G, Schlessinger D:Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet,2005,14:2053-2062
    176. Pailhoux E, Vigier B, Chaffaux S, Servel N, Taourit S, Furet JP, Fellous M, Grosclaude F, Cribiu EP, Cotinot C, Vaiman D:A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet,2001,29:453-458
    177. Pailhoux E, Vigier B, Vaiman D, Servel N, Chaffaux S, Cribiu EP, Cotinot C: Ontogenesis of female-to-male sex-reversal in XX polled goats. Dev Dyn Off Publ Am Assoc Anat,2002,224:39-50
    178. Pandian TJ, Sheela SG:Hormonal induction of sex reversal in fish. Aquaculture, 1995,138:1-22
    179. Pannetier M, Fabre S, Batista F, Kocer A, Renault L, Jolivet G, Mandon-Pepin B, Cotinot C, Veitia R, Pailhoux E:FOXL2 activates P450 aromatase gene transcription:towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol,2006,36:399-413
    180. Park I-S, Kim J-H, Cho SH, Kim DS:Sex differentiation and hormonal sex reversal in the bagrid catfish Pseudobagrus fulvidraco (Richardson). Aquaculture,2004, 232:183-193
    181. Park I-S, Oh HS, Koo J-G:Effect of oral tamoxifen on growth and survival in the bagrid catfish Pseudobagrus fulvidraco. Aquac Res,2003,34:1471-1474
    182. Park M, Shin E, Won M, Kim J-H, Go H, Kim H-L, Ko J-J, Lee K, Bae J:FOXL2 interacts with steroidogenic factor-1 (SF-1) and represses SF-1-induced CYP17 transcription in granulosa cells. Mol Endocrinol Baltim Md,2010,24:1024-1036
    183. Parker K:A direct method for estimating northern anchovy, Engraulis mordax, spawning biomass. Fish Bull,1980,78:541-544
    184. Parroit JL, Wood CS:Fathead minnow lifecycle tests for detection of endocrine-disrupting substances in effluents. Water Qual Res J Can,2002,37:651-667
    185. Patil JG, Gunasekera RM:Tissue and sexually dimorphic expression of ovarian and brain aromatase mRNA in the Japanese medaka(Oryzias latipes):implications for their preferential roles in ovarian and neural differentiation and development. Gen Comp Endocrinol,2008,158:131-137
    186. Paul-Prasanth B, Matsuda M, Lau E-L, Suzuki A, Sakai F, Kobayashi T, Nagahama Y:Knock-down of DMY initiates female pathway in the genetic male medaka, Oryzias latipes. Biochem Biophys Res Commun,2006,351:815-819
    187. Payvar F, DeFranco D, Firestone GL, Edgar B, Wrange O, Okret S, Gustafsson JA, Yamamoto KR:Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell,1983,35(2 Pt 1):381-392
    188. Piferrer F, Blazquez M, Navarro L, Gonzalez A:Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass(Dicentrarchus labrax L.). Gen Comp Endocrinol,2005,142:102-110
    189. Piferrer F, Blazquez M:Aromatase distribution and regulation in fish. Fish Physiol Biochem,2005,31:215-226
    190. Piferrer F, Donaldson EM:Dosage-dependent differences in the effect of aromatizable and nonaromatizable androgens on the resulting phenotype of coho salmon (Oncorhynchus kisutch). Fish Physiol Biochem,1991,9:145-150
    191. Piferrer F, Zanuy S, Carrillo M, Solar Ⅱ, Devlin RH, Donaldson EM:Brief treatment with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal, functional males. J Exp Zool, 1994,270:255-262
    192. Piferrer F:Endocrine sex control strategies for the feminization of teleost fish. Aquaculture,2001,197:229-281. [Reproductive Biotechnology in Finfish Aquaculture]
    193. Piferrer F:Epigenetics of sex determination and gonadogenesis. Dev Dyn,2013, 242:360-370
    194. Planas JV, Swanson P:Maturation-associated changes in the response of the salmon testis to the steroidogenic actions of gonadotropins (GTH I and GTH II) in vitro. Biol Reprod,1995,52:697-704
    195. Quinn AE, Sarre SD, Ezaz T, Graves JAM, Georges A:Evolutionary transitions between mechanisms of sex determination in vertebrates. Biol Lett,2011,7:443-448
    196. Raghuveer K, Senthilkumaran B:Isolation of sox9 duplicates in catfish:localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of sox9 in testicular slices. Reprod Camb Engl,2010, 140:477-487
    197. Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarkower D:Expression of Dmrtl in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol,1999,215:208-220
    198. Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J, Zarkower D: Evidence for evolutionary conservation of sex-determining genes. Nature,1998, 391:691-695
    199. Rey R, Lukas-Croisier C, Lasala C, Bedecarras P:AMH/MIS:what we know already about the gene, the protein and its regulation. Mol Cell Endocrinol,2003, 211:21-31
    200. Rhen T, Metzger K, Schroeder A, Woodward R:Expression of Putative Sex-Determining Genes during the Thermosensitive Period of Gonad Development in the Snapping Turtle, Chelydra serpentina. Sex Dev,2007,1:255-270
    201. Rhen T, Schroeder A:Molecular mechanisms of sex determination in reptiles. Sex Dev,2010,4:16-28
    202. Ricker WE:Hybrid Sunfish for Stocking Small Ponds. Trans Am Fish Soc,1948, 75:84-96
    203. Rinchard J, Dabrowski K, Garcia-Abiado MA, Ottobre J:Uptake and depletion of plasma 17a-methyltestosterone during induction of masculinization in muskellunge, Esox masquinongy:□ Effect on plasma steroids and sex reversal. Steroids,1999, 64:518-525
    204. Roberts FL:A chromosome study of twenty species of centrarchidae. J Morphol, 1964,115:401-417
    205. Rodriguez-Mari A, Yan Y-L, Bremiller RA, Wilson C, Canestro C, Postlethwait JH: Characterization and expression pattern of zebrafish Anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cypl9ala, during gonad development. Gene Expr Patterns,2005,5:655-667
    206. Rougeot C, Prignon C, Ngouana Kengne CV, Melard C:Effect of high temperature during embryogenesis on the sex differentiation process in the Nile tilapia, Oreochromis niloticus. Aquaculture,2008,276:205-208
    207. Russo V, Martienssen R, Riggs A:Epigenetic Mechanisms of Gene Regulation. New York:Cold Spring Harbor Laboratory Press; 1996
    208. Saillant E, Fostier A, Haffray P, Menu B, Thimonier J, Chatain B:Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). JExp Zool,2002,292:494-505
    209. Santucci VJ, Wahl DH:The Effects of Growth, Predation, and First-Winter Mortality on Recruitment of Bluegill Cohorts. Trans Am Fish Soc,2003,132:346-360
    210. Sarre SD, Ezaz T, Georges A:Transitions between sex-determining systems in reptiles and amphibians. Annu Rev Genomics Hum Genet,2011,12:391-406
    211. Sato T, Endo T, Yamahira K, Hamaguchi S, Sakaizumi M:Induction of Female-to-Male Sex Reversal by High Temperature Treatment in Medaka, Oryzias latipes. Zoolog Sci,2005,22:985-988
    212. Sawatari E, Shikina S, Takeuchi T, Yoshizaki G:A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol,2007,301:266-275
    213. Schartl M:Function of the Medaka Male Sex-Determining Gene. In Medaka Model Organog Hum Dis Evol. Japan:Springer; 2011:241-253
    214. Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier A-C, Treier M: The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development,2004,131:933-942
    215. Schmittgen TD, Livak KJ:Analyzing real-time PCR data by the comparative CT method. Nat Protoc,2008,3:1101-1108
    216. Schmittou HR:Sex Ratios of Bluegill in Four Populations. Trans Am Fish Soc, 1967,96:420-421
    217. Scholz S, Kluver N:Effects of endocrine disrupters on sexual, gonadal development in fish. Sex Dev,2009,3:136-151
    218. Schulz RW, Bogerd J, Male R, Ball J, Fenske M, Olsen LC, Tyler CR:Estrogen-induced alterations in amh and dmrtl expression signal for disruption in male sexual development in the zebrafish. Environ Sci Technol,2007,41:6305-6310
    219. Schwanz LE, Ezaz T, Gruber B, Georges A:Novel evolutionary pathways of sex-determining mechanisms. JEvol Biol 2013:12258
    220. Scott AP, Sumpter JP:Seasonal variations in testicular germ cell stages and in plasma concentrations of sex steroids in male rainbow trout (Salmo gairdneri) maturing at 2 years old. Gen Comp Endocrinol,1989,73:46-58
    221. Sekido R, Lovell-Badge R:Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature,2008,453:930-934
    222. Selim KM, Shinomiya A, Otake H, Hamaguchi S, Sakaizumi M:Effects of high temperature on sex differentiation and germ cell population in medaka, Oryzias latipes. Aquaculture,2009,289:340-349
    223. Senior AM, Krkosek M, Nakagawa S:The practicality of Trojan sex chromosomes as a biological control:an agent based model of two highly invasive Gambusia species. Biol Invasions,2013,15:1765-1782
    224. Senior AM, Lim JN, Nakagawa S:The fitness consequences of environmental sex reversal in fish:a quantitative review. Biol Rev,2012,87:900-911
    225. Shang EHH, Yu RMK, Wu RSS:Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol,2006,40:3118-3122
    226. Shen MM, Hodgkin J:mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell,1988,54:1019-1031
    227. Shen Z-G, Fan Q-X, Hurley MA, Xie C-X, Yang W, Zhang Y-L:A letter to the editor about the article "A model for environmental sex reversal in fish."J Theor Biol,2012,294:185
    228. Shen Z-G, Wang H-P:Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genet Sel Evol,2014,46:26
    229. Shine R, Elphick MJ, Donnellan S:Co-occurrence of multiple, supposedly incompatible modes of sex determination in a lizard population. Ecol Lett,2002, 5:486-489
    230. Shoemaker CM, Crews D:Analyzing the coordinated gene network underlying temperature-dependent sex determination in reptiles. Semin Cell Dev Biol,2009, 20:293-303
    231. Shoemaker CM, Queen J, Crews D:Response of Candidate Sex-Determining Genes to Changes in Temperature Reveals Their Involvement in the Molecular Network Underlying Temperature-Dependent Sex Determination. Mol Endocrinol,2007, 21:2750-2763
    232. Siegfried KR:In search of determinants:gene expression during gonadal sex differentiation.J Fish Biol,2010,76:1879-1902
    233. Smith CA, Katz M, Sinclair AH:DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos. Biol Reprod,2003,68:560-570
    234. Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH:Conservation of a sex-determining gene. Nature,1999,402:601-602
    235. Smith CA, Roeszler KN, Hudson QJ, Sinclair AH:Avian sex determination:what, when and where? Cytogenet Genome Res,2007,117:165-173
    236. Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH:The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature,2009,461:267-271
    237. Smith CA, Sinclair AH:Sex determination:insights from the chicken. BioEssays News Rev Mol Cell Dev Biol,2004,26:120-132
    238. Socorro S, Martins RS, Deloffre L, Mylonas CC, Canario AVM:A cDNA for European sea bass (Dicentrachus labrax) 11beta-hydroxylase:gene expression during the thermosensitive period and gonadogenesis. Gen Comp Endocrinol,2007, 150:164-173
    239. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H: IPCC (2007) Climate Change 2007:The Physical Science Basis. Cambridge, United Kingdom and New York, NY, USA.:Cambridge University Press; 2007
    240. Sprugel G:Growth of Bluegills in a New Lake, with Particular Reference to False Annuli. Trans Am Fish Soc,1954,83:58-75
    241. Stelkens RB, Wedekind C:Environmental sex reversal, Trojan sex genes, and sex ratio adjustment:conditions and population consequences. Mol Ecol,2010,19:627-646
    242. Strussmann CA, Moriyama S, Hanke EF, Cota JCC, Takashima F:Evidence of thermolabile sex determination in pejerrey. JFish Biol,1996,48:643-651
    243. Strussmann CA, Nakamura M:Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiol Biochem, 2002,26:13-29
    244. Strussmann CA, Patino R:Sex Determination, Environmental. In Encycl Reprod. Knobil E and Neill JD. New York:Academic Press; 1999:402-409
    245. Sublette JE, Hatch MD, Sublette M:The Fishes of New Mexico. Albuquerque:The University of New Mexico Press; 1990
    246. Suzuki A, Nakamoto M, Kato Y, Shibata N:Effects of estradiol-17beta on germ cell proliferation and DMY expression during early sexual differentiation of the medaka Oryzias latipes. Zoolog Sci,2005,22:791-796
    247. Suzuki A, Tanaka M, Shibata N, Nagahama Y:Expression of aromatase mRNA and effects of aromatase inhibitor during ovarian development in the medaka, Oryzias latipes. JExp ZoologA Comp Exp Biol,2004,301:266-273
    248. Takada S, DiNapoli L, Capel B, Koopman P:Sox8 is expressed at similar levels in gonads of both sexes during the sex determining period in turtles. Dev Dyn,2004, 231:387-395
    249. Takamatsu N, Kanda H, Ito M, Yamashita A, Yamashita S, Shiba T:Rainbow trout SOX9:cDNA cloning, gene structure and expression. Gene,1997,202:167-170
    250. Takaoka A, Yanai H:Interferon signalling network in innate defence. Cell Microbiol,2006,8:907-922
    251. Tanaka H:Induction of sex revesal in the sevenband grouper, Epinephelus Septemfasciatus.1999
    252. Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y:Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res,2003,13:382-390
    253. Tchoudakova A, Callard GV:Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary. Endocrinology, 1998,139:2179-2189
    254. Tchoudakova A, Kishida M, Wood E, Callard GV:Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish. J Steroid Biochem Mol Biol,2001,78:427-439
    255. Teem JL, Gutierrez JB:Combining the Trojan Y chromosome and daughterless carp eradication strategies. Biol Invasions,2013:1-10
    256. Teixeira J, Maheswaran S, Donahoe PK:Mullerian inhibiting substance:an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev,2001,22:657-674
    257. Thomas P, Rahman MS:Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proc Biol Sci,2012,279:28-38
    258. Tong S-K, Chung B:Analysis of zebrafish cyp19 promoters. J Steroid Biochem Mol Biol,2003,86:381-386
    259. Uchida D, Yamashita M, Kitano T, Iguchi T:An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comp Biochem Physiol A Mol Integr Physiol,2004,137:11-20
    260. Uchida D, Yamashita M, Kitano T, Iguchi T:Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J Exp Biol,2002,205(Pt 6):711-718
    261. Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G:Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet,2004,13:1171-1181
    262. Ueda H, Young G, Crim LW, Kambegawa A, Nagahama Y:17 alpha,20 beta-dihydroxy-4-pregnen-3-one:plasma levels during sexual maturation and in vitro production by the testes of amago salmon (Oncorhynchus rhodurus) and rainbow trout (Salmo gairdneri). Gen Comp Endocrinol,1983,51:106-112
    263. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier A-C, Klugmann C, Klasen C, Holter NI, Riethmacher D, Schutz G, Cooney AJ, Lovell- Badge R, Treier M:Somatic Sex Reprogramming of Adult Ovaries to Testes by FOXL2 Ablation. Cell,2009,139:1130-1142
    264. Uhlenhaut NH, Treier M:Foxl2 function in ovarian development. Mol Genet Metab, 2006,88:225-234
    265. Valenzuela N, Adams DC, Janzen FJ:Pattern does not equal process:exactly when is sex environmentally determined? Am Nat,2003,161:676-683
    266. Valenzuela N, Lance V:Temperature Dependent Sex Determination in Vertebrates. Washington DC:Smithsonian Books; 2004
    267. Valenzuela N, LeClere A, Shikano T:Comparative gene expression of steroidogenic factor 1 in Chrysemys picta and Apalone mutica turtles with temperature-dependent and genotypic sex determination. Evol Dev,2006,8:424-432
    268. Valenzuela N:Evolution and maintenance of temperature-dependent sex determination. In Temp-Depend Sex Determ Vertebr. Valenzuela N and Lance V. Washington DC:Smithsonian Books; 2004:131-147
    269. Valenzuela N:Evolution of the gene network underlying gonadogenesis in turtles with temperature-dependent and genotypic sex determination. Integr Comp Biol, 2008,48:476-485
    270. Valenzuela N:Relic thermosensitive gene expression in a turtle with genotypic sex determination. Evol Int J Org Evol,2008,62:234-240
    271. Van den Hurk R, van Oordt PG:Effects of natural androgens and corticosteroids on gonad differentiation in the rainbow trout, Salmo gairdneri. Gen Comp Endocrinol, 1985,57:216-222
    272. Van Nes S, Andersen (?):Temperature effects on sex determination and ontogenetic gene expression of the aromatases cypl9a and cypl9b, and the estrogen receptors esrl and esr2 in atlantic halibut (Hippoglossus hippoglossus). Mol Reprod Dev, 2006,73:1481-1490
    273. Vandeputte M, Dupont-Nivet M, Chavanne H, Chatain B:A Poly genic Hypothesis for Sex Determination in the European Sea Bass Dicentrarchus labrax. Genetics, 2007,176:1049-1057
    274. Vidal VP, Chaboissier MC, de Rooij DG, Schedl A:Sox9 induces testis development in XX transgenic mice. Nat Genet,2001,28:216-217
    275. Vizziano D, Randuineau G, Baron D, Cauty C, Guiguen Y:Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev Dyn, 2007,236:2198-2206
    276. Volff J-N, Zarkower D, Bardwell VJ, Schart1 M:Evolutionary dynamics of the DM domain gene family in metazoans. J Mol Evol,2003,57 Suppl 1:S241-249
    277. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G:Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell,1994,79:1111-1120
    278. Wang C, Xie S, Zhu X, Lei W, Yang Y, Liu J:Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidraco larvae. Aquaculture,2006,254:554-562
    279. Wang D, Mao H-L, Chen H-X, Liu H-Q, Gui J-F:Isolation of Y-and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Anim Genet,2009,40:978-981
    280. Wang D-S, Kobayashi T, Zhou L-Y, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y:Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol,2007,21:712-725
    281. Wang D-S, Zhou L-Y, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y: Doublesex-and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology,2010,151:1331-1340
    282. Wang H-P, Gao Z, Beres B, Ottobre J, Wallat G, Tiu L, Rapp D, O'Bryant P, Yao H:Effects of estradiol-17β on survival, growth performance, sex reversal and gonadal structure of bluegill sunfish Lepomis macrochirus. Aquaculture,2008, 285:216-223
    283. Wang H-P, Gao Z-X, Rapp D, O'Bryant P, Yao H, Cao X-J:Effects of temperature and genotype on sex determination and sexual size dimorphism of bluegill sunfish Lepomis macrochirus. Aquaculture,2014,420-421, Supplement 1:S64-S71. [International Symposium on Genetics in Aquaculture-Ⅺ]
    284. Wang J-T, Li J-T, Zhang X-F, Sun X-W:Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp(Cyprinus carpio). BMC Genomics,2012,13:1-10
    285. Wang LH, Tsai CL:Effects of temperature on the deformity and sex differentiation of tilapia, Oreochromis mossambicus. J Exp Zool,2000,286:534-537
    286. Wedekind C, Evanno G, Szekely T, Pompini M, Darbellay O, Guthruf J:Persistent unequal sex ratio in a population of grayling (Salmonidae) and possible role of temperature increase. Conserv Biol J Soc Conserv Biol,2013,27:229-234
    287. Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, Thisse C, Thisse B, Raz E:dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol CB,2003, 13:1429-1434
    288. Wendelaar Bonga SE:The stress response in fish. Physiol Rev,1997,77:591-625
    289. Wessels S, Horstgen-Schwark G:Selection experiments to increase the proportion of males in Nile tilapia(Oreochromis niloticus) by means of temperature treatment. Aquaculture,2007,272, Supplement 1:S80-S87
    290. Wessels S, Horstgen-Schwark G:Temperature dependent sex ratios in selected lines and crosses with a YY-male in Nile tilapia(Oreochromis niloticus). Aquaculture, 2011,318:79-84
    291. Wessels S, Samavati S, Horstgen-Schwark G:Effect of early temperature treatments on sex differentiation in Nile tilapia, Oreochromis niloticus lines selected for high and low thermo-sensitivity. Aquaculture,2011,316:139-142
    292. Western PS, Harry JL, Graves JA, Sinclair AH:Temperature-dependent sex determination in the American alligator:AMH precedes SOX9 expression. Dev Dyn, 1999,216:411-419
    293. Wu G, Huang C, Chang C:An epigenetic switch mediates the fate determination of ovary in protandrous black porgy fish. In Sixth Int Symp Vertebr Sex Determ. Kona, Hawaii; 2012:74
    294. Wu G-C, Chiu P-C, Lyu Y-S, Chang C-F:The Expression of amh and amhr2 Is Associated with the Development of Gonadal Tissue and Sex Change in the Protandrous Black Porgy, Acanthopagrus schlegeli. Biol Reprod,2010,83:443-453
    295. Yamaguchi T, Yamaguchi S, Hirai T, Kitano T:Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun,2007,359:935-940
    296. Yamahira K, Conover D:Interpopulation variablility in temperature-dependent sex determination of the tide-water silverside Menidia peninsulae (Pisces:Atherinidae). Copeia,2003:156-159
    297. Yamamoto F:Sex Differentiation. W.S. Hoar, D.J. Randall. New York:Academic Press; 1969
    298. Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y:An Immune-Related Gene Evolved into the Master Sex-Determining Gene in Rainbow Trout, Oncorhynchus mykiss. Curr Biol,2012, 22:1423-1428
    299. Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, Guiguen Y:The sexually dimorphic on the Y-chromosome gene(sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl,2013,6:486-496
    300. Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi K-I, Ozato K:Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev, 2002,63:5-16
    301. Yoshimoto S, Ikeda N, Izutsu Y, Shiba T, Takamatsu N, Ito M:Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis:implications of a ZZ/ZW-type sex-determining system. Dev Camb Engl, 2010,137:2519-2526
    302. Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M:A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci USA,2008,105:2469-2474
    303. Zarkower D:Establishing sexual dimorphism:conservation amidst diversity? Nat Rev Genet,2001,2:175-185
    304. Zerulla M, Lange R, Steger-Hartmann T, Panter G, Hutchinson T, Dietrich DR: Morphological sex reversal upon short-term exposure to endocrine modulators in juvenile fathead minnow (Pimephales promelas). Toxicol Lett,2002,131:51-63
    305. Zhang W, Yang Y, Peng Y, Zhang S, Zhang Y, Wu C, Zhang L:Differential Synergism of Ftz-fl Homologues and Foxl2 on the Activation of Cypl9a1a Gene from Rice Field Eel Monopterus albus, a Protogynous Hermaphroditic Teleost. Biol Reprod,2010,83:386
    306. Zhou R, Liu L, Guo Y, Yu H, Cheng H, Huang X, Tiersch TR, Berta P:Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol Reprod Dev, 2003,66:211-217
    307. Zhu L, Wilken J, Phillips NB, Narendra U, Chan G, Stratton SM, Kent SB, Weiss MA:Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Genes Dev,2000,14:1750-1764